SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2004
 MATHEMATICS EXTENSION 1

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

```
Total Marks -84
```

- Attempt Questions 1 - 7
- All questions are of equal value
\qquad

Teacher: \qquad

Question	Question						
1	2	Question	Question	Question	Question	Question	Total
				5	6	7	

Question 1

a) Simplify $\frac{1+a^{-1}}{1+a^{-3}}$
b) Show that $\frac{d}{d x}(\sec x)=\sec x \tan x$
c) Find $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{2 x^{2}}$
d) Use the substitution $u=1+x^{3}$, or otherwise to evaluate $\int_{0}^{1} x^{2}\left(1+x^{3}\right)^{3} d x$
e) Find the acute angle between the lines $x+y \sqrt{3}=3$ and $y=3$

Question 2 (Start a new page)

a) One of the roots of $2 x^{3}+x^{2}-15 x-18=0$ is positive and equal to the product of the other two roots. Find this root.
b) If $\frac{d y}{d x}=1+y$, and when $x=0, y=2$; show that $y=3 e^{x}-1$
(hint: examine $\frac{d x}{d y}$.)
c) Find $\int \frac{d x}{\sqrt{16-25 x^{2}}}$
d)

A pole $D C$ is seen from two points A and B. The angle of elevation from A is 58°, $\angle C A B$ is $52^{\circ}, \angle A B C$ is 34° and A and B are 100 m apart . Find:
(i) How far A is from the foot of the pole, to the nearest metre
(ii) The height of the pole, to the nearest metre

Question 3 (Start a new page)

a) The equation $\sin \theta+\theta-2=0$ has a root near $\theta=1.1$. Use this as a first approximation and one application of Newton's Method to find a better approximation of the root correct to 3 decimal places.
b) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are points on the parabola $x^{2}=4 a y$.
(i) Find the coordinates of M, the midpoint of $P Q$
(ii) If the gradient of PQ is constant, find the equation for the locus of M and show that it is a line parallel to the axis of the parabola.
c) Given the function $f(x)=1-\tan x$ for the domain $0 \leq x \leq \frac{\pi}{4}$:
(i) Sketch the graph of $y=f(x)$1
(ii) Show that $\int \tan x d x=-\ln (\cos x)+c$
(iii) The region in (i) is rotated about the x axis. Find the volume of the solid generated to 2 decimal places.

Question 4 (Start a new page)

a) Find $\int \cos ^{2} 2 x d x$
b) Prove by Mathematical Induction, that for all positive integers n :

$$
\sum_{r=1}^{n} r(r+1)=\frac{n(n+1)(n+2)}{3}
$$

c) The displacement $x \mathrm{~cm}$ of an object from the origin is given by $x=\cos t-\sqrt{3} \sin t$
(i) Prove that the object executes simple harmonic motion.
(ii) Find an exact time when the object reaches maximum speed
(iii) Express the displacement in the form $A \cos (n t+\alpha)$ and state the amplitude.

Question 5 (Start a new page)

Not to scale
$A B$ and $B C$ are tangents and $B D=4 D E$ Prove that $\mathrm{AB}=2 \sqrt{5} \mathrm{DE}$, giving reasons.
b) The acceleration of a body P is given by $\frac{d^{2} x}{d t^{2}}=18 x\left(x^{2}+1\right)$, where x is the displacement of P from 0 at time t. The velocity is v .
Given $t=0, x=0, v=3$ and that $v>0$ throughout the motion:
(i) find v in terms of x
(ii) show that $x=\tan 3 t$
c)

At 9am, an ultralight aircraft flies directly over Tony's head at a height of 500 m . It maintains a constant speed of $20 \mathrm{~m} / \mathrm{s}$ and a constant altitude.
If x is the horizontal distance travelled by the plane and θ is the angle of elevation from Tony to the plane,:
(i) Show that $\frac{d x}{d \theta}=-500 \operatorname{cosec}^{2} \theta$
(ii) Hence show that $\frac{d \theta}{d t}=\frac{-1}{25} \sin ^{2} \theta$
(iii) Find the rate of change of the angle of elevation at 9.01 am (in radians per second)

Question 6 (Start a new page)

a) ABCD is a cyclic quadrilateral.

