

SYDNEY GRAMMAR SCHOOL

2016 Trial Examination

FORM VI

MATHEMATICS EXTENSION 1

Friday 12th August 2016

General Instructions

- Writing time 2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 70 Marks

• All questions may be attempted.

Section I – 10 Marks

- Questions 1–10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II – 60 Marks

- Questions 11–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Candidature 109 boys

Examiner SO

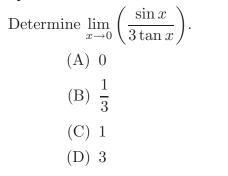
SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What are the asymptotes of $y = \frac{2x}{(x+3)(x-1)}$? (A) y = 0, x = 1, x = -3(B) y = 0, x = -1, x = 3(C) y = 2, x = 1, x = -3(D) y = 2, x = -1, x = 3

QUESTION TWO



QUESTION THREE

What is the domain of $f(x) = e^{-\frac{1}{x}}$?

(A) x > 0(B) $x \ge 0$ (C) $x \ne 0$ (D) all real x

QUESTION FOUR

What is the value of $\sin(\tan^{-1} a)$?

(A)
$$\frac{a}{\sqrt{1-a^2}}$$

(B)
$$\frac{1}{\sqrt{1-a^2}}$$

(C)
$$\frac{1}{\sqrt{1+a^2}}$$

(D)
$$\frac{a}{\sqrt{1+a^2}}$$

Examination continues next page ...

QUESTION FIVE

The monic quadratic equation with roots m + n and m - n is:

(A)
$$x^{2} - 2mx + m^{2} - n^{2} = 0$$

(B) $x^{2} + 2mx + m^{2} - n^{2} = 0$
(C) $x^{2} - 2mx + n^{2} - m^{2} = 0$
(D) $x^{2} + 2mx + n^{2} - m^{2} = 0$

QUESTION SIX

A function is defined by the following rule:

$$f(x) = \begin{cases} \sin^{-1} x, & \text{for } -1 \le x < 0\\ \cos^{-1} x, & \text{for } 0 \le x \le 1 \end{cases}$$

What is the value of $f\left(-\frac{1}{2}\right) + f(0)$?

(A)
$$-\frac{\pi}{6}$$

(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{2\pi}{3}$

QUESTION SEVEN

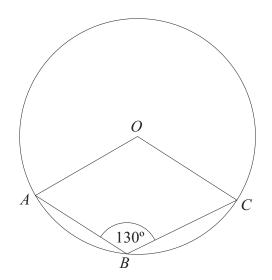
The range R of any particle projected from a point on a level plane at an angle of α to the horizontal with initial speed v is given by $R = \frac{v^2 \sin 2\alpha}{g}$.

A particle is projected at 50° to the horizontal. What other angle of projection would give the same range for this particle?

- (A) 25°
- (B) 40°
- (C) 80°
- (D) 100°

Examination continues overleaf ...

QUESTION EIGHT



The points A, B and C lie on a circle with centre O. If $\angle ABC = 130^{\circ}$, what is the size of $\angle AOC$?

- (A) 50°
- (B) 65°
- (C) 100°
- (D) 260°

QUESTION NINE

A particle is moving in simple harmonic motion with period 4 and amplitude 3. Which of the following is a possible equation for the velocity of the particle?

(A)
$$v = \frac{3\pi}{2} \cos \frac{\pi t}{2}$$

(B) $v = 3 \cos \frac{\pi t}{2}$
(C) $v = \frac{3\pi}{4} \cos \frac{\pi t}{4}$
(D) $v = 3 \cos \frac{\pi t}{4}$

QUESTION TEN

Which of the following is a necessary condition if $a^2 > b^2$?

(A) a > b(B) a < b < 0(C) a > 0 > b(D) |a| > |b|End of Section I

Examination continues next page ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.

- (a) Find the value of $\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$.
- (b) Let A = (4, -3) and B = (8, 5). The interval AB is divided internally in the ratio 3:1 by the point P(x, y). Find the values of x and y.

