Sydney Grammar School

FORM VI

MATHEMATICS EXTENSION 1

Friday 4th August 2017

General Instructions

- Reading time - 5 minutes
- Writing time - 2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 70 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet
- Reference sheet

Examiner

- Candidature - 125 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Suppose $A B C D$ is a cyclic quadrilateral with $D C$ produced to E. What are the values of x and y ?
(A) $x=120, y=110$
(B) $x=110, y=110$
(C) $x=120, y=120$
(D) $x=110, y=120$

QUESTION TWO

Let $A=(-3,2)$ and $B=(4,-7)$. The interval $A B$ is divided externally in the ratio $5: 3$ by the point $P(x, y)$. What is the value of x ?
(A) $14 \frac{1}{2}$
(B) 13
(C) $1 \frac{3}{8}$
(D) $-13 \frac{1}{2}$

QUESTION THREE

The diagram shows the graph of $y=f(x)$. Which diagram shows the graph of $y=f^{-1}(x)$?
(A)

(B)

(C)

(D)

QUESTION FOUR

What is the derivative of $\sin ^{-1} 3 x$?
(A) $\frac{1}{3 \sqrt{1-9 x^{2}}}$
(B) $\frac{-1}{3 \sqrt{1-3 x^{2}}}$
(C) $\frac{3}{\sqrt{1-9 x^{2}}}$
(D) $\frac{3}{\sqrt{1-3 x^{2}}}$

QUESTION FIVE

Which number line graph shows the correct solution to $\frac{x}{x-2} \geq 3$?
(A)

(B)

(C)

(D)

QUESTION SIX

What is the domain of the function $y=4 \sin ^{-1} \frac{x}{3}$?
(A) $-3 \leq x \leq 3$
(B) $-\frac{1}{3} \leq x \leq \frac{1}{3}$
(C) $-2 \pi \leq x \leq 2 \pi$
(D) $-\frac{\pi}{8} \leq x \leq \frac{\pi}{8}$

QUESTION SEVEN

What is the maximum value of $P=6 \cos \theta+4 \sin \theta$?
(A) 10
(B) 6
(C) $2 \sqrt{13}$
(D) $2 \sqrt{5}$

QUESTION EIGHT

A particle moves on a line so that its distance from the origin at time t seconds is $x \mathrm{~cm}$ and its acceleration is given by $\frac{d^{2} x}{d t^{2}}=10-2 x^{3}$. If v represents the velocity of the particle, and the particle changes direction 1 cm on the negative side of the origin, which of the following equations is correct?
(A) $v^{2}=20 x-x^{4}$
(B) $v^{2}=20 x-x^{4}+21$
(C) $v=10 x-\frac{1}{2} x^{4}$
(D) $v=10 x-\frac{1}{2} x^{4}+11 \frac{1}{2}$

QUESTION NINE

Which of the diagrams below best represents the graph of $y=\cos ^{2} \frac{1}{2} \theta$?
(A)

(B)

(C)

(D)

QUESTION TEN

What is the coefficient of z^{3} in the expansion of $\left(1+z+z^{2}\right)^{5}$?
(A) 10
(B) 20
(C) 30
(D) 40

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Find the exact value of $\sin \frac{\pi}{8} \cos \frac{\pi}{8}$.
(b) Evaluate $\sin ^{-1}\left(\sin \frac{4 \pi}{3}\right)$.
(c) Show that $\lim _{x \rightarrow 0} \frac{\tan \frac{x}{2}}{x}=\frac{1}{2}$.
(d) Find the following integrals:
(i) $\int \frac{4 x}{16+x^{2}} d x$
(ii) $\int \frac{3}{9+x^{2}} d x$
(iii) $\int \frac{-1}{\sqrt{25+x}} d x$
(e) Write down a general solution of the equation $\sin x=-\frac{1}{2}$.
(f) If a, b and c are the roots of the equation $3 x^{3}+4 x^{2}-5 x-8=0$, find the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
(g) By expanding, find the greatest coefficient in the expansion of $(4 x+3)^{4}$.
(h)