Show that $\tan A+\tan B+\tan C+\tan D=0$
b) A sky-diver opens his parachute when falling at $30 \mathrm{~m} / \mathrm{s}$. Thereafter, his acceleration is given by $\frac{d v}{d t}=k(6-v)$ where k is a constant.
(i) Show that this differential equation is satisfied by $v=6+A e^{-k t}$ and find the value of A .
(ii) One second after opening his chute, his velocity is $10.7 \mathrm{~m} / \mathrm{s}$. Find the value of k to 2 decimal places.
(iii) Find his velocity, correct to one decimal place, two seconds after his chute is opened.
c) A soldier is 150 metres from, and on the same horizontal level as, her target. Her weapon can fire with an initial velocity of $50 \mathrm{~m} / \mathrm{s}$. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Write the equations of motion for horizontal and vertical displacement.
(ii) Find the two possible angles at which she must fire her weapon to hit the target.

Question 7 (Start a new page)

a) The function $f(x)=\sec x$ is defined for $0 \leq x<\frac{\pi}{2}$.
(i) State the domain of the inverse function $f^{-1}(x)$.
(ii) Show that $f^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)$
(iii) Hence find $\frac{d}{d x}\left[f^{-1}(x)\right]$
b) (i) Find all real solutions to the equation $x^{4}+x^{2}-1=0$, giving your answers correct to three decimal places.
(ii) On the same axes, sketch the graphs of $y=\tan ^{-1} x$ and $y=\cos ^{-1} x$.

Label important points. Mark the point P where the two curves intersect.
(iii) If $\tan ^{-1} x=\cos ^{-1} x$ at P , show that $x^{4}+x^{2}-1=0$ and find the coordinates of P.

Solutiows
(1)

$$
\text { a) } \begin{align*}
\frac{1+\frac{1}{a}}{1+\frac{1}{a^{3}}} & =\frac{\frac{a+1}{a}}{\frac{a^{3}+1}{a^{3}}} \leftarrow 0 \\
& =\frac{a+1}{a} \times \frac{a^{3}}{a^{3}+1} \leftarrow(1) \\
& =\frac{a+1}{a} \times \frac{a^{3}}{(a-1)\left(a^{2}-a+1\right)} \tag{1}\\
& =\frac{a^{2}}{a^{2}-a+1}
\end{align*}
$$

$$
\begin{aligned}
\frac{d}{d x}\left[(\cos x)^{-7}\right] & =-(\cos x)^{-2} \cdot(-\sin x) \\
& =\frac{\sin x}{\cos ^{2} x}-0 \\
& =\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} \\
& =\sec x \tan x
\end{aligned}
$$

$$
\text { c) } \begin{align*}
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{2 x^{2}}< \tag{1}\\
& =\frac{1}{2} \lim \left(\frac{\sin x}{x}\right)^{2} \\
& =\frac{1}{2} * 1 \leftarrow 0 \\
& =\frac{1}{2} \tag{1}
\end{align*}
$$

d)

$$
\begin{align*}
& \int_{0}^{1} x^{2}\left(1+x^{3}\right)^{3} d x \\
& x=1+x^{3} \\
& d u=3 x^{2} \tag{1}\\
& d x=\frac{d u}{3 x^{2}}(1) \\
& d=0, u=1 \\
& x=1, u=2
\end{align*}
$$

$$
\text { e) } \begin{aligned}
& y=\frac{-x}{\sqrt{3}}+3, m_{1}=\frac{-1}{\sqrt{3}} \\
& m_{2}=0 \\
& \tan \theta \left.=\frac{\left|-\frac{1}{\sqrt{3}}-0\right|}{1+0} \right\rvert\,(1) \\
&=\frac{1}{\sqrt{3}} \\
& \therefore \theta=30^{\circ}
\end{aligned}
$$