(c) Solve
$$\frac{5}{3x-2} > 2$$
. 3

- (d) The acute angle between the two lines $y = \frac{1}{2}x + 1$ and y = mx + 3 is $\frac{\pi}{4}$. Find all **3** possible values of the constant m.
- (e) Find the general solution of $\cos 2x \cos x = 2$.
- (f) Find the term independent of x in the expansion of $\left(x^2 \frac{2}{x}\right)^{12}$.

Marks

1

3

3

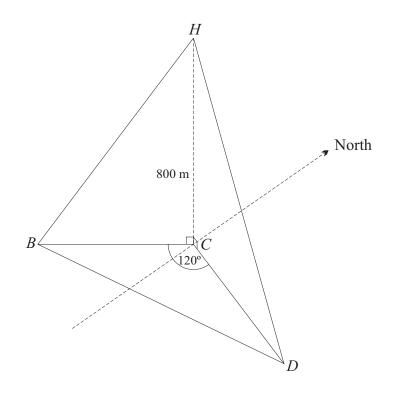
SGS Trial 2016 Form VI Mathematics Extension 1 Page 6

QUESTION TWELVE (15 marks) Use a separate writing booklet.

- (a) The polynomial $P(x) = 2x^3 + x^2 + ax + 6$ has a zero at x = 2.
 - (i) Determine the value of a.
 - (ii) Find the linear factors of P(x).
 - (iii) Hence, or otherwise, solve $P(x) \ge 0$.

(b) Integrate
$$\int_0^{\frac{1}{\sqrt{3}}} \frac{\sin(\tan^{-1}x)}{1+x^2} dx$$
 using the substitution $u = \tan^{-1}x$.

(c)



The diagram above shows a hot air balloon at point H with altitude 800 m. The passengers in the balloon can see a barn and a dam below, at points B and D respectively. Point C is directly below the hot air balloon. From the hot air balloon's position, the barn has a bearing of 250° and the dam has a bearing of 130°, and $\angle BCD = 120^{\circ}$. The angles of depression to the barn and the dam are 50° and 30° respectively.

How far is the barn from the dam, to the nearest metre?

Marks

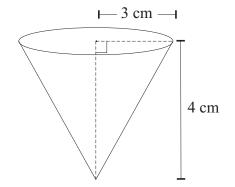
1 2 1

3

 $\mathbf{2}$

SGS Trial 2016 Form VI Mathematics Extension 1 Page 7

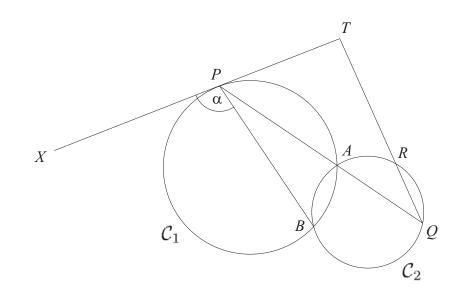
- (d) Prove by induction that (x + y) is a factor of $x^{2n} y^{2n}$, for all integers $n \ge 1$.
- (e)



The diagram above shows a vessel in the shape of a cone of radius 3 cm and height 4 cm. Water is poured into it at the rate of $10 \text{ cm}^3/\text{s}$. Find the rate at which the water level is rising when the depth is 2 cm.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks

(a)



Two circles C_1 and C_2 intersect at A and B. A line through A meets the circles at P and Q respectively. A tangent is drawn from an external point T to touch the circle C_1 at P. The line TQ intersects C_2 at R.

- (i) Given $\angle XPB = \alpha$, show that $\angle BRQ = 180^{\circ} \alpha$, giving reasons.
- (ii) Hence show that PTRB is a cyclic quadrilateral.
- (b) Consider the parabola $x^2 = 4ay$ with focus S. The normal at $P(2ap, ap^2)$ meets the y-axis at R and $\triangle SPR$ is equilateral.
 - (i) Show that the equation of the normal at P is $x + py = 2ap + ap^3$.
 - (ii) Write down the coordinates of R.
 - (iii) Prove that SP is equal in length to the latus rectum, that is 4a units.

(c) (i) Show that
$$\frac{d}{dx}(x\ln x) = 1 + \ln x$$
.