Tangents touching a circle at A and B respectively, intersect at T. Point C is on the circle and $A T \| C B$. Prove that $A B=A C$.
(a) An object is put in a freezer to cool. After t minutes, its temperature is $T^{\circ} \mathrm{C}$. The freezer is at a constant temperature of $-8^{\circ} \mathrm{C}$. The object's temperature T decreases according to the differential equation $\frac{d T}{d t}=-k(T+8)$, where k is a positive constant.
(i) Show that $T=A e^{-k t}-8$, where A is a constant, is a solution of the differential equation.
(ii) If the object cools from an initial temperature of $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ in half an hour, find the values of A and k.
(iii) When will the temperature of the object be $0^{\circ} \mathrm{C}$? Give your answer correct to the nearest hour.
(iv) Explain what will happen to T eventually.
(b)

The diagram above shows a semi-circle of radius r with centre O. Chord $A B$ is drawn parallel to the base such that it divides the semi-circle into two parts of equal area. Chord $A B$ subtends an angle of x radians at the centre O.
(i) Show that $\sin x=x-\frac{\pi}{2}$.
(ii) The equation has a root near $x=2$. Use one application of Newton's method to find a better approximation for this root, writing your answer correct to three significant figures.
(c) (i) Use the substitution $u=3 x+1$ to show that $\int_{0}^{1} \frac{x}{(3 x+1)^{2}} d x=\frac{2}{9} \ln 2-\frac{1}{12}$.
(ii) Hence find the volume of the solid formed when the region bounded by the curve $y=\frac{6 \sqrt{x}}{3 x+1}$, the x-axis and the line $x=1$ is rotated about the x-axis. Give your answer in exact form.
(d)

Bowie jumps out of a helicopter and by the time he reaches the position P, h metres above the ground, he is falling at a constant rate of 150 kilometres per hour. Point N is on the ground directly below P and M lies 50 metres from N. The angle of elevation of P from M is θ radians.
(i) Show that $\frac{d h}{d \theta}=\frac{50}{\cos ^{2} \theta}$.
(ii) Find the rate of decrease of the angle of elevation when Bowie reaches a height of 1200 metres. Give your answer in radians per second.
(a)

The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola with equation $x^{2}=4 a y$.
(i) Find the coordinates of M, the midpoint of $P Q$.
(ii) Show that the equation of the chord $P Q$ is $y=\frac{1}{2}(p+q) x-a p q$.
(iii) If the chord always passes through the point $(0,2 a)$, find the equation of the locus of M.
(b) A particle moves along a straight line and its displacement, x centimetres, from a fixed point O at a given time t seconds is given by $x=2+\cos ^{2} t$.
(i) Show that its acceleration is given by $\ddot{x}=10-4 x$.
(ii) Explain why the motion is simple harmonic.
(iii) Find the centre, amplitude and period of the motion.
(c) The polynomial $P(x)$ is given by $P(x)=x^{3}-m x^{2}+m x-1$, where m is a constant.
(i) Show that $(x-1)$ is a factor of $P(x)$.
(ii) Hence find a quadratic factor of $P(x)$.
(iii) Hence find the set of values of m for which all the roots of the equation $P(x)=0$ are real.
(iv) If $m=3$, the graph of $y=P(x)$ is a transformation of the graph of $y=x^{3}$. Describe this transformation.
\qquad
(a)

The diagram above shows a cyclic quadrilateral $A B M N$. Point P lies on $A N$ such that $A B=A P$ and $B P$ produced meets the circle again at D and $A M$ at R. The chord $M D$ intersects $A N$ at Q.
Copy the diagram and show that $Q P R M$ is a cyclic quadrilateral.
(b)

The diagram above shows two points A and B on level ground. B is a metres due east of A. A tower, of height h metres, is also on the same level ground and its bearing is $N \theta E$ and $N \phi W$ from A and B respectively. From the top of the tower P, the angle of depression of A is α and of B is β.
(i) Prove that $h \sin (\theta+\phi)=a \cos \phi \tan \alpha$.
(ii) Prove that $h^{2}\left(\cot ^{2} \alpha-\cot ^{2} \beta\right)-2 h a \cot \alpha \sin \theta+a^{2}=0$.
(c) If $f^{(n)}(x)$ denotes the nth derivative of $f(x)=\frac{1}{x}$, prove by mathematical induction that $f^{(n)}(x)=\frac{(-1)^{n} n!}{x^{n+1}}$ for all positive integers n.
(d)

A particle is fired from O with initial velocity $V \mathrm{~m} / \mathrm{s}$ at an angle θ to the horizontal. The particle just clears two thin vertical towers of height h metres at horizontal distances of a metres and b metres from O.