(2) a) let roots be

$$
\alpha, \beta, \alpha \beta
$$

and $\alpha \cdot \beta \cdot \alpha \beta=-\frac{\alpha}{a}$

$$
\begin{aligned}
& \therefore \alpha^{2} \beta^{2}=9 \\
& \therefore \alpha \beta=3(>0)
\end{aligned}
$$

b) $\frac{d x}{d y}=\frac{1}{1+y}$

$$
\therefore x=\log (1+y)+c
$$

Sub $x=0, y=2$:

$$
\begin{aligned}
\therefore 0 & =\log 3+c \\
\therefore c & =-\log 3
\end{aligned}
$$

$$
\begin{aligned}
& \therefore x=\log (1+y)-\log 3 \\
&=\log \left(\frac{1+y}{3}\right) \\
& \therefore e^{x}=\frac{1+y}{3} \\
& \therefore 3 e^{x}=1+y \\
& \therefore y=3 e^{x}-1
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
\int \frac{d x}{\sqrt{16-25 x^{2}}} & =\int \frac{d x}{\sqrt{25\left(\frac{6}{25}-x^{2}\right)}} \text { (1) } \\
& =\frac{1}{5} \int \frac{d x}{\sqrt{\left(\frac{4}{5}\right)^{2}-x^{2}}} \\
& =\frac{1}{5} \sin +\frac{5 x}{4}+c
\end{aligned}
$$

$$
\text { d) (i) } \frac{A C}{}=\frac{100}{900} \text { (1) for rule }
$$

$$
\text { (i) } \begin{align*}
& \begin{array}{lc}
\sin 34^{\circ} & =\frac{100}{\sin 94^{\circ}} \\
\therefore A C & =\frac{100 \sin 34^{\circ}}{\sin 94^{\circ}} \\
& =56 \mathrm{~m}(\text { nearest } \mathrm{m})
\end{array}
\end{align*}
$$

(ii)

$$
\begin{align*}
& \tan 58^{\circ}=\frac{D C}{56} \\
& \therefore D C=56 \tan 58^{\circ} \\
&=90 \mathrm{~m} \text { (neqestm) } \tag{1}
\end{align*}
$$

(3)

$$
\begin{aligned}
& \text { a) } f^{\prime}(\theta)=\cos \theta+1 \\
& a_{2}=1.1-\frac{f(1.1)}{f^{\prime}(1.1)} \\
& =1.1-\frac{\sin 1 \cdot 1+1.1-2}{\cos 1.1+1} \text { (1) } \\
& \doteqdot 1.1060
\end{aligned}
$$

$$
\begin{align*}
& \text { b) (i) }\left(\frac{2 a p+2 a q}{2}, \frac{a p^{2}+a q^{2}}{2}\right) \\
& \therefore M \text { is }\left[a(p+q), \frac{a}{2}\left(p^{2}+q^{2}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& \text { (ii) } m_{p q}=c \\
& \therefore \frac{a q^{2}-a p^{2}}{2 a q-2 a p}=c \\
& \therefore \frac{1}{} \frac{(q-p)(q+p)}{2+(q-p)}=c \\
& \therefore \frac{q+p}{2}=c \Rightarrow q+p=2 c
\end{aligned}
$$

$\therefore M$ has coords

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 a c, \frac{a}{2}\left(p^{2}+q^{2}\right) \\
\gamma
\end{array}\right]} \\
& \therefore \quad x=2 a c(1)
\end{aligned}
$$

$\therefore M$ has locus eqn $x=2 a c$, which is vertical and parallet to axis of parabla.
c)

(ii)

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x \\
& =-\ln (\cos x)+c
\end{aligned}
$$

(iii)

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi / 4}(1-\tan x)^{2} d x \\
& =\pi \int_{0}^{\pi / 4}\left(1-2 \tan x+\tan ^{2} x\right. \\
& =\pi \int_{0}^{\pi / 4}\left(\sec ^{2} x-2 \tan x\right) \\
& =\pi[\tan x+2 \log (\cos x)]_{0}^{\pi} \\
& =0.96
\end{aligned}
$$

