SYDNEY TECHNICAL HIGH SCHOOL

Year 12
 Mathematics Extension 1

TRIAL HSC

2016

Time allowed: 2 hours plus 5 min reading time

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A BOSTES reference sheet is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice
Questions 1-10
10 Marks (allow 15 minutes)
Section II Questions 11-14
60 Marks (allow 1 hour 45 min)

Total Marks 70

Section I

10 Marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for questions 1-10.

1 In the diagram, $A B$ is a diameter of the circle and $M C N$ is the tangent to the circle at C.
$\angle C A B=35^{\circ}$. What is the size of $\angle M C A$?

(A) 35°
(B) 45°
(C) 55°
(D) 65°
2. When the polynomial $P(x)=x^{3}-5 x^{2}+k x+2$ is divided by $(x+1)$ the remainder is 3 . What is the value of k ?
(A) -7
(B) -5
(C) 5
(D) 7

3 Which of the following is a simplification of $4 \log _{e} \sqrt{e^{x}}$?
(A) $4 \sqrt{x}$
(B) $\frac{1}{2} x$
(C) $2 x$
(D) x^{2}

4 The acute angle between the lines $2 x-y=0$ and $k x-y=0$ is equal to $\frac{\pi}{4}$:
What is the value of k ?
(A) $k=-3$ or $k=-\frac{1}{3}$
(B) $k=-3$ or $k=\frac{1}{3}$
(C) $k=3$ or $k=-\frac{1}{3}$
(D) $k=3$ or $k=\frac{1}{3}$

5 Which of the following is a simplification of $\frac{1-\cos 2 x}{\sin 2 x}$?
(A) $1-\cot 2 x$
(B) 1
(C) $\cot x$
(D) $\tan x$

6 The statement $7^{n}-3^{n}$ is always divisible by 10 is true for
(A) all integers $n \geq 1$
(B) all integers $n \geq 2$
(C) all odd integers $n \geq 1$
(D) all even integers $n \geq 2$

7 What is the value of $\int_{1}^{2} \frac{1}{\sqrt{4-x^{2}}} d x$?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

8 The radius r of a circle is increasing at a constant rate of $0.1 \mathrm{~cm} \mathrm{~s}^{-1}$.
What is the rate at which the area of the circle is increasing when $r=10 \mathrm{~cm}$?
(A) $\pi \mathrm{cm}^{2} \mathrm{~s}^{-1}$
(B) $2 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
(C) $10 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
(D) $20 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$

9 If $x+\frac{1}{x}=2$ what is the value of $x^{2}+\frac{1}{x^{2}}$?
(A) 2
(B) 4
(C) 6
(D) 8

10 A particle is performing Simple Harmonic Motion in a straight line. In 1 minute of its motion it completes exactly 15 oscillations and travels exactly 120 metres. What is the amplitude of the motion?
(A) 2 metres
(B) 4 metres
(C) 8 metres
(D) 16 metres

Section II

60 Marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section.

Answer the questions in writing booklet provided. Use a new page for each question. In Questions 11-14 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
a) Solve $\frac{2 x+1}{x-2} \geq 1$
b) $\quad P$ divides $A B$ externally in the ratio 3:2.

Find the co-ordinates of B given that
A is $(-2,5)$ and P is $(1,3)$
c) Solve $\cos ^{2} x+\sin x-1=0$

$$
\begin{equation*}
\text { for } 0 \leq x \leq 2 \pi \tag{2}
\end{equation*}
$$

d) Given that $\frac{d y}{d x}=\frac{1}{1+x^{2}}$ and $x=1$ when $y=0$, find y when $x=\sqrt{3}$
e) Differentiate $y=\ln \left(\sin ^{-1} x\right)$ with respect to x
f) In the diagram below, the two circles are of radius 1 unit and pass through the centres O and P . The circles intersect at A and B .

i) Find the size of angle $A O B$
ii) Find the shaded area in exact form.