The equations of motion of the particle are $x=V t \cos \theta$ and $y=V t \sin \theta-\frac{1}{2} g t^{2}$. (Do NOT prove these equations.)
(i) Show that $V^{2}=\frac{a^{2} g\left(1+\tan ^{2} \theta\right)}{2(a \tan \theta-h)}$.
(ii) Hence show that $\tan \theta=\frac{h(a+b)}{a b}$.
(iii) Hence show that $\tan \theta=\tan \alpha+\tan \beta$, where α and β are the angles of elevation from O to the tops of the towers.

Extension I TRIAL 2017 SOLUTIONS

Multiple choice:
(1) $x=110$ (exterior angle of cyclic quadruateral $A B C D$) $y=120$ (opposite angles of cyclic quadrilateral $A B C D$)
choose D
(2)

$$
\begin{aligned}
x & =\frac{(-3)(-3)+5(4)}{5-3} \\
& =\frac{29}{2} \\
& =14 \frac{1}{2}
\end{aligned}
$$

choose A
(3)

swap x / y reflect across line $y=x$
choose D
(4)

$$
\begin{aligned}
y & =\sin ^{-1}(3 x) \\
\frac{d y}{d x} & =\frac{1}{\sqrt{1-(3 x)^{2}}} \times 3 \\
& =\frac{3}{\sqrt{1-9 x^{2}}}
\end{aligned}
$$

choose IC
(5)

$$
\begin{gathered}
(x-2)^{2} \times \frac{x}{x-2} \geqslant 3(x-2)^{2} \\
x(x-2) \geqslant 3(x-2)^{2} \\
3(x-2)^{2}-x(x-2) \leqslant 0 \\
(x-2)(3(x-2)-x) \leqslant 0 \\
(x-2)(2 x-6) \leqslant 0 \\
2(x-2)(x-3) \leqslant 0
\end{gathered}
$$

(6)

$$
\begin{aligned}
& y=4 \sin ^{-1} \frac{x}{3} \\
& -1 \leqslant x \leqslant 1 \\
& -3 \leqslant x \leqslant 3
\end{aligned}
$$

(7)

$$
\begin{aligned}
R & =\sqrt{6^{2}+4^{2}} \\
& =\sqrt{52} \\
& =2 \sqrt{13}
\end{aligned}
$$

choose (A)

$$
\text { choose } C
$$

(8)

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =10-2 x^{3} \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =10-2 x^{3} \\
\frac{1}{2} \cdot v^{2} & =10 x-\frac{1}{2} x^{4} \\
v^{2} & =20 x-x^{4}+c
\end{aligned}
$$

at $x=-1, v=0$

$$
\begin{aligned}
& 0=20(-1)-(-1)^{4}+c \\
& c=21 \\
& v^{2}=20 x-x^{4}+21
\end{aligned}
$$

chocs B
(a)

$$
\text { using } \begin{aligned}
\cos \theta & =\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2} \\
& =2 \cos ^{2} \frac{\theta}{2}-1 \\
2 \cos ^{2} \frac{\theta}{2} & =\cos \theta+1 \\
\cos ^{2} \frac{\theta}{2} & =\frac{1}{2} \cos \theta+\frac{1}{2}
\end{aligned}
$$

So $y=\cos ^{2} \frac{\theta}{2}$ has amplitude $\frac{1}{2}$, ranore $0 \leqslant y \leqslant 1$, peried 2π
choose B
(10) $\left(1+z+z^{2}\right)^{5}=(1+z(1+z))^{5}$
now $(1+z(1+z))^{5}={ }^{5} C_{0}+{ }^{5} C_{1} z(1+z)+{ }^{5} C_{2} z^{2}(1+z)^{2}+{ }^{5} C_{3} z^{3}(1+z)^{3}$

$$
+{ }^{5} C_{4} z^{4}(1+z)^{4}+{ }^{5} C_{5} z^{5}(1+z)^{5}
$$

terms in z^{3} come from ${ }^{5} C_{2} z^{2}(1+z)^{2}$ and ${ }^{5} C_{3} z(1+z)^{3}$ term in $z^{3}=\left({ }^{5} C_{2} \times 2+{ }^{5} C_{3} \times 1\right) z^{3}$
coefficent $=10 \times 2+10 \times 1$

$$
=30
$$

choose C
chore

Section II
(11)
(a)

$$
\begin{aligned}
\sin \frac{\pi}{8} \cos \frac{\pi}{8} & =\frac{1}{2} \sin \frac{\pi}{4} \\
& =\frac{1}{2 \sqrt{2}} \\
& =\frac{\sqrt{2}}{4}
\end{aligned}
$$