(4)

$$
\text { a) } \begin{align*}
& \int \frac{1}{2}(1+\cos 4 x) d x \tag{1}\\
= & \frac{1}{2}\left(x+\frac{\sin 4 x}{4}\right)+c \tag{1}
\end{align*}
$$

b) Prove true for $n=1$:

$$
\begin{align*}
& \text { CHS }=1 \times 2=2 \\
& \text { RHS }=\frac{1.2 \cdot 3}{3}=2=\text { LHS } \tag{1}
\end{align*}
$$

\therefore result is true for $n=1$
Assume true for $n=k$:
ie. assume $S_{k}=\frac{k(k+1)(k+2)}{3}$
Prove true for $n=k+1$:

$$
\begin{equation*}
\text { ie, prove } S_{k+1}=\frac{(k+1)(k+2)(k+3)}{3} \tag{0}
\end{equation*}
$$

Now, $S_{k+1}=S_{k}+T_{k+1}$

$$
\begin{aligned}
& =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\
& =\frac{k(k+1)(k+2)}{3}+\frac{3(k+1)(k+2)}{3} \\
& =\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3} \\
& =\frac{(k+1)(k+2)(k+3)}{3} \quad \text { shown }
\end{aligned}
$$

Since the result is true for $n=1$, then, from above, it must te true for $n=1+1=2$ and $n=2+1=3$ and So on for all positive integers n
c)

$$
\begin{align*}
\frac{d x}{d t} & =-\sin t-\sqrt{3} \cos t \\
\frac{d^{2} x}{d t^{2}} & =-\cos t+\sqrt{3} \sin t \\
& =-x \tag{1}
\end{align*}
$$

Which is in the form $\ddot{x}=-n^{2} x$ for $S H M$
(ii) max. Speed when $\ddot{x}=0$

$$
\begin{array}{r}
\therefore-\cos t+\sqrt{3} \operatorname{sen} t=0 \\
\therefore \sqrt{3} \sin t=\cos t \\
\therefore \tan t=\frac{1}{\sqrt{3}}(\cos t+0) \\
\therefore t=\pi / 6 \text { seconds }(1) \\
\quad \text { (or equiv.) }
\end{array}
$$

(iii)

$$
\begin{array}{rlrl}
A & ={\sqrt{1+(\sqrt{3})^{2}}}^{2} \quad \text { and } n=1 \\
& =\sqrt{4} \\
& =2 & & \text { from }
\end{array}
$$

$$
\begin{array}{r}
\therefore \cos t-\sqrt{3} \sin t=2 \cos (t+\alpha) \\
\therefore \frac{1}{2} \cos t-\frac{\sqrt{3}}{2} \sin t=\cos (t+\alpha) \\
=\cos t \cos \alpha-\sin t \sin \alpha
\end{array}
$$

$$
\left.\begin{array}{r}
\therefore \cos \alpha=1 / 2 \\
\sin \alpha=\frac{\sqrt{3}}{2}
\end{array}\right\} \therefore \alpha=\pi / 3
$$

$$
\begin{align*}
& \left.\sin \alpha=\frac{\sqrt{3}}{2}\right) \\
& \therefore \cos A-\sqrt{3} \sin A=2 \cos \left(t+\frac{\pi}{3}\right) \tag{1}\\
& \therefore \text { amplitude }=2 \text { units }
\end{align*}
$$

5
a) $B C^{2}=B D \cdot B E$
(square of tangent $=$ product of intersecting chords)

$$
\begin{align*}
& =4 D E \times 5 D E \tag{0}\\
& =20 D E^{2}
\end{align*}
$$

$\therefore B C=\sqrt{20 D E^{2}}$

$$
=2 \sqrt{5} D E
$$

(1)
and $A B=B C$ (equal tangents to a circle)
$\therefore A B=2 \sqrt{5} D E$

$$
\begin{aligned}
& \text { (v) (i) } \frac{d^{2} x}{d t^{2}}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& \therefore \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=18 x^{3}+18 x \\
& \therefore \frac{1}{2} v^{2}=\frac{18 x^{4}}{4}+9 x^{2}+c \\
& \therefore v^{2}=9 x^{4}+18 x^{2}+k \\
& (x=0, v=3) \\
& \therefore q=0+0+k(k=9) \\
& \therefore v^{2}=9 x^{4}+18 x^{2}+9 \\
& =\left(3 x^{2}+3\right)^{2} \\
& \therefore v=3 x^{2}+3(>0)
\end{aligned}
$$