Question 12

(15 marks)
Marks (Start a new page)
$\int_{0}^{\pi / 8} \cos ^{2} 2 x d x$ in exact form.
3
b) Evaluate $\int_{0}^{\pi / 4} \sin x \cdot \cos ^{3} x d x$ by 3
using the substitution $u=\cos x$, or otherwise.
c) i) Sketch $y=\sin ^{-1}(1-x)$
and state the domain 3
ii) Show that $\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=2 x^{2}-1$
iii) Hence, or otherwise, solve the equation

$$
\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(1-x)
$$3

a) Use the principle of Mathematical Induction to prove that $7^{n}+2$ is divisible by 3 for all positive integers n.
b) An object is projected horizontally from the top edge of a vertical cliff 40 metres above sea level with a velocity of $40 \mathrm{~m} / \mathrm{s}$. (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

i) Using the top edge of the cliff as origin, show that the parametric equations of the path of the object are:

$$
\begin{equation*}
x=40 t \quad y=-5 t^{2} \tag{2}
\end{equation*}
$$

ii) Calculate when and where the object hits the water.
iii) Find the velocity of the object the instant it hits the water.
c) The inside of a vessel used for water has the shape of a solid of revolution obtained by the rotation of the parabola $9 y=8 x^{2}$ about the y-axis. The depth of the vessel is 8 cm
i) Prove that a volume of water h cm from its bottom is $\frac{9}{16} \pi h^{2}$.
ii) If water is poured into the vessel at a rate of $20 \mathrm{~cm}^{3} / \mathrm{sec}$, find the rate at which the level of water is rising when the vessel is half full.
d) The acceleration of a particle is given by $\frac{d^{2} x}{d t^{2}}=16(1+x)$, where $x \mathrm{~cm}$ is the displacement from the origin. When $t=0, x=0$ and $v=4 \mathrm{~cm} / \mathrm{sec}$.
i) Derive an expression for its velocity in terms of its displacement.
ii) Deduce that its displacement function is $x=e^{4 t}-1$.
a) A particle moves with simple harmonic motion. At at the extremities of the motion the absolute value of the acceleration is $1 \mathrm{~cm} \mathrm{~s}^{-2}$ and when the particle is 3 cm from the centre of motion, the speed is $2 \sqrt{2} \mathrm{~cm} \mathrm{~s}^{-1}$. Find the period and amplitude for this motion.
b) $A B C D$ and $A E F G$ are two squares of different areas, and $G D \perp B E . M$ is the mid point of $D E$.

Let $\widehat{A E D}=x$

i) Copy the diagram into your answer book
ii) Give a reason why $D E$ is the diameter of the circle with points A, D and E on its circumference.
iii) Prove that BDEG is a cyclic quadrilateral (reasons required)
iv) Produce MA to meet $B G$ at T. Prove $M A \perp B G$ (reasons required)
c) Two parametric points $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ lie on the parabola $x^{2}=4 y$, and the line through $P Q$ is parallel to the line $y=m x$.
i) Show that $p+q=2 m$.
ii) Derive the equation of the normal to the parabola at the point P.
iii) Find the co-ordinates of N, the point of intersection of the normals from P and Q .
iv) Determine the locus of N as the line $P Q$ moves parallel to the line $y=m x$. Without further calculations, write any restrictions placed upon the locus of N .
S.T.H S TRIAL H.S.C. Solutions Ext 1. 2016.

$$
\text { c) } \begin{gathered}
\cos ^{2} x+\sin x-1=0 \\
\cos ^{2} x+\sin x-1=0 \\
1-\sin ^{2} x+\sin x-1=0 \\
\sin x-\sin ^{2} x=0 \\
\sin x(1-\sin x)=0 \\
\sin x=0 \quad \sin x=1
\end{gathered}
$$

