

SYDNEY GRAMMAR SCHOOL

2014 Trial Examination

FORM VI

MATHEMATICS EXTENSION 1

Friday 8th August 2014

General Instructions

- Reading time 5 minutes
- Writing time 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total — 70 Marks

• All questions may be attempted.

Section I – 10 Marks

- Questions 1–10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 60 Marks

- Questions 11–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Candidature 120 boys

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which expression is equivalent to $\cos 2x$?

- (A) $\sin^2 x \cos^2 x$
- (B) $2\sin^2 x 1$
- (C) $2\sin^2 x + 1$
- (D) $2\cos^2 x 1$

QUESTION TWO

A polynomial of degree four is divided by a polynomial of degree two. What is the maximum possible degree of the remainder?

(A) 3
(B) 2
(C) 1
(D) 0

Exam continues next page ...

1

QUESTION THREE

In the diagram above the point P divides the interval AB in the ratio 3:2. In what ratio does the point A divide the interval BP?

(A) -5:3(B) -5:2(C) -3:5(D) -2:5

QUESTION FOUR

What is the exact value of $\cos^{-1}\left(\cos\left(-\frac{\pi}{3}\right)\right)$?

(A) $-\frac{2\pi}{3}$ (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

QUESTION FIVE

Which function is a primitive of $\frac{1}{1+4x^2}$?

- $(\mathbf{A}) \quad \frac{1}{2} \tan^{-1} \left(\frac{1}{2} x \right)$
- $(B) \quad \frac{1}{4}\tan^{-1}\left(\frac{1}{2}x\right)$
- (C) $\frac{1}{2} \tan^{-1}(2x)$
- (D) $\frac{1}{4} \tan^{-1}(2x)$

Exam continues overleaf ...

1

1

QUESTION SIX

Which expression is equal to ${}^{n}C_{2}$?

(A) $\frac{n}{2}$ (B) $\frac{n^2-n}{2}$ (C) $\frac{n^2+n}{2}$ (D) n

QUESTION SEVEN

The velocity v of a particle moving in a straight line is governed by the equation v = x - 2, where x is its displacement. The particle started at x = 5. What is the displacement function of the particle?

(A) $x = 5e^{t}$ (B) $x = 2 + \frac{1}{3}e^{t}$ (C) $x = 2 + e^{t}$ (D) $x = 2 + 3e^{t}$

QUESTION EIGHT

A particle is moving in simple harmonic motion about the origin according to the equation $x = 2 \cos nt$, where x metres is its displacement after t seconds. It passes through the origin with speed $\sqrt{2}$ m/s. What is the value of n?

(A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$ (C) $-\sqrt{2}$ (D) $\frac{\pi}{4}$

Exam continues next page ...

1

1

QUESTION NINE

The diagram above shows the velocity-time graph of an object that moves over a 10 second time interval. For what percentage of the time is the speed of the object decreasing?

- (A) 30%
- (B) 60%
- (C) 70%
- (D) It cannot be determined from the graph.

QUESTION TEN

How many solutions does the equation $2x + 3\pi \sin x = 0$ have in the domain $0 \le x \le 2\pi$?

- $(A) \quad 1$
- (B) 2
- (C) = 3
- (D) 4

End of Section I

Exam continues overleaf ...

1

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.

- (a) Solve the inequation $\frac{2}{x} < 3$.
- (b) (i) Sketch the curve $y = \sin^{-1} x$.
 - (ii) What is the gradient of the curve at x = 0?
- (c) Solve the equation $\sin 2x = \sin x$ for $-\pi \le x \le \pi$.
- (d) A curve is defined parametrically by the equations

$$x = 1 - t$$
$$y = t^2.$$

Find the gradient of the tangent to the curve at the point where t = -3.

(e) By using the substitution $u = \sin x$, or otherwise, evaluate $\int_0^{\frac{\pi}{4}} \sin^5 x \cos x \, dx$.

(f) A spherical balloon, with volume given by the formula $V = \frac{4}{3}\pi r^3$, is being filled with air at the constant rate of $200 \text{ cm}^3/\text{s}$. At what rate is its radius r increasing at the instant when it is 7 cm? Give your answer correct to three significant figures.

