SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2004

MATHEMATICS EXTENSION 1

General Instructions		Total Marks - 84		
•	Reading time – 5 minutes	•	Attempt Questions 1 – 7	
٠	Working time – 2 hours	٠	All questions are of equal value	
٠	Write using black or blue pen			
٠	Board-approved calculators may be used			
٠	A table of standard integrals is provided			
	at the back of this paper			
٠	All necessary working should be shown			
	in every question			

Ż

Name:_____

Teacher:_____

Question	Total						
1	2	3	4	5	6	7	
							······
					:		

Marks

Question 1

a) Simplify $\frac{1+a^{-1}}{1+a^{-3}}$ 2

b) Show that
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
 2

c) Find
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{2x^2}$$
 2

d) Use the substitution
$$u = 1 + x^3$$
, or otherwise to evaluate $\int_0^1 x^2 (1 + x^3)^3 dx$ 4

e) Find the acute angle between the lines
$$x + y\sqrt{3} = 3$$
 and $y = 3$ 2

Question 2 (Start a new page)

a) One of the roots of $2x^3 + x^2 - 15x - 18 = 0$ is positive and equal to the product of the other two roots. Find this root.

b) If
$$\frac{dy}{dx} = 1 + y$$
, and when $x = 0, y = 2$; show that $y = 3e^{x} - 1$
(hint: examine $\frac{dx}{dy}$.)

c) Find
$$\int \frac{dx}{\sqrt{16-25x^2}}$$

A pole DC is seen from two points A and B. The angle of elevation from A is 58°, $\angle CAB$ is 52°, $\angle ABC$ is 34° and A and B are 100m apart .Find:

(i)	How far A is from the foot of the pole, to the nearest metre	3
(ii)	The height of the pole, to the nearest metre	1

Question 3 (Start a new page)

	a)	The equation $\sin \theta + \theta - 2 = 0$ has a root near $\theta = 1.1$. Use this as a first approximation				
		and or	ne application of Newton's Method to find a better approximation of the root			
		correc	t to 3 decimal places.	3		
	b)	P(2ap	(p, ap^2) and $Q(2aq, aq^2)$ are points on the parabola $x^2 = 4ay$.			
- 1		(i)	Find the coordinates of M, the midpoint of PQ	1		
		(ii)	If the gradient of PQ is constant, find the equation for the locus of M			
			and show that it is a line parallel to the axis of the parabola.	3		
	c) Given the function $f(x) = 1 - \tan x$ for the domain $0 \le x \le \frac{\pi}{4}$:					
		(i)	Sketch the graph of $y=f(x)$	1		
		(ii)	Show that $\int \tan x dx = -\ln(\cos x) + c$	1		
		(iii)	The region in (i) is rotated about the x axis. Find the volume of the solid			
			generated to 2 decimal places.	3		

Marks

4

Question 4 (Start a new page)

a)	Find	$\int \cos^2 2x \ dx$		2
----	------	-----------------------	--	---

Prove by Mathematical Induction, that for all positive integers *n*: b)

$$\sum_{r=1}^{n} r(r+1) = \frac{n(n+1)(n+2)}{3}$$

The displacement x cm of an object from the origin is given by c) $x = \cos t - \sqrt{3} \sin t$

- Prove that the object executes simple harmonic motion. 2 (i) Find an exact time when the object reaches maximum speed 1 (ii) 3
- (iii) Express the displacement in the form $A\cos(nt + \alpha)$ and state the amplitude.

(Start a new page) Question 5

a)

Not to scale

AB and BC are tangents and BD = 4 DEProve that $AB=2\sqrt{5}$ DE, giving reasons.

2

The acceleration of a body P is given by $\frac{d^2x}{dt^2} = 18x(x^2 + 1)$, where x is the b)

displacement of P from 0 at time t. The velocity is v.

Given t = 0, x = 0, v = 3 and that v > 0 throughout the motion:

- find v in terms of x (i)
- show that $x = \tan 3t$ (ii)

2

At 9am, an ultralight aircraft flies directly over Tony's head at a height of 500m. It maintains a constant speed of 20 m/s and a constant altitude.