(ii) A particle is moving in a straight line. At time t seconds its position is x cm and its velocity is v cm/s. Initially x = 1 and v = 2. The acceleration a of the particle is given by the equation

$$a = 1 + \ln x.$$

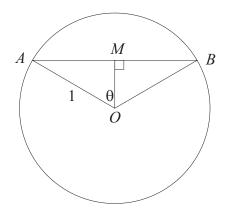
Find the velocity v in terms of x. Be careful to explain why v is always positive.

[1	
	1	
	3	

1

 $\mathbf{2}$

(d)



The circle above has radius 1 unit and the major arc joining A and B is twice as long as the chord AB. The point M lies on AB such that $AB \perp OM$. Let $\angle AOM = \theta$ where $0 < \theta < \frac{\pi}{2}$.

(i) Show that the length of the major arc satisfies the equation

 $\pi - \theta = 2\sin\theta.$

- (ii) Let $\theta_0 \doteq 1.5$ be a first approximation of θ . Use two applications of Newton's method to find a better approximation of θ .
- (iii) Use your answer to part (ii) to find the approximate length of the chord AB.

1

 $\mathbf{2}$

1

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

- (a) The mass M of a radioactive isotope is given by the equation $M = M_0 e^{-kt}$, where M_0 is the initial mass and k is a constant. The mass satisfies the equation $\frac{dM}{dt} = -kM$.
 - (i) If the half-life of this radioactive isotope is T, show that $k = \frac{\log_e 2}{T}$.
 - (ii) A naturally occurring rock contains two radioactive isotopes X and Y. The halflives of isotope X and isotope Y are T_X and T_Y respectively, where $T_X > T_Y$. Initially the mass of isotope Y is four times that of isotope X.

Show that the rock will contain the same mass of both isotopes at time

$$\frac{2T_X T_Y}{T_X - T_Y}$$

(b) Sketch the graph of $y = \frac{|x|}{x}$.

(c) Consider the function
$$f(x) = \sin^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)$$

- (i) Find the domain of f(x).
- (ii) Show that $f'(x) = \frac{2x}{|x|(x^2+1)}$.
- (iii) Determine the values of x for which f(x) is increasing.
- (iv) Using part (b), explain the behaviour of f'(x) as $x \to 0^+$ and $x \to 0^-$.
- (v) Draw a neat sketch of y = f(x), indicating any intercepts with the axes and any asymptotes.
- (vi) Give the largest possible domain containing x = 1 for which f(x) has an inverse function. Let this inverse function be $f^{-1}(x)$.
- (vii) Sketch $y = f^{-1}(x)$ on your original graph.
- (viii) Find the equation of $f^{-1}(x)$.

End of Section II

END OF EXAMINATION

1

1

	1]
[1]
	2]

