Sydney Grammar School

FORM VI

MATHEMATICS EXTENSION 1

Friday 12th August 2016

General Instructions

- Writing time - 2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 70 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 109 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What are the asymptotes of $y=\frac{2 x}{(x+3)(x-1)}$?
(A) $y=0, \quad x=1, \quad x=-3$
(B) $y=0, \quad x=-1, \quad x=3$
(C) $y=2, \quad x=1, \quad x=-3$
(D) $y=2, \quad x=-1, \quad x=3$

QUESTION TWO

Determine $\lim _{x \rightarrow 0}\left(\frac{\sin x}{3 \tan x}\right)$.
(A) 0
(B) $\frac{1}{3}$
(C) 1
(D) 3

QUESTION THREE

What is the domain of $f(x)=e^{-\frac{1}{x}}$?
(A) $x>0$
(B) $x \geq 0$
(C) $x \neq 0$
(D) all real x

QUESTION FOUR

What is the value of $\sin \left(\tan ^{-1} a\right)$?
(A) $\frac{a}{\sqrt{1-a^{2}}}$
(B) $\frac{1}{\sqrt{1-a^{2}}}$
(C) $\frac{1}{\sqrt{1+a^{2}}}$
(D) $\frac{a}{\sqrt{1+a^{2}}}$

QUESTION FIVE

The monic quadratic equation with roots $m+n$ and $m-n$ is:
(A) $x^{2}-2 m x+m^{2}-n^{2}=0$
(B) $x^{2}+2 m x+m^{2}-n^{2}=0$
(C) $x^{2}-2 m x+n^{2}-m^{2}=0$
(D) $x^{2}+2 m x+n^{2}-m^{2}=0$

QUESTION SIX

A function is defined by the following rule:
$f(x)= \begin{cases}\sin ^{-1} x, & \text { for }-1 \leq x<0 \\ \cos ^{-1} x, & \text { for } 0 \leq x \leq 1\end{cases}$
What is the value of $f\left(-\frac{1}{2}\right)+f(0)$?
(A) $-\frac{\pi}{6}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{2 \pi}{3}$

QUESTION SEVEN

The range R of any particle projected from a point on a level plane at an angle of α to the horizontal with initial speed v is given by $R=\frac{v^{2} \sin 2 \alpha}{g}$.

A particle is projected at 50° to the horizontal. What other angle of projection would give the same range for this particle?
(A) 25°
(B) 40°
(C) 80°
(D) 100°

QUESTION EIGHT

The points A, B and C lie on a circle with centre O. If $\angle A B C=130^{\circ}$, what is the size of $\angle A O C$?
(A) 50°
(B) 65°
(C) 100°
(D) 260°

QUESTION NINE

A particle is moving in simple harmonic motion with period 4 and amplitude 3 . Which of the following is a possible equation for the velocity of the particle?
(A) $v=\frac{3 \pi}{2} \cos \frac{\pi t}{2}$
(B) $v=3 \cos \frac{\pi t}{2}$
(C) $v=\frac{3 \pi}{4} \cos \frac{\pi t}{4}$
(D) $v=3 \cos \frac{\pi t}{4}$

QUESTION TEN

Which of the following is a necessary condition if $a^{2}>b^{2}$?
(A) $a>b$
(B) $a<b<0$
(C) $a>0>b$
(D) $|a|>|b|$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Find the value of $\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)$. 1 1
(b) Let $A=(4,-3)$ and $B=(8,5)$. The interval $A B$ is divided internally in the ratio $3: 1$ by the point $P(x, y)$. Find the values of x and y.
(c) Solve $\frac{5}{3 x-2}>2$.
(d) The acute angle between the two lines $y=\frac{1}{2} x+1$ and $y=m x+3$ is $\frac{\pi}{4}$. Find all possible values of the constant m.
(e) Find the general solution of $\cos 2 x-\cos x=2$.
(f) Find the term independent of x in the expansion of $\left(x^{2}-\frac{2}{x}\right)^{12}$.

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a) The polynomial $P(x)=2 x^{3}+x^{2}+a x+6$ has a zero at $x=2$.
(i) Determine the value of a.
(ii) Find the linear factors of $P(x)$.
(iii) Hence, or otherwise, solve $P(x) \geq 0$.
(b) Integrate $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x$ using the substitution $u=\tan ^{-1} x$.
(c)

The diagram above shows a hot air balloon at point H with altitude 800 m . The passengers in the balloon can see a barn and a dam below, at points B and D respectively. Point C is directly below the hot air balloon. From the hot air balloon's position, the barn has a bearing of 250° and the dam has a bearing of 130°, and $\angle B C D=120^{\circ}$. The angles of depression to the barn and the dam are 50° and 30° respectively.