(b) $\sin ^{-1}\left(\sin \frac{4 \pi}{3}\right)=\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

$$
=-\frac{\pi}{3}
$$

(c) $\lim _{x \rightarrow 0} \frac{\tan \frac{x}{2}}{x}=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\tan \frac{x}{2}}{\frac{x}{2}}$

$$
=\frac{1}{2}
$$

(d)
(i)
(ii) $\int \frac{-1}{\sqrt{25+x}} d x=-1 \int(25+x)^{-\frac{1}{2}} d x$

$$
=-1 \times \frac{(25+x)^{\frac{1}{2}}}{\frac{1}{2}}
$$

$$
=-2 \sqrt{25+x}+c
$$

(e)

$$
\begin{aligned}
\text { (c) } & =n \pi+(-1)^{n} \sin ^{-1}\left(-\frac{1}{2}\right) \\
& =n \pi+(-1)^{n}\left(-\frac{\pi}{6}\right)
\end{aligned}
$$

(f)

$$
\begin{aligned}
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & =\frac{b c+a c+a b}{a b c} \\
& =\frac{-\frac{5}{3}}{-\left(-\frac{8}{8}\right)} \\
& =-\frac{5}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{4 x}{16+x^{2}} d x=2 \int \frac{2 x}{16+x^{2}} d x \\
& =2 \ln \left(16+x^{2}\right)+c \\
& \text { (ii) } \int \frac{3}{9+x^{2}} d x=3 \times \frac{1}{3} \tan ^{-1} \frac{x}{3} \\
& =\tan ^{-1} \frac{x}{3}+c
\end{aligned}
$$

(9)

$$
\left.\begin{array}{rl}
(4 x+3)^{4}= & (4 x)^{4}
\end{array}+{ }^{4} C_{1}(4 x)^{3}(3)+{ }^{4} C_{2}(4 x)^{2}(3)^{2}\right)
$$

the greatest coefficient is 864
(h) $\angle T A B=\angle A C B$ (angle in the alternate segment),
$\angle T A B=\angle A B C$ (alternate angles, $A T \| C C_{3}$) $A C=A B$ (sides opposite equal angles)

15
(12) (a) (i)

$$
\left.\begin{array}{rl}
T & =A e^{-k t}-8 \\
\frac{d T}{d t} & =-k A e^{-k t} \\
& =-k(T+8)
\end{array}\right\}
$$

(ii)

$$
\text { at } t=0, T=40
$$

$$
\begin{aligned}
40 & =A-8 \\
A & =48
\end{aligned}
$$

$$
\text { at } t=30, T=30
$$

$$
\begin{aligned}
30 & =48 e^{-30 k}-8 \\
\frac{38}{48} & =e^{-30 k} \\
-30 k & =\log _{e}\left(\frac{19}{24}\right) \\
k & =-\frac{1}{30} \log _{e}\left(\frac{19}{24}\right) \\
& =\frac{1}{30} \log _{e}\left(\frac{24}{19}\right)
\end{aligned}
$$

(iii) if $T=0$

$$
\begin{aligned}
\frac{8}{48} & =48 e^{-k t}-8 \\
-k t & =\log _{e}\left(\frac{1}{6}\right) \\
t & =-\frac{1}{k} \log _{e}\left(\frac{1}{6}\right) \\
& =230.091 \ldots \text { minutes } \\
& =3.83 \ldots h \\
& \doteqdot 4 h
\end{aligned}
$$

(b) (i)

$$
\left.\begin{array}{rl}
\frac{1}{2} 7^{2}(x-\sin x) & =\frac{1}{2} \times \frac{1}{2} \pi \not y^{x} \\
x-\sin x & =\frac{\pi}{2} \\
\sin x & =x-\frac{\pi}{2}
\end{array}\right\}
$$

(ii) let $f(x)=\sin x-x+\frac{\pi}{2}$

$$
\begin{aligned}
& f^{\prime}(x)=\cos x-1 \\
& z_{1}=2-\frac{\sin 2-2+\frac{\pi}{2}}{\cos 2-1} \\
&=2.339 \ldots \\
&=2.34
\end{aligned}
$$