1

1

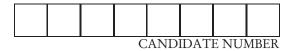
1

 $\mathbf{2}$

1

3

Marks



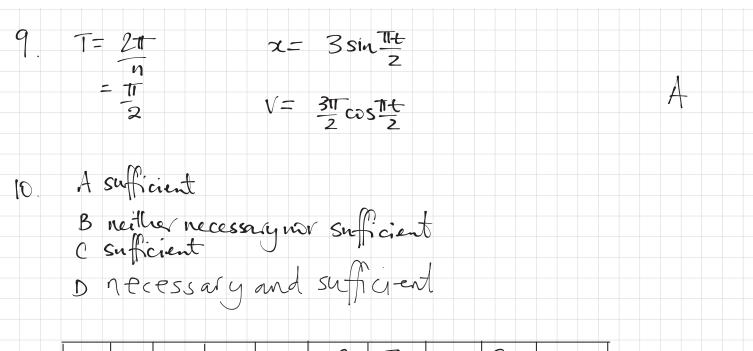
SYDNEY GRAMMAR SCHOOL

2016 Trial Examination FORM VI MATHEMATICS EXTENSION 1 Friday 12th August 2016

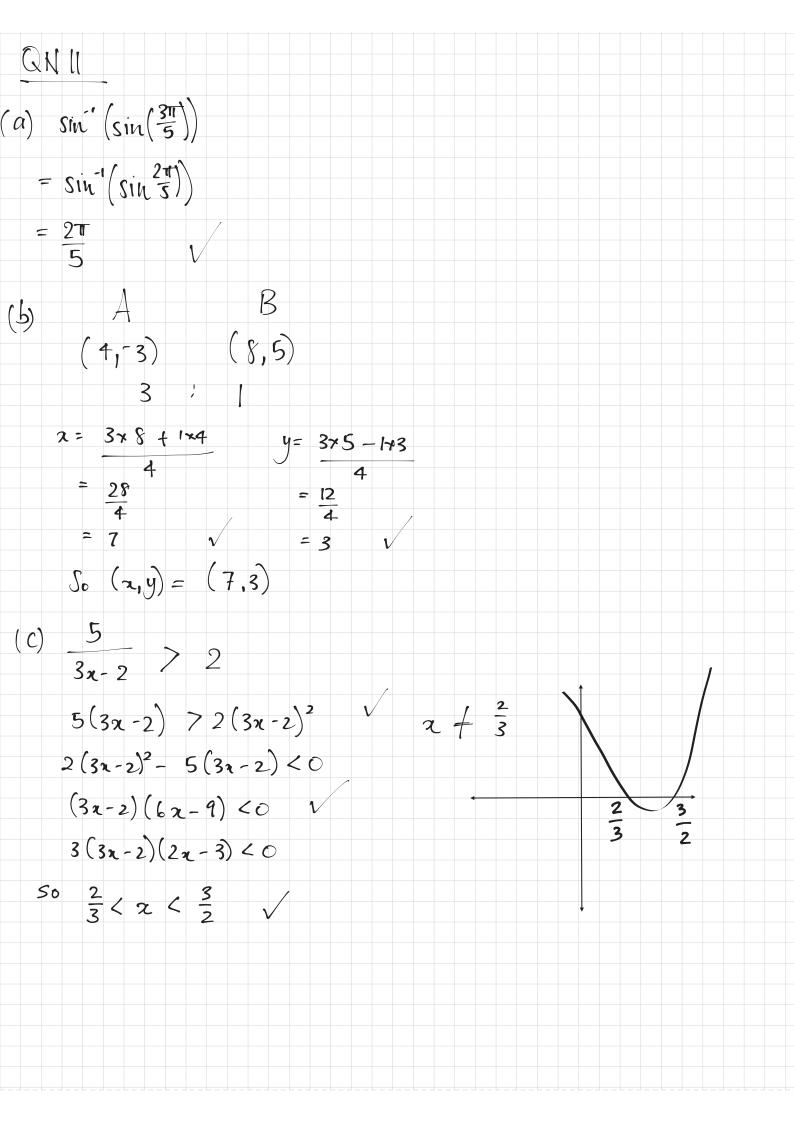
- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