How far is the barn from the dam, to the nearest metre?

(d) Prove by induction that $(x+y)$ is a factor of $x^{2 n}-y^{2 n}$, for all integers $n \geq 1$.

(e)

The diagram above shows a vessel in the shape of a cone of radius 3 cm and height 4 cm . Water is poured into it at the rate of $10 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate at which the water level is rising when the depth is 2 cm .

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.
(a)

Two circles \mathcal{C}_{1} and \mathcal{C}_{2} intersect at A and B. A line through A meets the circles at P and Q respectively. A tangent is drawn from an external point T to touch the circle \mathcal{C}_{1} at P. The line $T Q$ intersects \mathcal{C}_{2} at R.
(i) Given $\angle X P B=\alpha$, show that $\angle B R Q=180^{\circ}-\alpha$, giving reasons.
(ii) Hence show that $P T R B$ is a cyclic quadrilateral.
(b) Consider the parabola $x^{2}=4 a y$ with focus S. The normal at $P\left(2 a p, a p^{2}\right)$ meets the y-axis at R and $\triangle S P R$ is equilateral.
(i) Show that the equation of the normal at P is $x+p y=2 a p+a p^{3}$.
(ii) Write down the coordinates of R.
(iii) Prove that $S P$ is equal in length to the latus rectum, that is $4 a$ units.
(c) (i) Show that $\frac{d}{d x}(x \ln x)=1+\ln x$.
(ii) A particle is moving in a straight line. At time t seconds its position is $x \mathrm{~cm}$ and its velocity is $v \mathrm{~cm} / \mathrm{s}$. Initially $x=1$ and $v=2$. The acceleration a of the particle is given by the equation

$$
a=1+\ln x
$$

Find the velocity v in terms of x. Be careful to explain why v is always positive.
(d)

The circle above has radius 1 unit and the major arc joining A and B is twice as long as the chord $A B$. The point M lies on $A B$ such that $A B \perp O M$. Let $\angle A O M=\theta$ where $0<\theta<\frac{\pi}{2}$.
(i) Show that the length of the major arc satisfies the equation

$$
\pi-\theta=2 \sin \theta
$$

(ii) Let $\theta_{0} \doteqdot 1.5$ be a first approximation of θ. Use two applications of Newton's method to find a better approximation of θ.
(iii) Use your answer to part (ii) to find the approximate length of the chord $A B$.
(a) The mass M of a radioactive isotope is given by the equation $M=M_{0} e^{-k t}$, where M_{0} is the initial mass and k is a constant. The mass satisfies the equation $\frac{d M}{d t}=-k M$.
(i) If the half-life of this radioactive isotope is T, show that $k=\frac{\log _{e} 2}{T}$.
(ii) A naturally occurring rock contains two radioactive isotopes X and Y. The half-
lives of isotope X and isotope Y are T_{X} and T_{Y} respectively, where $T_{X}>T_{Y}$. Initially the mass of isotope Y is four times that of isotope X.

Show that the rock will contain the same mass of both isotopes at time

$$
\frac{2 T_{X} T_{Y}}{T_{X}-T_{Y}}
$$

(b) Sketch the graph of $y=\frac{|x|}{x}$.
(c) Consider the function $f(x)=\sin ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)$.
(i) Find the domain of $f(x)$.
(ii) Show that $f^{\prime}(x)=\frac{2 x}{|x|\left(x^{2}+1\right)}$.
(iii) Determine the values of x for which $f(x)$ is increasing.
(iv) Using part (b), explain the behaviour of $f^{\prime}(x)$ as $x \rightarrow 0^{+}$and $x \rightarrow 0^{-}$.
(v) Draw a neat sketch of $y=f(x)$, indicating any intercepts with the axes and any asymptotes.
(vi) Give the largest possible domain containing $x=1$ for which $f(x)$ has an inverse function. Let this inverse function be $f^{-1}(x)$.
(vii) Sketch $y=f^{-1}(x)$ on your original graph.
(viii) Find the equation of $f^{-1}(x)$.