Marks

 $\mathbf{2}$

1

1

3

 $\mathbf{2}$

3

QUESTION TWELVE (15 marks) Use a separate writing booklet.

- (a) The cubic equation $x^3 + 5x^2 + cx + d = 0$ has three real roots -3, 7 and α .
 - (i) Use the sum of the roots to find α .
 - (ii) Find the values of c and d.

(b) Find the coefficient of x^3 in the expansion of $\left(3x^2 - \frac{2}{x}\right)^9$.

- (i) Write the expression $\sqrt{2}\sin x \sqrt{6}\cos x$ in the form $A\sin(x-\theta)$, where A > 0(c) and $0 < \theta < \frac{\pi}{2}$.
 - (ii) Hence write down the maximum value of $\sqrt{2} \sin x \sqrt{6} \cos x$, and find the smallest positive value of x for which this maximum value occurs.
- (d) Let $P(x) = x^3 + 3x 7$.
 - (i) Show that the equation P(x) = 0 has a root between 1 and 2.
 - (ii) Use two applications of Newton's method with initial approximation $x_1 = 1$ to approximate this root. Give your answer correct to two decimal places.
- (e) Suppose that θ is the acute angle between the lines y = kx and (k+1)y = kx, where k+1 > 0 and $k \neq 0$.
 - (i) Find an expression for $\tan \theta$ in simplest form.
 - (ii) Explain why $\theta < 45^{\circ}$.

3

 $\mathbf{2}$

 $\mathbf{2}$

1

 $\mathbf{2}$

 $\mathbf{2}$

E.	-	1	

- Marks
 - 1

QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks 3

(a)

The diagram above shows the points A, B and C lying on a circle, of which AC is a diameter. The line AP is perpendicular to the tangent at B. Let $\angle BAC = \alpha$.

Prove that BA bisects $\angle PAC$.

1

- $\mathbf{2}$ (b) A particle is moving in simple harmonic motion. Its acceleration is defined by the equation $\ddot{x} = -9x$. Whenever the particle is 4 cm from the origin its speed is 6 cm/s. Find the amplitude of the motion.
- (c) Consider the quadratic polynomial $Q(x) = (x+h)^2 + k$, for some constants h and k. Find the values of h and k given that x + 2 is a factor of Q(x) and 16 is the remainder when Q(x) is divided by x.
- (d) Prove by mathematical induction that for all positive integer values of n,

$$2 \times 2 + 2^2 \times 3 + 3^2 \times 4 + \dots + n^2 (n+1) = \frac{1}{12}n(n+1)(n+2)(3n+1).$$

3

QUESTION THIRTEEN (Continued)

- (e) A jug of cold water at W° C, where W > 0, is taken out of a refrigerator. The air temperature in the room is $2W^{\circ}$ C. The rate at which the water warms is proportional to the difference between the temperature of the surrounding air and the temperature of the water. Thus $\frac{dT}{dt} = k(2W T)$, where T° C is the temperature of the water after t minutes.
 - (i) Show that $T = 2W We^{-kt}$ satisfies the differential equation.
 - (ii) If the temperature of the water has increased by 50% after 20 minutes, find the value of k.
 - (iii) Find the percentage increase in the temperature of the water 45 minutes after the water is taken out of the refrigerator. Give your answer correct to the nearest whole percent.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

In the diagram above the normal at $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$ meets the parabola again at $Q(2aq, aq^2)$. You may assume that the normal at P has equation $x + py = 2ap + ap^3$.

(i) Show that $p^2 + pq + 2 = 0$.

(a)

(ii) Given that the tangents at P and Q intersect at the point T(a(p+q), apq), and the line through T parallel to the axis of the parabola meets the parabola at $R(2ar, ar^2)$, prove that PR is a focal chord. (That is, prove that pr = -1.)