(i)
(c) $\int_{0}^{1} \frac{x}{(3 x+1)^{2}} d x$
let $u=3 x+1$

$$
=\int_{1}^{4} \frac{\frac{\mu-1}{s}}{u^{2}} \times \frac{d u}{3} \left\lvert\, \begin{aligned}
& \text { some } \\
& \text { sensible } \\
& \text { attempt }
\end{aligned}\right.
$$

$$
\begin{aligned}
& \frac{d u}{d x}=3 \\
& d u=3 d x \\
& x=u-1 \\
& x=\frac{u-1}{3}
\end{aligned}
$$

some $\quad d u=3 d x$ attempt $3 x=\mu-1$

$$
=\frac{1}{9} \int \frac{u-1}{u^{2}} d u
$$

$$
=\frac{1}{9} \int^{4} \frac{1}{u}-u^{-2} d u
$$

$$
\text { if } \begin{aligned}
x & =0 \\
u & =1
\end{aligned}
$$

$$
\text { if } x=1
$$

$$
=\frac{1}{9}\left[\ln u+\frac{1}{\mu}\right]_{1}^{4}
$$

$$
\left.\begin{array}{l}
=\frac{1}{9}\left(\ln 4+\frac{1}{4}-(\ln 1+1)\right) \\
=\frac{1}{9}\left(2 \ln 2-\frac{3}{4}\right) \\
=\frac{2}{9} \ln 2-\frac{1}{12}
\end{array}\right\}
$$

(ii) $V=\pi \int_{0}^{1}\left(\frac{6 \sqrt{x}}{3 x+1}\right)^{2} d x$

$$
\begin{gathered}
=\pi \int_{0}^{0} \frac{36 x}{(3 x+1)^{2}} d x \\
=36 \pi \times\left(\frac{2}{9} \ln 2-\frac{1}{12}\right) \\
=\pi(8 \ln 2-3) \\
\text { cubic } \\
\text { units }
\end{gathered}
$$

(d) (i) $\tan \theta=\frac{h}{50}$

$$
\left.\begin{array}{rl}
h & =50 \tan \theta \\
\frac{d h}{d \theta} & =50 \sec ^{2} \theta \\
& =\frac{50}{\cos ^{2} \theta}
\end{array}\right\}
$$

(ii)

$$
\begin{array}{rlrl}
\frac{d \theta}{d t} & =\frac{d \theta}{d h}+\frac{d h}{d t} & & 150 \mathrm{~km} / \mathrm{h} \\
& =\frac{\cos ^{2} \theta}{50} \times \frac{125}{3} & =\frac{150 \times 10 \phi \phi}{6 \phi \times 6 \phi} \\
& =\frac{125}{3} \mathrm{~m} / \mathrm{s} \\
& =\frac{1}{577} \times \frac{125}{3} & & H=1200 \\
& =\frac{5}{3462} \text { radians } / \mathrm{s} / \quad \tan \theta=\frac{1200}{50} \\
& & =24
\end{array}
$$

(13)
(a)

$$
=\left(a(p+a) \geq a\left(p^{2}+q^{2}\right)\right.
$$

(ii)

$$
\begin{aligned}
m & =\frac{a p^{2}-a q^{2}}{2 a p-2 a q} \\
& =\frac{p^{2}-q^{2}}{2(p-q)} \\
& =\frac{(p-q)(p+q)}{2(p-q)} \\
& =\frac{p+q}{2} \quad p+q
\end{aligned}
$$

equation io $y-a p^{2}=\frac{1}{2}(p+q)(x-2 a-p)$

$$
y=\frac{1}{2}(p+q) x-a p q
$$

(ii) \&f the chord passes through $(0,2 a)$

$$
\begin{aligned}
& 2 a=-a p q \\
& p q=-2
\end{aligned}
$$

So

$$
\begin{aligned}
x^{2} & =a^{2}(p+a)^{2} \\
& =a^{2}\left(p^{2}+q^{2}+2 p q\right) \\
& =a^{2}\left(\frac{2 y}{a}-4\right) \\
& =2 a(y-2 a)
\end{aligned}
$$