END OF EXAMINATION

Sydney Grammar School

2016
Trial Examination
FORM VI
MATHEMATICS EXTENSION 1
Friday 12th August 2016

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A \bigcirc
B \qquad
C

D

Question Two

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A \bigcirc
B \bigcirc
C

D \bigcirc

Question Five
AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

A \bigcirc
BD \bigcirc

Question Seven

A
BD \bigcirc

Question Eight

A \bigcirc
B
C
D \square

Question Nine

A
B \bigcirc
C

D \bigcirc

Question Ten

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

EXTENSION MATHEMATICS SOLUTIONS
MULTIPLE CHILE

1. Vertical asymptotes: $(x+3)(x-1)=0$
$x=-3$ and $x=1$
Flovizoutal asymptote: $y=0$
2. $\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{x}{\tan x} \times \frac{1}{3}=\frac{1}{3}$
3. $f(x)=e^{-\frac{1}{x}} \quad x \neq 0$
4.

Let $x=\tan ^{-1} a$

$$
\tan x=a
$$

$$
\sin x=\frac{a}{\sqrt{1+a^{2}}}
$$

5.

$$
\begin{aligned}
& (x-(m+n))(x-(m-n))=0 \\
& x^{2}-2 m x+m^{2}-n^{2}=0
\end{aligned}
$$

6.

$$
\begin{aligned}
& f\left(-\frac{1}{2}\right)+f(0) \\
= & \sin ^{-1}\left(-\frac{1}{2}\right)+\cos ^{-1}(0) \\
= & -\frac{\pi}{6}+\frac{\pi}{2} \\
= & \frac{\pi}{3}
\end{aligned}
$$

7. $\quad \sin \left(2 \times 50^{\circ}\right)=\sin 100^{\circ}=\sin 80^{\circ}=\sin \left(2 \times 90^{\circ}\right)$
8. Reflex $\angle A O C=260^{\circ}$ Cangle at the centre is twice the angle at the circumference)

$$
\therefore \angle A O C=100^{\circ}
$$

9.

$$
\begin{aligned}
T=\frac{2 \pi}{n} & x=3 \sin \frac{\pi t}{2} \\
& =\frac{\pi}{2}
\end{aligned}
$$

10. A sufficient

B neither necessarymor sufficient
D necessary and sufficient

1	2	3	4	5	6	7	8	9	10
A	B	C	D	A	C	B	C	A	D

QN II
(a)

$$
\begin{aligned}
& \sin ^{-1}\left(\sin \left(\frac{3 \pi}{5}\right)\right) \\
= & \left.\sin ^{-1}\left(\sin ^{2 \pi} 5\right)\right) \\
= & \frac{2 \pi}{5}
\end{aligned}
$$

(b)

$$
\begin{array}{ll}
A & B \\
(4,-3) & (8,5) \\
3 & \\
x= & \frac{3 \times 8+1 \times 4}{4} \\
= & y=\frac{3 \times 5-1 \times 3}{4} \\
= & =\frac{12}{4} \\
& =7
\end{array}
$$

(c)

$$
\begin{aligned}
& \frac{5}{3 x-2}>2 \\
& 5(3 x-2)>2(3 x-2)^{2} \quad \vee \quad x \neq \frac{2}{3} \\
& 2(3 x-2)^{2}-5(3 x-2)<0 \\
& (3 x-2)(6 x-9)<0 \\
& 3(3 x-2)(2 x-3)<0
\end{aligned}
$$

So $\frac{2}{3}<x<\frac{3}{2}$
(d)

$$
\begin{array}{rlrl}
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
1 & =\left|\frac{m_{1}-\frac{1}{2}}{1+\frac{m_{1}}{\frac{1}{2}}}\right| & \sqrt{ } \\
1+\frac{m_{1}}{2} & =m_{1}-\frac{1}{2} & \text { or } & 1+\frac{m_{1}}{2}=-m_{1}+\frac{1}{2} \\
-\frac{m_{1}}{2} & =-\frac{3}{2} & \frac{3 m_{1}}{2}=-\frac{1}{2} \\
m_{1} & =3 & m_{1}=-\frac{1}{3}
\end{array}
$$

So the possible values of the constant m are 3 and $-\frac{1}{3}$.
(e)

$$
\begin{aligned}
& \cos 2 x-\cos x=2 \\
& 2 \cos ^{2} x-1-\cos x-2=0 \\
& 2 \cos ^{2} x-\cos x-3=0 \\
& (2 \cos x-3)(\cos x+1)=0 \\
& \cos x=\frac{3}{2} \quad \cos x=-1
\end{aligned}
$$