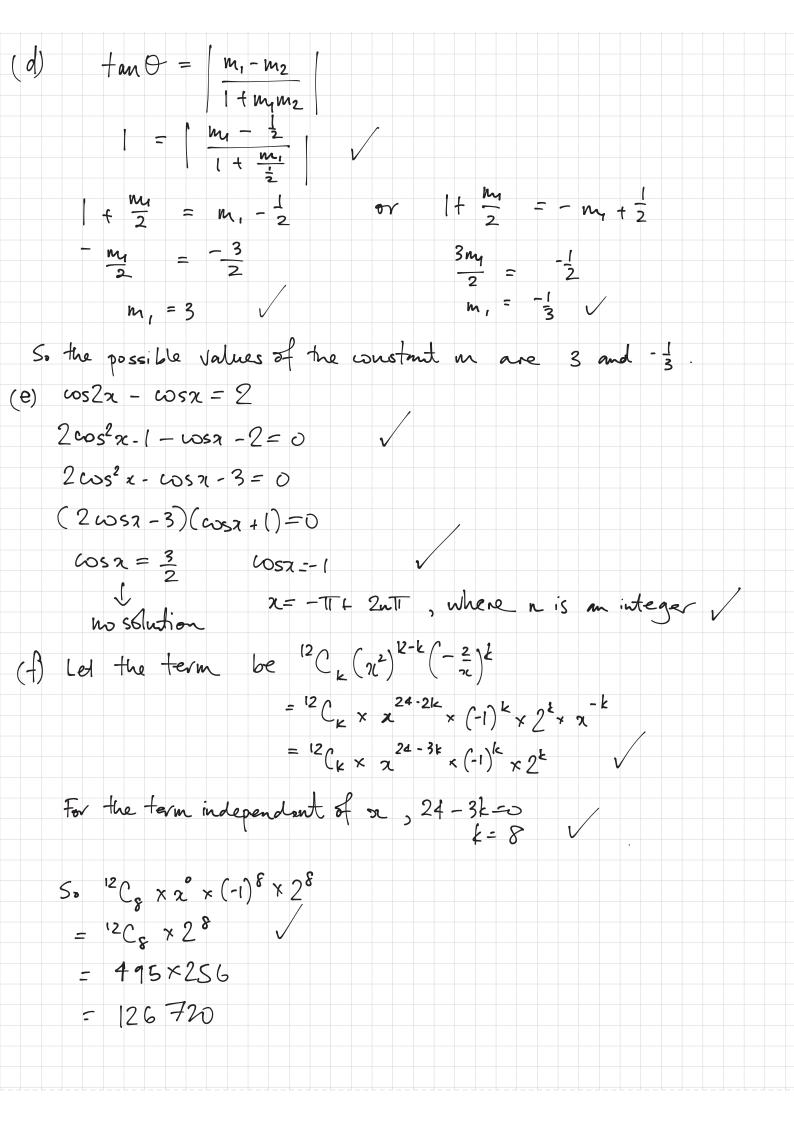
Question (One		
A ()	В ()	С ()	D ()
Question 7	Гwo		
A \bigcirc	В ()	С ()	D ()
Question 7	Three		
A 🔾	В ()	С ()	D ()
Question I	Four		
A \bigcirc	В ()	С ()	D ()
Question I	Five		
A 🔿	В ()	С ()	D ()
Question S	Six		
A 🔿	В ()	С ()	D ()
Question S	Seven		
A \bigcirc	В ()	С ()	D ()
Question I	Eight		
A 🔿	В ()	С ()	D ()
Question I	Vine		
A 🔿	В ()	С ()	D ()
Question 7	ſen		
A \bigcirc	В ()	С ()	D ()