(b)(i)

$$
\begin{aligned}
x & =2+\cos ^{2} t \\
\dot{x} & =2 \cos t x-\sin t \\
& =-2 \sin t \cos t \\
& =-\sin 2 t \\
\ddot{x} & =-2 \cos 2 t \\
& =-2\left(2 \cos ^{2} t-1\right) \\
& =-4 \cos ^{2} t+2 \\
& =-4(x-2)+2 \\
& =10-4 x \text { as required }
\end{aligned}
$$

OR

$$
\begin{aligned}
x & =2+\cos ^{2} t \\
& =2+\frac{1}{2}(\cos 2 t+1) \\
& =2 \frac{1}{2}+\frac{1}{2} \cos 2 t \\
\dot{x} & =-\sin 2 t \\
\ddot{x} & =-2 \cos 2 t \\
& =-2\left(x-2 \frac{1}{2}\right) \times 2 \\
& =10-4 x \text { as requicd }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\ddot{x} & =10-4 x \\
& =-4\left(x-2 \frac{1}{2}\right)
\end{aligned}
$$

which is of the farm $\ddot{x}=-n^{2}\left(x-x_{0}\right)$
(acceleration is proportional to displacement but in the opposite derection)

OR $\quad x=2 \frac{1}{2}+\frac{1}{2} \cos 2 t$
which is just a transformation of $x=\cos t$ so is simple harmonic
(iii) centre : $x=2 \frac{1}{2}$ pemod $=\frac{2 \pi}{2}$

$$
\text { amplitude }=\frac{1}{2}
$$

(c) $\quad P(x)=x^{3}-m x^{2}+m x-1$
(i)

$$
\begin{aligned}
P(1) & =1-m+m-1 \\
& =0
\end{aligned}
$$

So $(x-1)$ is a factor
(ii)

$$
\begin{aligned}
& \text { a sowtion } \\
& \text { by inspection }
\end{aligned}
$$

is fine

$$
\begin{aligned}
& x-1 \sqrt{x^{2}+(1-m) x+1} \\
& \frac{x^{3}-m x^{2}+m x-1}{x^{2}-m-1} \\
& \frac{(1-m) x^{2}+m x}{(1-m) x^{2}-x+m x} \\
& x-1
\end{aligned}
$$

the quadratic factor is $x^{2}+(1-m) x+1$
(iii) for real roots we need

$$
\begin{gathered}
(1-m)^{2}-4(1)(1) \geqslant 0 \\
m^{2}-2 m+1-4 \geqslant 0 \\
m^{2}-2 m-3>0 \\
(m-3)(m+1) \geqslant 0 \\
m \leqslant-1 \text { or } m \geqslant 3
\end{gathered}
$$

(iv) If $m=3, P(x)=x^{3}-3 x^{2}+3 x-1$

$$
=(x-1)^{3}
$$

This is the 3 graph of $y=x^{3}$ shafted $1 /$ unit to
(14) (a)

let $<A B P=x$
\int then $\angle P P B=\alpha$ (angles opposite equal sides)
$\angle A M Q=\alpha$ (angles at the circumference on arc AN)
Q.PRM is a cyclic quadmelalerat

Cexterior angle equals opposite
interior angles)
(b)

$$
\angle A C B=Q+\emptyset
$$

(i) in $\triangle A C B, \frac{\sin (\theta+\phi)}{a} /=\frac{\sin (90-\phi)}{A C}$
in $\triangle A P C, \quad \tan \alpha=\frac{h}{A C}$

$$
A C=\frac{h}{\tan \alpha}
$$

so $\frac{\sin (\theta+\phi)}{a}=\frac{\sin (90-\phi)}{\frac{h}{\tan \alpha}}$

$$
\begin{aligned}
& h \sin (\theta+\phi)=a \sin (90-\phi) \tan \alpha \\
& h \sin (\theta+\phi)=a \cos \phi \tan \alpha \\
& \text { as required }
\end{aligned}
$$

(ii) from $\triangle A P C$
from $\triangle B P C$

$$
\begin{aligned}
& \cot \alpha=\frac{A C}{h} \\
& A C^{2}=h^{2} \cot ^{2} \alpha
\end{aligned} \quad \begin{aligned}
& B C^{2}=h^{2} \cot ^{2} \beta
\end{aligned}
$$

in $\triangle A B C$

$$
\begin{aligned}
& \cos \left(90^{\circ}-\theta\right)=\frac{a^{2}+h^{2} \cot ^{2} \alpha-h^{2} \cot ^{2} \beta}{2 \times a \times h \cot \alpha} \\
& \int \sin \theta=\frac{h^{2}\left(\cot ^{2} \alpha-\cot ^{2} \beta\right)+a^{2}}{2 h a \cot \alpha}
\end{aligned}
$$