$\downarrow x=-\pi+2 n \pi$, where n is m integer
(f) Let the term be ${ }^{12} C_{k}\left(x^{2}\right)^{k-k}\left(-\frac{2}{x}\right)^{k}$

$$
\begin{aligned}
& ={ }^{12} C_{k} \times x^{24-2 k} \times(-1)^{k} \times 2^{k} \times x^{-k} \\
& ={ }^{12} C_{k} \times x^{24-3 k} \times(-1)^{k} \times 2^{k}
\end{aligned}
$$

For the term independent of $x, 24-3 k=0$

$$
\text { S. } \begin{aligned}
& { }^{12} C_{8} \times x^{0} \times(-1)^{8} \times 2^{8} \\
= & { }^{12} C_{8} \times 2^{8} \\
= & 495 \times 256 \\
= & 126720
\end{aligned}
$$

$$
\begin{aligned}
& \frac{Q N 12}{(a)(i) P(2)}=0 \\
& 0=16+4 f 2 a+6 \\
& 2 a=-26 \\
& a=-13
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{2 x^{2}+5 x-3}{x-2)} \begin{array}{l}
\frac{2 x^{3}+x^{2}-13 x+6}{2 x^{3}-4 x^{2}} \\
\frac{5 x^{2}-13 x}{} \\
\frac{5 x^{2}-10 x}{-3 x+6} \\
-3 x+6
\end{array} \\
& P(x) \geqslant 0 \\
& -3 \leqslant x \leqslant 1 / 2 \text { or } x \geqslant 2
\end{aligned}
$$

$$
2 x^{2}+5 x-3=(2 x-1)(x+3)
$$

$$
\text { so } P(x)=(x-2)(2 x-1)(x+3)
$$

(ii.)
(b) $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{\sin \left(\tan ^{1} x\right)}{1+x^{2}} d x$

$$
\begin{aligned}
u & =\tan ^{-1} x \\
d u & =\frac{d x}{1+x u}
\end{aligned}
$$

$$
=\int_{0}^{\frac{\pi}{6}} \sin u d u
$$

when

$$
\begin{array}{ll}
x=\frac{1}{\sqrt{3}} & n=\frac{\pi}{6} \\
x=0 & u=0
\end{array}
$$

$$
\begin{aligned}
& =-[\cos n]_{0}^{\frac{\pi}{6}} \\
& =-\left(\frac{\sqrt{3}}{2}-1\right) \\
& =1-\frac{\sqrt{3}}{2} \\
& =\frac{2-\sqrt{3}}{2}
\end{aligned}
$$

Air Balloon
(c)
$\ln \triangle B C H, \tan 50^{\circ}=\frac{800}{B C}$

$$
B C=800 \cos 50^{\circ}
$$

Similarly in $\triangle D C H, \tan 30^{\circ}=\frac{800}{D C}$

$$
D C=800 \cos 30^{\circ}
$$

By the cosine rule:

$$
\begin{aligned}
\sqrt{B D^{2}} & =\left(\cos ^{2} 50^{\circ}+\cos ^{2} 30^{\circ}-2 \cos 50^{\circ} \cos +30^{\circ} \cos \left(20^{\circ}\right)\right. \\
& =800^{2} \times 5.157 \\
& \doteqdot 3300488 \\
& \doteqdot 1816.722 \ldots \\
& \doteqdot 1817 \mathrm{~m}
\end{aligned}
$$

(d) Prove $x^{2 n}-y^{2 n}$ has $(x+y)$ as a factor for all integers
(1) For $n=1: x^{2}-y^{2}=(x+y)(x-y)$, which has $(x+y)$ as a factor
(2) Assume true for $n=k$
$x^{2 k}-y^{2 k}=m(x+y) \circledast$ where m is an expression in $x \geqslant y$
(3) Prove true for $n=k+1$:

From (6) $\quad x^{2 k}=m(x+y)+y^{2 k}$

$$
\begin{aligned}
& x^{2 k+2}-y^{2 k+2} \\
= & x \cdot x^{2 k}-y \cdot y^{2 k} \\
= & x^{2}\left[m(x+y)+y^{2 k}\right]-y^{2} \cdot y^{2 k} \\
= & m x^{2}(x+y)+x^{2} y^{2 k}-y^{2} \cdot y^{2 k} \\
= & m x^{2}(x+y)+y^{2 k}(x+y)(x-y) \\
= & x+y\left[m x^{2}+y^{2 k}(x-y)\right]
\end{aligned}
$$