$$
\therefore x=0, \pi, 2 \pi \text { and } \frac{\pi}{2}
$$

d) $\frac{d y}{d x}=\frac{1}{1+x^{2}}$

$$
\therefore y=\tan ^{-1} x+c
$$

sub $(1,0)$
a) $\frac{2 x+1}{x-2} \geqslant 1$

$$
\begin{aligned}
& (x-2)(2 x+1) \geqslant(x-2)^{2} \\
& (x-2)(2 x+1)-(x-2)^{2} \geqslant 0 \\
& (x-2)(2 x+1-(x-2)) \geqslant 0 \\
& (x-2)(x+3) \geqslant 0
\end{aligned}
$$

$$
\therefore x>2, x \leqslant-3
$$

b)

$$
\begin{array}{cc}
A(-2,5) \quad B(x, y) \\
-3.2 & P(1,3) \\
\frac{(2 x-2)+-3 x}{-1}=1 & \therefore-4-3 x=-1 \\
\hline(2 \times 5)+-3 y=3 & \therefore \quad 10-3 y=-3 \\
-1 & y=13 / 3
\end{array}
$$

e) Let $u=\sin ^{-1} x \quad \therefore y=h u$

$$
\frac{d u}{d x}=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d y}{d x}=\frac{1}{u}
$$

$$
\therefore \frac{d y}{d x}=\frac{1}{\sin ^{-1} x} \cdot \frac{1}{\sqrt{1-x^{2}}}
$$

f)

i) $\triangle O A P$ is equilateral

$$
\begin{aligned}
& \therefore \hat{A O P}=\pi / 3 \\
& \therefore \hat{A O B}=2 \pi
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { Shaded area } & =2 \times \frac{1}{2} \times 1^{2} \times\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right) \\
& =\frac{2 \pi}{3}-\operatorname{si}-\frac{\pi}{3} \\
& =\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) \text { units }^{2}
\end{aligned}
$$

Question 12

$$
\text { a) } \begin{aligned}
& \pi / 8 \int_{0}^{\pi / 8} \cos ^{2} 2 x d x \\
& =\frac{1^{2}}{\pi / 8} \int_{0}^{\operatorname{since} \cos ^{2} A=\frac{1}{2}(\cos 2 A+1)} \\
& =\frac{1}{2}\left[\frac{1}{4} \sin 4 x+1\right) d x \\
& =\frac{1}{2}\left[\frac{1}{4}+517 \frac{\pi}{2}+\frac{\pi}{8}\right] \\
& =\frac{1}{8}+\frac{\pi}{16}
\end{aligned}
$$

$$
\begin{array}{rl}
\text { b) } u=\cos x & x=\pi / 4 \quad u=\cos \\
\frac{d u}{d x}=-\sin x & \therefore u=1 / \\
\therefore \quad d x=\frac{d u}{-\sin x} & x=0 \quad u=\cos \\
\therefore \quad \therefore u=1
\end{array}
$$

c) $y=\sin ^{-1}(1-x)$
i)

$$
\begin{aligned}
& -1 \leqslant 1-x \leqslant 1 \\
& -2 \leqslant-x \leqslant 0
\end{aligned}
$$

Domain $\therefore 0 \leqslant x \leqslant 2$

ii) Let

$$
\beta=\cos ^{-1} x
$$

$$
\therefore \sin \alpha=x
$$

$$
\cos \beta=x
$$

QUESTION 13
a) Step (1) Shou true for $n=1$

$$
7^{\prime}+2=9 \text { div by } 3
$$

Step (2) assume true for $n=-k$
some tue integer

$$
7^{2}+2=3 M \text { (where } M \text { is an intege }
$$

Step (3) Show true for $n=-k+1$

$$
\begin{aligned}
7^{k+1}+2 & =7^{k} \cdot 7+2 \\
& =(3 M-2) 7+2 \text { from } \\
& =21 M-14+2 \\
& =21 M-12 \\
& =3(7 M-4)
\end{aligned}
$$