(ii) $v=\frac{d x}{d t}=3 x^{2}+3$

$$
\therefore \frac{d t}{d x}=\frac{1}{3 x^{2}+3}
$$

$$
\therefore t=\frac{1}{3} \int \frac{1}{x^{2}+1} d x
$$

$$
=\frac{1}{3} \tan ^{-1} x+c
$$

$$
\begin{aligned}
& (t=0, x=0): \\
& \therefore 0=0+c(c=0) \\
& \therefore 3 t=\tan ^{-1} x
\end{aligned}
$$

$\therefore \tan 3 t=x$ as reqd.

(1)

$$
\text { (1) } \begin{align*}
\tan \theta & =\frac{500}{x} \\
\therefore x & =\frac{500}{\tan \theta} \tag{1}\\
\therefore \frac{d x}{d \theta} & =\frac{-\sec ^{2} \theta \times 500}{\tan ^{2} \theta} \\
& =\frac{-500}{\cos ^{2} \theta} \times \frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& =\frac{-5^{00}}{\sin ^{2} \theta} \\
& =-\operatorname{son}^{2} \operatorname{cosec}^{2} \theta
\end{align*}
$$

(ii)

$$
\begin{align*}
\frac{d \theta}{d t} & =\frac{d \theta}{d x} \cdot \frac{d x}{d t} \tag{1}\\
& =\frac{\sin ^{2} \theta}{-500} \times 20 \tag{1}\\
& =-\frac{1}{25} \sin ^{2} \theta
\end{align*}
$$

(iii) $A+9.01 \mathrm{am}, t=60, x=1200 \mathrm{~m}$

$$
\begin{aligned}
\therefore \frac{d \theta}{d t} & =\frac{-1}{25} \times\left(\frac{5}{13}\right)^{2} \\
& =\frac{-1}{28} \times \frac{25}{169} \\
& =\frac{-1}{169} \text { radians/second } \\
& (0.006)
\end{aligned}
$$

(6) a) opposite angles supplementary

$$
\begin{aligned}
& \therefore \tan A+\tan B+\tan C+\tan D \\
& =\tan A+\tan B+\tan \left(180^{\circ}-A\right)+\tan \left(10^{\circ}-1\right. \\
& =\tan A+\tan B-\tan A-\tan B(1) \\
& =0
\end{aligned}
$$

(e) (i) $v=6+A e^{-k t}$

$$
\begin{aligned}
\therefore \frac{d v}{d t} & =A e^{-k t} \times(-k) \\
& =-k A e^{-k t} \\
& =-k\left(6+A e^{-k t}-6\right) \\
& =-k(v-6) \quad \text { afr } \\
& =k(6-v) \quad \text { process }
\end{aligned}
$$

When $t=0, v=30$:

$$
\begin{align*}
30 & =6+A e^{\circ} \\
\therefore A & =24 \tag{1}
\end{align*}
$$

(ii)

$$
v=6+24 e^{-k t}
$$

When $t=1, v=10.7$

$$
\begin{aligned}
\therefore 10.7 & =6+24 e^{-k} \\
\therefore \frac{47}{24} & =e^{-k} \\
\therefore-k & =\log \left(\frac{47}{24}\right)
\end{aligned}
$$

$$
\begin{equation*}
\therefore k \div 1.63 \tag{1}
\end{equation*}
$$

(iii)

$$
\begin{align*}
v & =6+24 e^{-3.26} \\
& =6.9 \mathrm{~m} / \mathrm{s} \tag{1}
\end{align*}
$$

C) (i)

$$
\begin{aligned}
& x=50 \cos \alpha t \\
& y=50 \sin \alpha t-5 t^{2}
\end{aligned}
$$