So from parts (2) \$ (3) and by mathematical induction $(x+y)$ is a factor of $x^{2 n}-y^{2 n}$ for all integers $n \geqslant 1$.
(e)

$$
\begin{aligned}
& \frac{r}{h}=\frac{3}{4} \quad V=\frac{1}{3} \pi\left(\frac{3 h}{4}\right)^{2} h \\
& r=\frac{3 h}{4} \\
& \begin{aligned}
& =\frac{3 h^{3} \pi}{16} \\
\frac{d V}{d h} & =\frac{9 h^{2} \pi}{16}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d V}{d h} \times \frac{d h}{d t} \\
& 10=\frac{9 \times 4 \times \pi}{16} \times \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{40}{9 \pi} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Si the water is rising at a rate of $\frac{t 0}{910} \mathrm{~cm} / \mathrm{s}$ when the depth of the cone is 2 cm
Q13
$(a)(i) \angle X P B=\alpha \quad$ Join Points A and B, and B and R.
$\angle P A B=\alpha$ (alternate segment theorem)
$\angle B A Q=180^{\circ}-\alpha$ (straight line)
$\angle B R Q=180^{\circ}-\alpha$ (angles standing on the same arc)
(ii) $\begin{aligned} \angle T R B & =\alpha \text { (straight angle) } \\ \angle X P T & =\angle T R B\end{aligned}$

$$
\begin{aligned}
& \angle X P T=\angle T R B \\
& \therefore P T R B \text { is }
\end{aligned}
$$

\therefore PTRB is a cyclic quadrilateral
(exterior angle is equal to the opposite interior angle)
(b)(i) $\frac{d y}{d x}=\frac{2 a p}{2 a}$

$$
=p
$$

so gradient of the normal is $-\frac{1}{p}$
equation of the normal:

$$
\begin{aligned}
y-a p^{2} & =-\frac{1}{p}(x-2 a p) \\
p y-a p^{3} & =-x+2 a p \\
x+p y & =2 a p+a p^{3}
\end{aligned}
$$

(ii) $R\left(0,2 a+a p^{2}\right)$
(ii) Let F be fort of the perpendicular from P to the y-axis.

Then $F R=F S=2 a$
(\triangle SRP is isosceles with altitude $\stackrel{S\left(0, a p^{2}-2 a\right)}{F}$)
Hence $S R=4 a$ and since $\triangle S P R$ is equilateral

$$
S P=S R
$$

$$
=4 \varepsilon
$$

= length of lotus rectum.
(c)

$$
\text { (i) } \begin{aligned}
\frac{d}{d x}(x \ln x) & =\ln x+\frac{1}{x} \times x \\
& =\ln x+1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& a=1+\ln x \\
& \frac{1}{2} v^{2}=x \ln x+c
\end{aligned}
$$

$\ln x$ is always increasing so at $t=0, a>0$
at $v=2, x=1$ so $c=2$

$$
\begin{aligned}
& \frac{1}{2} v^{2}=x \ln x+2 \\
& v^{2}=2 x \ln x+4 \\
& v= \pm \sqrt{2 x \ln x+4}
\end{aligned}
$$

(d) (i) Let $A M=x$
chord $A B=2 x$
major are $A B=4 x$

$$
x=\sin \theta
$$

So $A B=2 \sin \theta$
Major arc $A B=2 \pi-2 \theta$
So $2 \pi-2 \theta=4 \sin \theta$

$$
\pi-\theta=2 \sin \theta
$$

(ii) $2 \sin \theta+\theta-\pi=0$

So

$$
\begin{aligned}
& f(\theta)=2 \sin \theta+\theta-\pi \\
& f^{\prime}(\theta)=2 \cos \theta+1
\end{aligned}
$$

$$
\sigma_{1}=\theta_{0}-\frac{f(\theta)}{f^{\prime}(\theta)}
$$

$$
=1.5-\frac{(2 \sin \theta+\theta-\pi)}{2 \cos \theta+1}
$$

$$
=1.19
$$

$$
\theta_{2}=1.24433 \ldots
$$

(iii)

$$
\begin{aligned}
A B & =2 \sin \theta \\
& =2 \times \sin (1.24433 \ldots) \\
& =1.89436 \ldots
\end{aligned}
$$