If x is the horizontal distance travelled by the plane and θ is the angle of elevation from Tony to the plane,:

(i) Show that
$$\frac{dx}{d\theta} = -500 \csc^2 \theta$$
 2

(ii) Hence show that
$$\frac{d\theta}{dt} = \frac{-1}{25}\sin^2\theta$$
 2

2

1

1

(iii) Find the rate of change of the angle of elevation at 9.01am (in radians per second)

Question 6 (Start a new page)

a)	ABCD is a cyclic quadrilateral.	
	Show that $\tan A + \tan B + \tan C + \tan D = 0$	2

b) A sky-diver opens his parachute when falling at 30 m/s. <u>Thereafter</u>, his acceleration is given by $\frac{dv}{dt} = k(6-v)$ where k is a constant.

- (i) Show that this differential equation is satisfied by v = 6 + Ae^{-kt} and find the value of A.
 (ii) Our expected after expering his shute his upleating is 10.7 m/s. Find the value
- (ii) One second after opening his chute, his velocity is 10.7 m/s. Find the value of k to 2 decimal places.
- (iii) Find his velocity, correct to one decimal place, two seconds after his chute is opened.

1

2

4

- c) A soldier is 150 metres from, and on the same horizontal level as, her target. Her weapon can fire with an initial velocity of 50 m/s. Take $g = 10m/s^2$.
 - (i) Write the equations of motion for horizontal and vertical displacement.
 - (ii) Find the two possible angles at which she must fire her weapon to hit the target.

Question 7 (Start a new page)

The function $f(x) = \sec x$ is defined for $0 \le x < \frac{\pi}{2}$. a) State the domain of the inverse function $f^{-1}(x)$. (i) 1 Show that $f^{-1}(x) = \cos^{-1}(\frac{1}{x})$ (ii) 1 Hence find $\frac{d}{dr} [f^{-1}(x)]$ (iii) 2 Find all real solutions to the equation $x^4 + x^2 - 1 = 0$, giving your b) (i) answers correct to three decimal places. 2 On the same axes, sketch the graphs of $y = \tan^{-1} x$ and $y = \cos^{-1} x$. (ii) Label important points. Mark the point P where the two curves intersect. 2 If $\tan^{-1} x = \cos^{-1} x$ at P, show that $x^4 + x^2 - 1 = 0$ and find the coordinates (iii) of P. 4 SOLUTIONS.

$$\begin{array}{c} 1 \\ a) & 1 + \frac{1}{6^3} = \frac{a+1}{a^{\frac{3}{2}+1}} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{a+1}{a^{\frac{3}{2}+1}} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{a+1}{a^{\frac{3}{2}+1}} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{a+1}{a^{\frac{3}{2}+1}} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{a+1}{a^{\frac{3}{2}+1}} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{a+1}{a^{\frac{3}{2}+1}} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{a+1}{a^{\frac{3}{2}+1}} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{a+1}{a^{\frac{3}{2}+1}} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{1}{6^3} = \frac{1}{6^3} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{1}{6^3} = -\frac{1}{6^3} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{1}{6^3} = -\frac{1}{6^3} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{1}{6^3} = -\frac{1}{6^3} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{1}{6^3} = \frac{1}{6^3} = 0 \\ \hline 1 + \frac{1}{6^3} = \frac{1}{6^3$$

c)
$$\int \frac{dx}{\sqrt{16-25x^{2}}} = \int \frac{dx}{\sqrt{12}\sqrt{12}(\frac{1}{\sqrt{12}}-x^{2})}} \begin{bmatrix} (ii) M_{pq} = c \\ \therefore a_{pq}^{2}-a_{p}^{2} \\ 2a_{q}^{-2}a_{p}^{2} \\ za_{q}^{-2}a_{p}^{2} \end{bmatrix} = c \\ \Rightarrow \frac{a_{p}^{2}}{\sqrt{12}\sqrt{12}} \begin{bmatrix} a_{p}^{2} \\ a_$$

$$\begin{array}{c} (i) \quad d_{2x}^{2} = \frac{d}{dx} \binom{1}{2} v^{2} \\ (i) \quad d_{x}^{2} = \frac{d}{dx} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \sqrt{2} = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (i) \quad \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (ii) \quad At = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (iii) \quad At = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (iii) \quad At = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \\ (iii) \quad At = \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt$$