$2 h a \cot \alpha \sin \theta=h^{2}\left(\cot ^{2} \alpha-\cot ^{2} \beta\right)+a^{2}$

$$
h^{2}\left(\cot ^{2} \alpha-\cot ^{2} \beta\right)-2 h a \cot \alpha \sin \theta+a^{2}=0
$$

(c) Step 1: let $n=1$

$$
f(x)=\frac{1}{x}
$$

$$
f^{\prime}(x)=-\frac{1}{x^{2}}
$$

now $f^{(1)}(x)=\frac{(-1)^{1} 1!}{x^{1+1}}$

$$
=-\frac{1}{x^{2}} \text { as required }
$$

the result is true for $n=1$
step 2: suppose k is a posutwe integer for which the result is true

$$
\text { that is } \begin{aligned}
f^{(k)}(x) & =\frac{(-1)^{k} k^{\prime}}{x^{k+1}} \\
& =(-1)^{k} k^{!} \cdot x^{-(k+1)}
\end{aligned}
$$

we now prove the result is true for $n=k+1$, that is we prove that

$$
f^{(k+1)}(x)=\frac{(-1)^{k+1}(k+1)!}{x^{k+2}}
$$

now $f^{(k+1)}(x)=-(k+1)(-1)^{k} k!x^{-(k+1)-1}$ by

$$
\begin{aligned}
& =(-1)^{k+1}(k+1)!x^{-(k+2)} \\
& =\frac{(-1)^{k+1}(k+1)!}{x^{k+2}} \text { as }
\end{aligned}
$$

So by the principle of mathematical induction the result is true for all positive integer in.
(14) (d)

$$
\begin{aligned}
& x=v t \cos \theta \\
& y=v t \sin \theta-\frac{1}{2} g t^{2}
\end{aligned}
$$

(i) at $x=a, y=h$
so $a=v t \cos \theta$

$$
t=\frac{a}{v \cos \theta}
$$

and $h=X \times \frac{a}{X \cos \theta} \sin \theta-\frac{1}{2} g\left(\frac{a}{V \cos \theta}\right)^{2}$

$$
\left.\begin{array}{rl}
h=a \tan \theta-\frac{\frac{1}{2} 9 a^{2}}{v^{2} \cos ^{2} \theta} \\
\frac{g a^{2} \sec ^{2} \theta}{2 v^{2}} & =a \tan \theta-h \\
2 v^{2} & =\frac{g a^{2} \sec ^{2} \theta}{a \tan \theta-h} \\
v^{2} & =\frac{g a^{2} \sec ^{2} \theta}{2(a \tan \theta-h)} \\
& =\frac{9 a^{2}\left(1+\tan ^{2} \theta\right)}{2(a \tan \theta-h)} \tag{ii}
\end{array}\right\} \text { (i) }
$$

(ii) Similarily, $V^{2}=\frac{9 b^{2}\left(1+\tan ^{2} \theta\right)}{2(b \tan \theta-h)}$
equating (i) + (ii)

$$
\begin{aligned}
\frac{\phi b^{2}(1+\tan \theta)}{\not 2(b \tan \theta-h)} & =\frac{9 a^{2}\left(1+\tan ^{2} \theta\right)}{\neq(\tan \theta-h)} \\
b^{2}(\tan \theta-h) & =a^{2}(b \tan \theta-h) \\
a b^{2} \tan \theta-b^{2} h & =a^{2} \tan \theta-a^{2} h \\
a b^{2} \tan \theta-b a^{2} \tan \theta & =b^{2} h-a^{2} h \\
a b \tan \theta(b-a) & =h\left(b^{2}-a^{2}\right) \\
a b \tan \theta & =\frac{h(b-a)(b+a)}{b-a} \\
\tan \theta & =\frac{h(b+a)}{a b}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\tan \theta & =\frac{h b}{a b}+\frac{h a}{a b} \\
& =\frac{h}{a}+\frac{h}{b}
\end{aligned}
$$