	1	
ſ	2	

1

Marks

QUESTION FOURTEEN (Continued)

(b) (i) By considering the expansion of $(1 + x)^n$, show that

$$\binom{n}{1} + \binom{n}{2}x + \binom{n}{3}x^2 + \dots + \binom{n}{n}x^{n-1} = \frac{(1+x)^n - 1}{x}$$

(ii) By applying integration to the identity in part (i), with the substitution u = 1 + x on the right-hand-side, show that

$$\binom{n}{1} - \frac{1}{2}\binom{n}{2} + \frac{1}{3}\binom{n}{3} - \dots + \frac{(-1)^{n-1}}{n}\binom{n}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

(c)

In the diagram above the point O is the foot of a plane inclined at an angle α to the horizontal. A particle is projected with speed V from O at an angle of elevation θ to the horizontal, where $\theta > \alpha$. It strikes the inclined plane at P, which is the vertex of the parabolic path of the particle. You may assume that this parabolic path has parametric equations $x = Vt \cos \theta$ and $y = Vt \sin \theta - \frac{1}{2}gt^2$.

(i) Show that $\tan \theta = 2 \tan \alpha$.

(ii) Show that the distance OP is given by $\frac{2V^2 \sec \alpha \tan \alpha}{g(1 + 4 \tan^2 \alpha)}$.

End of Section II

END OF EXAMINATION

3

1

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

$$\text{NOTE : } \ln x = \log_e x, \ x > 0$$

SYDNEY GRAMMAR SCHOOL

CANDIDATE NUMBER

2014 Trial Examination FORM VI MATHEMATICS EXTENSION 1 Friday 8th August 2014

Question One						
A 🔾	В ()	$C \bigcirc$	D ()			
Question '	Two					
А ()	В ()	С ()	D ()			
Question '	Three					
А ()	В ()	С ()	D ()			
Question 1	Four					
А ()	В ()	СО	D ()			
Question 1	Five					
А ()	В ()	С ()	D ()			
Question Six						
А ()	В ()	С ()	D ()			
Question Seven						
А ()	В ()	СО	D ()			
Question Eight						
А ()	В ()	СО	D ()			
Question Nine						
A 🔾	В ()	С ()	D ()			
Question Ten						
A 🔿	В ()	С ()	D ()			

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

$$\frac{\text{Extension 1 Trial HSC 2014}}{\frac{\text{Multiple Choice}}{(2014)}} \begin{pmatrix} 0^{\alpha_{\text{M}} \text{ mark}} \\ each. \end{pmatrix}} \\ (1) \cos 2x = 2\cos^{2}x - 1 \quad (D) \\ (2) \cos 2x = 2\cos^{2}x - 1 \quad (D) \\ (3) \cos 2x = 2\cos^{2}x - 1 \quad (D) \\ (2) \text{ degree one } \quad (C) \\ (2) \text{ degree one } \quad (C) \\ (3) -5:3 \quad (A) \\ (4) \cos^{-1}(\cos(\frac{-\pi}{3})) \\ = \cos^{-1}(\cos(\frac{-\pi}{3})) \\ = \cos^{-1}(\cos(\frac{\pi}{3})) \\ = \cos^{-1}(\cos(\frac{\pi}{3})) \\ = \frac{\pi}{3} \quad (C) \\ (4) \cos^{-1}(\cos(\frac{\pi}{3})) \\ = \frac{\pi}{3} \quad (C) \\ (5) \int \frac{1}{1+4x^{2}} dx \\ = \frac{1}{4} \int \frac{1}{\frac{1}{4}+x^{2}} dx \\ = \frac{1}{4} \int \frac{1}{\frac{1}{4}+x^{2}} dx \\ = \frac{1}{2}\tan^{-1}2x + c \\ = \frac{1}{2}\tan^{-1}2x + c \\ = \frac{n(n-1)}{2} \\ = \frac{n(n-1)}{2} \\ = \frac{n^{2}-n}{2} \quad (B) \\ \text{Three solutions } x=0, \alpha, \frac{3\pi}{2} \\ (C) \\ (C) \\ \text{Three solutions } x=0, \alpha, \frac{3\pi}{2} \\ (C) \\ ($$