Q14
(a) (i)

$$
\begin{aligned}
\frac{1}{2} M_{0} & =M_{0} e^{-k T} \\
\frac{1}{2} & =e^{-k T} \\
\ln \left(\frac{1}{2}\right) & =-k T \\
k & =\frac{\ln 2}{T}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& X= X_{0} e^{-k_{x} t} \\
& Y=Y_{0} e^{-k_{r} t}=4 X_{0} e^{-k_{r} t} \\
& 4 X_{0} e^{-k_{y} t}=X_{0} e^{-k_{x} t} \\
& \frac{4}{e^{k_{r} t}}=\frac{1}{e^{k_{x} t}} \\
& 4=\frac{e^{k_{r} t}}{e^{k_{x} t}} \\
&=e^{t\left(k_{r}-k_{x}\right)} \\
& 4 \ln 2=t\left(k_{r}-k_{x}\right) \\
& 2 \ln 2=t\left(\frac{\ln 2}{T_{y}}-\frac{\ln 2}{T_{x}}\right) \\
& 2=t\left(T_{x}-T_{r}\right) \\
& t=\frac{2 T_{x} T_{y}}{T_{x}-T_{Y}}
\end{aligned}
$$

(b)

(c) (i) $f(x)=\sin ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)$

Domain: $\quad-1 \leq\left(\frac{x^{2}-1}{x^{2}+1}\right) \leq 1$

$$
-x^{2}-1 \leqslant x^{2}-1 \leqslant x^{2}+1
$$

$-x^{2}-1 \leqslant x^{2}-1$ and $x^{2}-1 \leqslant x^{2}+1$

$$
-2 x^{2} \leq 0
$$

$$
-x^{2} \leq 0
$$

$0 \leqslant$
$0 \leqslant 2$
true for all x
So domain is all real x
(ii) Let $y=\sin ^{-1} u$

$$
\begin{aligned}
& \frac{d y}{d u}=\frac{1}{\sqrt{1-u^{2}}} \\
& \frac{d y}{d u}=\frac{d y}{d u} \times \frac{d u}{d x} \\
& =\frac{1}{\sqrt{1-\left(\frac{x^{2}-1}{z^{2}+1}\right)^{2}}} \times \frac{4 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right) \times 4 x}{\sqrt{x^{4}+2 x^{2}+1-\left(x^{4}-2 x^{2}+1\right) \times\left(x^{2}+1\right)^{2}}} \\
& =\frac{4 x}{\sqrt{4 x^{2} \times\left(x^{2}+1\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{4 x}{2|x| \times\left(x^{2}+1\right)} \quad \text { (by definition } \sqrt{x^{2}}=|x|\right) \\
& -\frac{2 x}{|x| \times\left(x^{2}+1\right)} \quad V
\end{aligned}
$$

(ii) Increasing when $\frac{d y}{d x}>0$

$$
x>0
$$

(iv) $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=2$

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=-2
$$

The gradient approaches +2 from below and -2 from above.

x-intercept at $f(x)=0$
Asymptotes

$$
\begin{aligned}
& x^{2}-1=0 \\
& x= \pm 1
\end{aligned}
$$

$$
\begin{aligned}
\text { as } x \rightarrow \infty \quad f(x) & \rightarrow \sin ^{-11} \\
& \rightarrow \frac{\pi}{2}
\end{aligned}
$$

$$
\text { as } x \rightarrow-\infty f(x) \rightarrow \sin ^{2-1}
$$

$$
\rightarrow \frac{\pi}{2}
$$

Hor izointal asymptote: $y=\frac{\pi}{2}$

$$
\text { (vi) } x \geqslant 0
$$

(vii) See graph

$$
\begin{aligned}
& \text { (Viii) } \begin{array}{l}
x=\sin ^{-1}\left(\frac{y^{2}-1}{y^{2}+1}\right) \\
\sin x=\frac{y^{2}-1}{y^{2}+1} \\
\sin x\left(y^{2}+1\right)=y^{2}-1 \\
y^{2} \sin x+\sin x=y^{2}-1 \\
y^{2}(1-\sin x)=1+\sin x \\
y^{2}=\frac{1+\sin x}{1-\sin x} \\
y=\sqrt{\frac{1+\sin x}{1-\sin x}} \\
\therefore f^{-1}(x)=\sqrt{\frac{1+\sin x}{1-\sin x}}
\end{array} .
\end{aligned}
$$