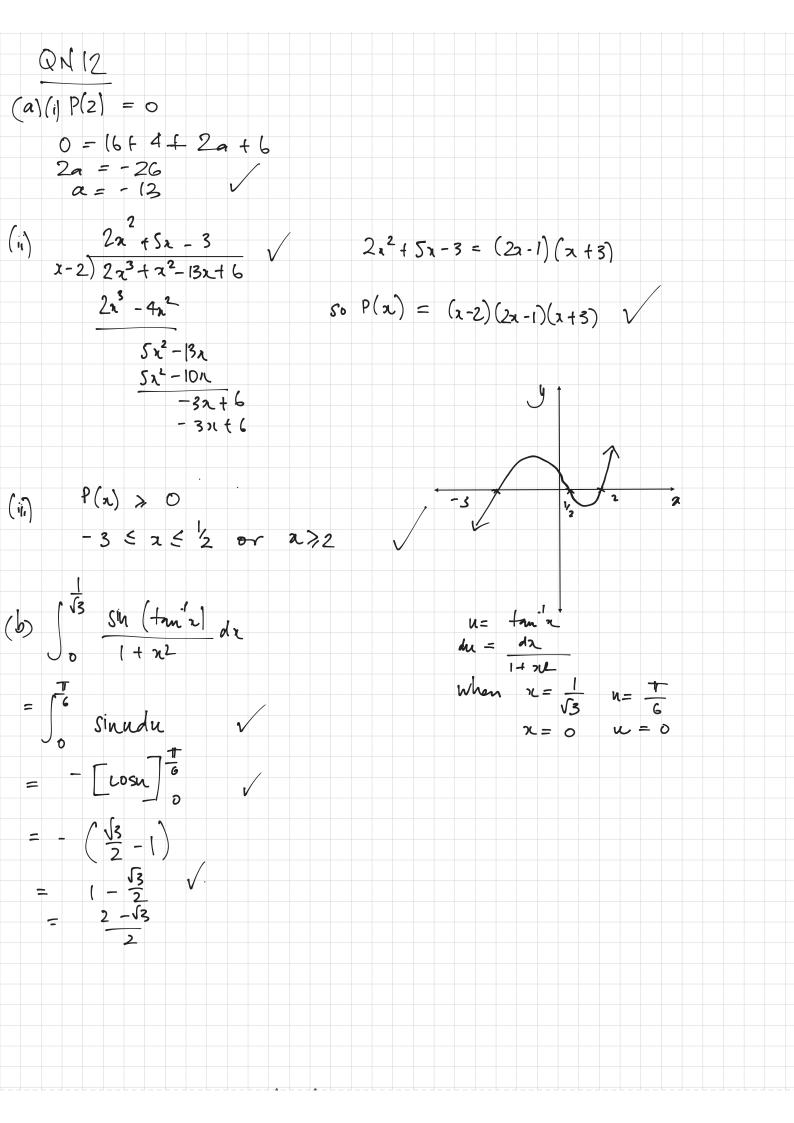
EXTENSION MATHEMATICS SOLUTIONS MULTIPLE CHOICE 1. Vertical asymptotes: (x+3)(x-1)=0x=-3 and x=1 A Hovizontal asymptote: y=0 B $\lim_{x \to 0} \frac{\sin x}{x} \times \frac{x}{\tan x} \times \frac{1}{3} = \frac{1}{3}$ 2 $3, f(x) = e^{-\frac{1}{2}} x \neq 0$ $\left(\right)$ $\sqrt{1+a^2}$ $x = tan^2 a$ $x = tan^2 a$ $\sin x = a$ $\sin x = a$ 4 D $\sqrt{1+a^2}$ 5. (x - (m+n))(x - (m-n)) = 0A $\chi^2 - 2m\chi + m^2 - n^2 = 0$ $6. + \left(-\frac{1}{2}\right) + + \left(\tau\right)$ $= \sin^{-1}\left(\frac{-1}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right)$ ($= -\frac{1}{6} + \frac{1}{2}$ = 1 7. $\sin(2x50^\circ) = \sin(00^\circ - \sin(2x70^\circ))$ B 8. Reflex LAOC = 260° (angle at the centre is twice the angle at the circumference) :. LAOC = 100°