1)
$$\tan \theta = \frac{500}{x}$$

 $\therefore x = \frac{500}{\tan \theta}$
 $\frac{1}{20} = -\frac{5ec^2\theta \times 500}{\tan^2\theta}$
 $= \frac{-500}{\sin^2\theta} \times \frac{coc^2\theta}{\sin^2\theta}$
 $= -\frac{500}{\sin^2\theta}$
 $= -\frac{500}{\sin^2\theta}$
 $= -\frac{500}{\cos^2\theta} \times 20$
 $\frac{10}{4\pi} = \frac{d\theta}{dx} \cdot \frac{dx}{dx}$
 $= \frac{5m^2\theta}{dx} \times 20$
 $= -\frac{1}{25}\sin^2\theta$
11) $At 9.01 \text{ am}$, $t = 60$, $x = 1200 \text{ m}$
 $\frac{1200}{-500}$
 $= -\frac{1}{25} \times (\frac{5}{13})^2$
 $= -\frac{1}{25} \times (\frac{5}{13})^2$
 $= -\frac{1}{25} \times (\frac{5}{169})^2$
 $= -\frac{1}{169} \times \frac{25}{169}$
 $= -\frac{1}{169} \sqrt{26} (\frac{1}{100} + \frac{1}{100})^2$
 $= -\frac{1}{169} \sqrt{2} (\frac{5}{100} + \frac{1}{100})^2$
 $= -\frac{1}{100} \sqrt{2} (\frac{1}{100} + \frac{1}{100})^2$

b) (i)
$$v = 6 + Ae^{-kt}$$

 $dv = Ae^{-kt} + (-k)$
 $= -kAe^{-kt}$
 $= -k(6 + Ae^{-kt} - 6)$
 $= -k(v - 6) \oplus \text{for cass}$
 $= k(0 - v) \oplus \text{process}$
 $= k(6 - v) \oplus \text{process}$
 $wAen t = 0, v = 30$:
 $\therefore 30 = 6 + Ae^{0}$
 $\therefore A = 24 \oplus$
 $\therefore A$

(ii) At target:
$$x = 150, y = 0$$

 $\therefore 150 = 50\cos 4t$
 $\therefore \cos 4t = 3$
 $\therefore t = \frac{3}{\cos 4}$
 $= 150 \sin 4 - \frac{3}{\cos 4} - 5(\frac{3}{\cos 4})^2$
 $= 150 \tan 4 - \frac{45}{\cos^2 4}$
 $= 150 \tan 4 - 45 \sec^2 4$
 $= 150 \tan 4 - 45 \sec^2 4$
 $= 150 \tan 4 - 45(1 \tan^2 4)$
 $\therefore 45 \tan^2 4 - 150 \tan 4 + 45 = 0$
 $\therefore 3 \tan^2 4 - 10 \tan 4 + 3 = 0$
 $(3 \tan 4 - 1)(\tan 4 - 3) = 0$
 $(3 \tan 4 - 1)(\tan 4 - 3) = 0$
 $(3 \tan 4 - 1)(\tan 4 - 3) = 0$
 $\therefore 4 = 18^{\circ}26' \text{ or } 71^{\circ}34'$
 $\therefore 5 = 18^{\circ}26' \text{ or } 71^{\circ}34'$
 $\therefore 5 = 18^{\circ}26' \text{ or } 71^{\circ}34'$

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}{c}
\end{array} \\
\end{array} \\
\end{array}$$
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\end{array} \\
\end{array}
\end{array} \\
\end{array}
\end{array} \\
\end{array}
\bigg{c}
\end{array} \\
\end{array} \\
\end{array}
\bigg{c}
\end{array} \\
\end{array} \\
\end{array}
\bigg{c}
\end{array} \\
\end{array}
\bigg{c}
\end{array} \\
\end{array}
\bigg{c}
\end{array} \\
\end{array}
\bigg{c}
\end{array} \\
\end{array} \\
\end{array}
\bigg{c}
\end{array}
\bigg{c

(ii)
$$y = \cos^{-1} x$$
 for
 $y = -1$ for $x = y = -1$
(-1 if xe/y points missing)
(iii) $A \neq P$, $\tan^{-1} x = y = \cos^{-1} x$
 $\therefore x = \tan y 0$, $x = \cos y$
 $\sqrt{x^2+1}$ for $y = -\frac{1}{x}$
 $\therefore \cos y = \frac{1}{\sqrt{x^2+1}}$, $\tan y = \sqrt{x}$
Now, since $\tan y = \cos y$ (= x)
then either: $\frac{1}{\sqrt{x^2+1}} = \sqrt{1-x^2}$
 $\sqrt{x^2+1}$ for $\frac{1}{\sqrt{x^2+1}} = \sqrt{1-x^2}$
 $\sqrt{x^2+1} = \sqrt{1-x^2}$
 $\sqrt{x^$