$$\frac{\text{Written Response}}{(11)(a)} \quad \frac{1}{x} < 3 , x \neq 0$$

$$\text{Multiply both sides by x^{2}.} \\ 2x < 3x^{2} & | & \frac{35x(3x)}{2} \\ x < 0 \text{ or } x > \frac{3}{2} \\ (4)(i) & \frac{\pi}{2} & | & (1,\frac{\pi}{2}) \\ \hline \\ (-1,-\frac{\pi}{2})^{l} & | & -\frac{\pi}{2} \\ \hline \\ (-1,-\frac{\pi}{2})^{l} & | & -\frac{\pi}{2} \\ \hline \\ (i) At (0,0) m = 1 \\ \hline \\ (c) & \sin 2x = \sin x, -\pi \le x \le \pi \\ 2\sin x \cos x = \sin x, -\pi \le x \le \pi \\ 2\sin x \cos x = \sin x, -\pi \le x \le \pi \\ 2\sin x \cos x = \sin x, -\pi \le x \le \pi \\ \sin x (2\cos x - 1) = 0 \\ \sin x = 0 \quad \text{or } \cos x = \frac{1}{2} \\ \hline \\ (d) & (x = 1 - t) \\ y = t^{2} \\ \hline \\ \frac{dy}{dx} = \frac{ds/dt}{dx/dt} \\ = \frac{2t}{-1} \\ At t = -3, \frac{dy}{dx} = 6 \\ Atternatively eliminate t toget the Carkesian equation $y = (1 - x)^{2}$

$$\frac{dy}{dx} = -2(1 - x), \\ \text{When } t = -3, x = 4 \\ 5o \quad \frac{dy}{dx} = -2(-3) \\ \frac{dy}{dx} =$$$$

(13)(a)
$$P = B$$

(13)(a)
$$P = B$$

(c) x
so
so
LABC = $\frac{\pi}{2}$ (angle in semicircle)
So $LABC = \frac{\pi}{2}$ (angle in semicircle)
So $LABP = \frac{\pi}{2} - \alpha$ (altwrate
(angles on a)
Line
So $LABP = \frac{\pi}{2} - \alpha$ (angle sum of)
So $LABP = \frac{\pi}{2} - \alpha$ (angle sum of)
So BA bisects $LPAC$.
(b) $\frac{\pi}{2} = \frac{d(\frac{1}{2}v^2)}{dx} = -9x$
So $\frac{1}{2}v^2 = \int -9x dx$
 $z = -\frac{9}{2}x^2 + c$.
When $|x|=4$, $|v|=6$.
So $18 = -72 + c$
 $c = 90$.
So $\frac{1}{2}v^2 = 90 - \frac{9}{2}x^2$
 $v^2 = 180 - 9x^2$.
When $v = 0$,
 $x^2 = 20$
 $x = \frac{t}{2}\sqrt{5}$.
So the amplitude is $2\sqrt{5}$ cm.
OR use $v^2 = n^2(a^2 - x^2)$.

C)
$$x + 2$$
 is a factor
so $8(-2) = 0$
so $(-2 + h)^2 + k = 0$
so $4 - 4h + h^2 + k = 0$ (1)
The remainder when dividing
by x is 16
so $8(0) = 16$
so $8(0) = 16$
so $h^2 + k = 16$ (2)
2) -(1): $4h - 4 = 16$
 $h = 5$
ubstitute into (2):
 $25 + k = 16$
 $k = -9$
So $h = 5$ and $k = -9$.