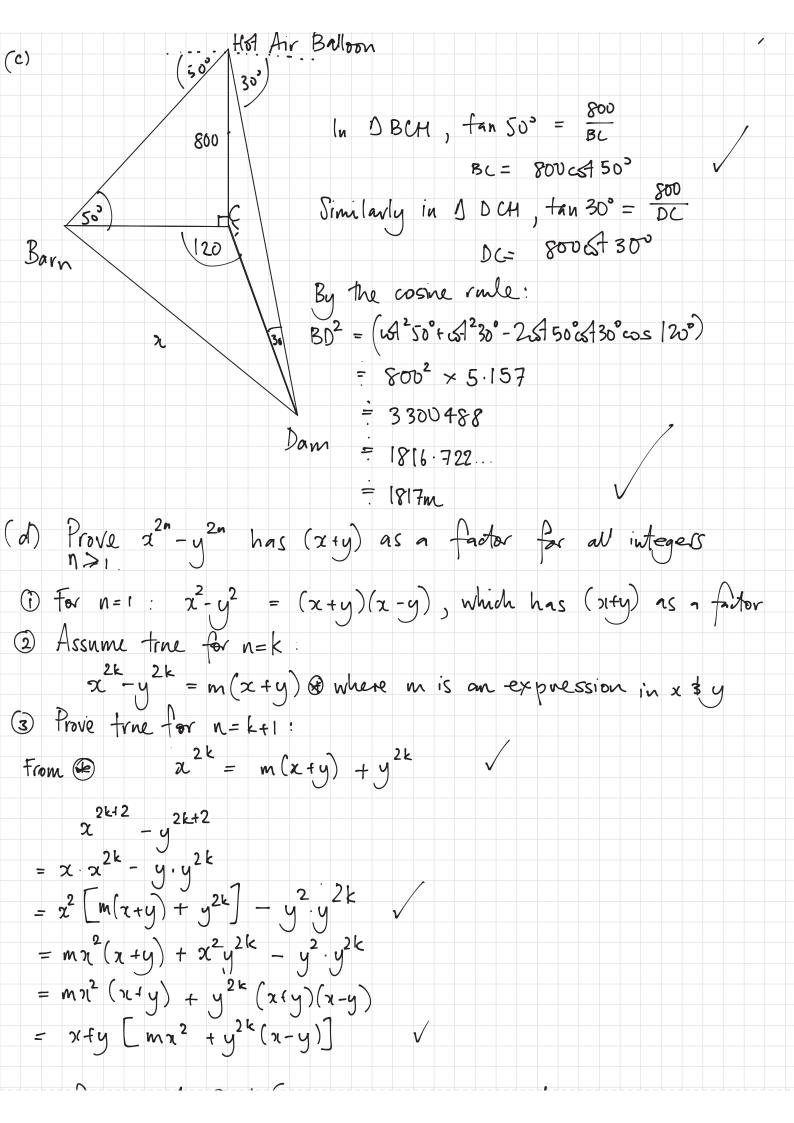


	2	3	4	5	6	7	8	C	10
A	B	С	\mathbb{D}	A	С	В	C	$ \mathcal{A}$	D









So from parts (2) \$ (3) and by mathematical induction (24y) is a factor of 2ⁿ - y²ⁿ for all integers n>1. (e) $r = \frac{3}{4}$ $r = \frac{3}{4}$ $r = \frac{3}{4}$ $r = \frac{3}{4}$ $V = \frac{1}{3} \pi \left(\frac{3h}{4} \right)^2 h$ $= \frac{3h^{3}\pi}{16}$ $\frac{dV}{dh} = \frac{qh^{2}\pi}{16}$ $\frac{dV}{dE} = \frac{dV}{dh} \times \frac{dh}{dE}$ $\frac{10}{16} = 9 \times 4 \times 11 \times \frac{dh}{dt}$ dh $at = \frac{40}{911}$ Cm/s $\sqrt{}$ So the water is rising at a rate of $\frac{40}{90}$ cm/s when the depth of the cone is 2cm Q13 (a)(i) L XPB = ~ Join Points A and B, and B and R. LPAB = & (alternate segment, theorem) LBAO = 180°- & (straight line) LBRQ = 180°- & (angles standing on the same arc) / (11) LTRB = & (straight angle) LXPT = LTRB .! PTRB is a cyclic guadrilateral Cexterior angle is equal to the apposite interior angle) $(b)(i) dy = \frac{2ap}{2a}$ so gradient of the normal is - 1

equation of the normal:

$$y - ap^{2} = -\frac{1}{p}(x - 2ap)$$

 $py - ap^{5} = -x + 2ap$
 $x \neq py = 2ap + ap^{5}$
(i) $R(0, 2a + ap^{2})$
 $R(0, 2a + ap^{2})$

(d) (i) Let $AM = \pi$ M X chord AB = 2a Major arc AB = 42 $x = sin \Theta$ so AB= 2sin Θ Major arc AB = 2TT - 20so $2\pi - 2\theta = 4 \sin \theta$ $\pi - \theta = 2 \sin \theta$ (ii) $2\sin\theta + \theta - T = 0$ So $f(\theta) = 2\sin\theta + \theta - T$ $f'(0) = 2\omega s 0 + 1$ $\vartheta_{t} = \vartheta_{0} - \frac{f(\theta)}{f'(\theta)}$ $= 1 \cdot 5 - (2 \sin \theta + \theta - T)$ 20050+1 = 1.19 $\Theta_2 = |\cdot 24433...$ $(iii) AB = 2 sin \theta$. = 2× Sin (1 24433...) = 189436 V