(ii) At target: $x=150, y=0$

$$
\begin{align*}
\therefore 150 & =50 \cos \alpha t \\
\therefore \cos \alpha t & =3 \\
\therefore t & =\frac{3}{\cos \alpha} 0 \tag{1}\\
\therefore 0 & =50 \sin \alpha \cdot \frac{3}{\cos \alpha}-5\left(\frac{3}{\cos \alpha}\right)^{2} \\
& =150 \tan \alpha-\frac{45}{\cos ^{2} \alpha} \tag{0}\\
& =150 \tan \alpha-45 \sec ^{2} \alpha \\
& =150 \tan \alpha-45\left(1+\tan ^{2} \alpha\right)
\end{align*}
$$

$$
\begin{aligned}
& \therefore 45 \tan ^{2} \alpha-150 \tan \alpha+45=0 \\
& \therefore 3 \tan ^{2} \alpha-10 \tan \alpha+3=0 \\
& (3 \tan \alpha-1)(\tan \alpha-3)=0 \text { for } 24 \\
& \therefore \tan \alpha=\frac{1}{3} \text { or } 3 \\
& \therefore \alpha=18^{\circ} 26^{\prime} \text { or } 71^{\circ} 344^{\prime} 0
\end{aligned}
$$

\therefore Soldier con hit target with either angle above.
(7)
a) (i) For $f(x)=\sec x$

D: $0 \leqslant x<\pi / 2$
$R: y \geqslant 1$
\therefore for $f^{-1}(x), D: x \geqslant 1$ (1)
(ii)

$$
\begin{aligned}
& y=\sec x \\
& \therefore f^{-1}(x): x=\sec y \quad(1) \text { for } \\
& =\frac{1}{\cos y} \text { process } \\
& \therefore \cos y=\frac{1}{x} \\
& \therefore y=\cos ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

(iii)

$$
\text { i) } \begin{aligned}
& \frac{d}{d x}\left[\cos ^{-1}\left(\frac{1}{x}\right)\right]=\frac{-1}{\sqrt{1-\left(\frac{1}{x}\right)^{2}}} \cdot\left(-x^{-2}\right) \\
&=\frac{1}{\sqrt{1-\frac{1}{x^{2}}}} \cdot \frac{1}{x^{2}} \\
&=\frac{1}{x^{2} \sqrt{1-\frac{1}{x^{2}}}} \\
&\left(\text { or } \frac{1}{\sqrt{x^{4}-x^{2}}} \text { or } \frac{1}{x \sqrt{x^{2}-1}}\right. \text {) }
\end{aligned}
$$

b) (i) Solve $m^{2}+m-1=0 \quad\left(m=x^{2}\right)$

$$
\begin{align*}
\therefore m & =\frac{-1 \pm \sqrt{1-4 \times 1 \times-1}}{2} \\
& =\frac{-1 \pm \sqrt{5}}{2}(1) \tag{1}\\
\therefore x^{2} & =\frac{-1+\sqrt{5}}{2} \text { only }\left(a 5 x^{2} \geqslant 0\right) \\
\therefore x & = \pm 0.786 \text { (1) } \tag{1}
\end{align*}
$$

(-1 if x / y points missing)
(iii) At $P, \tan ^{-1} x=y=\cos ^{-1} x$
$\therefore x=\tan y(1), x=\cos y$

$\therefore \cos y=\frac{1}{\sqrt{x^{2}+1}}$

$$
\text { , } \tan y=\frac{\sqrt{1-x}}{x}
$$

Now, since $\tan y=\cos y(=x)$
then either: $\frac{1}{\sqrt{x^{2}+1}}=\frac{\sqrt{1-x^{2}}}{x}$
or $\frac{1}{\sqrt{x^{2}+1}}=x_{x}^{x}(1)$
or $\frac{\sqrt{\frac{1-x^{2}}{x}}}{x}=x$
which all give $x^{4}+x^{2}-1=c$
Coordinates of P are

$$
(0.786,0.666)
$$