Þ

(13) (d) When n=1, LHS =
$$1^{2} \times 2$$

= 2
and RHS = $\frac{1}{12}(1)(2)(3)(4)$
= 2.
So the result is true for n=1.
Suppose that the result is true for n=1.
Suppose that $\sum_{n=1}^{\infty} n^{2}(n+1) = \frac{1}{12}k(k+1)(k+2)(3k+1)$. (*)
Prove that the result is true for n= k+1.
i.e. prove that $\sum_{n=1}^{k} n^{2}(n+1) = \frac{1}{12}(k+1)(k+2)(k+3)(3k+4)$.
LHS = $\sum_{n=1}^{k} n^{2}(n+1) + (k+1)^{2}(k+2)$
= $\frac{1}{12}k(k+1)(k+2)(3k+1) + (k+1)^{2}(k+2)$ (using (*))
= $\frac{1}{12}k(k+1)(k+2)(3k+1) + 12(k+1)$
= $\frac{1}{12}(k+1)(k+2)(3k+1) + 12(k+1)$
= $\frac{1}{12}(k+1)(k+2)(3k+1) + 12(k+1)$
= $\frac{1}{12}(k+1)(k+2)(k+3)(3k+4)$
= $\frac{1}{12}(k+1)(k+2)(k+3)(3k+4)$
= RHS
So the result is true for n=k+1 if it is true for n=k.
But the result is true for n=k+1 if it is true for n=k.
But the result is true for n=k+1 if it is true for n=k.
But the result is true for n=k+1 if it is true for n=k.
(e)(i) T = 2W - We^{-kt}
 $\binom{4T}{4t} = kWe^{-kt}$
= $k(2W-T)$, as required.
(ii) when t= 20, T = 150% of W
= 1+5W.
So the temperature has
increased by about 79% .
So the temperature has
increased by about 79% .

$$(14)(a)^{(1)}_{n} = (\text{ordinates } \partial_{n}(2aq, aq^{2}) \text{ satisfy } x + py = 2ap + ap^{3}, \quad so 2aq + apq^{2} = 2ap + ap^{3}, \quad zq + pq^{3} = 2p + ap^{3}, \quad zq + pq^{3} = 2p + ap^{3}, \quad zq + pq^{3} = 2p + pq^{3}, \quad zq + pq^{3}, \quad zq$$

(c)(i)
$$\dot{y} = V \sin \theta - g t$$

At P, $\dot{y} = 0$, so $t = \frac{V \sin \theta}{g}$.
So $x = \frac{V^2 \sin \theta \cos \theta}{g}$ and $y = \frac{V^2 \sin^2 \theta}{g} - \frac{1}{2} \cdot g \cdot \frac{V^2 \sin^2 \theta}{g^2}$
 $= \frac{V^2 \sin^2 \theta}{2g}$.
Substitute these expressions into $y = x \tan d$, the equation of OP :
 $\frac{V^2 \sin^2 \theta}{2g} = \frac{V^2 \sin \theta \cos \theta}{g} \cdot t \operatorname{and}$
so $\frac{\sin \theta}{2} = \cos \theta \tan d$.

(ii) By Py magoras,
$$OP^{2} = (x - value of P)^{2} + (y - value of P)^{2}$$

$$= \frac{V^{4}sin^{2}\theta cos^{2}\theta}{g^{2}} + \frac{V^{4}sin^{4}\theta}{4g^{2}}$$

$$= \frac{V^{4}}{4g^{2}} (4sin^{2}\theta cos^{2}\theta + sin^{4}\theta)$$

$$= \frac{V^{4}}{4g^{2}} sot^{4}\theta \left(\frac{4sin^{2}cos^{2}\theta}{cos^{4}\theta} + \frac{sin^{4}\theta}{cos^{4}\theta}\right)$$

$$= \frac{V^{4}}{4g^{2}} \cdot \frac{4tan^{2}\theta + tan^{4}\theta}{(1 + tan^{2}\theta)^{2}}$$

BUT
$$\tan \theta = 2 \tan \alpha$$
,
so $OP^{2} = \frac{V^{4}}{4g^{2}} \cdot \frac{16 \tan^{2} \alpha + 16 \tan^{4} \alpha}{(1 + 4 \tan^{2} \alpha)^{2}}$
 $= \frac{4V^{4}}{g^{2}} \cdot \frac{\tan^{2} \alpha (1 + \tan^{2} \alpha)}{(1 + 4 \tan^{2} \alpha)^{2}}$
 $= \frac{4V^{4}}{g^{2}} \cdot \frac{\sec^{2} \alpha \tan^{2} \alpha}{(1 + 4 \tan^{2} \alpha)^{2}}$
So $OP = \frac{2V^{2} \sec \alpha \tan \alpha}{g(1 + 4 \tan^{2} \alpha)}$.