Step (4) Since true for $n=1$ and if assumed true for $n=k$ (some the integer) sue have shoun true for $n=-k+1 \quad \therefore$ true for all tue integer $(n \geqslant 1)$
$\sin c c \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$

$$
\begin{aligned}
& =x \cdot x-\frac{\sqrt{1-x^{2}}}{1} \cdot \frac{\sqrt{1-x^{2}}}{1} \\
& =x^{2}-\left(1-x^{2}\right)
\end{aligned}
$$

$$
\sin (\alpha-\beta)=2 x^{2}-1
$$

$$
\therefore \alpha-\beta=\sin ^{-1}\left(2 x^{2}-1\right)
$$

$$
\therefore \sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=2 x^{2}-1
$$

iii)

$$
\begin{gathered}
\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(1-x) \\
\sin \left(\sin ^{-1} x-\cos x\right)=1-x \\
2 x^{2}-1=1-x \\
2 x^{2}+x-2=0 \\
x=\frac{-1 \pm \sqrt{17}}{4} \quad \text { since } \quad 0 \leqslant x \leqslant 2
\end{gathered}
$$

only solution $x=\frac{-1+\sqrt{17}}{4} \div 0.78$
bi)

$$
\begin{gathered}
\ddot{x}=0 \\
\dot{x}=c \\
\dot{x}=40 \\
c_{1}=40 \\
\therefore=40 t+c_{2} \\
\therefore x=40 t
\end{gathered}
$$

$$
\therefore \quad x=40
$$

using initially $t=0, x=0 \& y=0$

$$
\dot{y}=0 \quad \dot{x}=40
$$

ii) hits water if $y=-40$

$$
\begin{aligned}
& \therefore-40=-5 t^{2} \\
& t^{2}=8 \quad t \geqslant 0 \\
& \therefore t=\sqrt{8} \\
& t=2 \sqrt{2} \mathrm{sec} \\
& x=2 \sqrt{2} \times 40 \quad 80 \sqrt{2} \mathrm{~m} \text { from } \\
& x=4 \operatorname{los}
\end{aligned}
$$

$$
\begin{aligned}
& \text { iii) } \\
& \text { - }=-20 \sqrt{2} \\
& \operatorname{sincc} \\
& v^{2}=\dot{y}=-10 t \\
&=240 \sqrt{2})^{2}+(40)^{2} \\
& v=20 \sqrt{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c)

$$
\begin{aligned}
V & =\pi \int_{0}^{h} \frac{9}{8} y d y \\
& =\pi\left[\frac{9 y}{16}\right]_{0}^{2} h \\
V & =\frac{9 \pi i h^{2} u_{n i t}^{3}}{16}
\end{aligned}
$$

ii) $\frac{d v}{d t}=20 \mathrm{~cm}^{3} / \mathrm{scc}, \frac{d v}{d h}=\frac{9 \pi h}{8}$

Full if $h=8 \quad V=36 \pi$
$\therefore \quad 1 / 2$ full $V=18 \pi$

$$
\begin{aligned}
18 \pi & =\frac{9 \pi h^{2}}{16} \\
32 & =h^{2} \\
\therefore h & =4 \sqrt{2} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{d v}{d t} \cdot \frac{d h}{d V} \\
& =20 \times \frac{8}{9 \pi h} \\
& =\frac{160}{9 \pi h} \text { sub } h=4 \sqrt{2} \\
\frac{d h}{d t} & =\frac{40 \cdot \mathrm{~cm} / \mathrm{s} \text { or } \frac{20 \sqrt{2}}{9 \pi}}{9 \pi \sqrt{2}}
\end{aligned}
$$

d) $\ddot{x}=16(1+x)$

$$
t=0
$$

i)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=16+16 x \\
& \frac{1}{2} v^{2}=16 x+8 x^{2}+c \\
& v^{2}=32 x+16 x^{2}+k
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{1}{2} v^{2}=16 x+8 x^{2}+c \\
& v^{2}=32 x+16 x^{2}+k \\
& x=0 \quad v=4 . \\
& \therefore 16=k \\
& v^{2}=16 x^{2}+32 x+16 \\
& v^{2}=16\left(x^{2}+2 x+1\right) \\
& v^{2}=16(x+1)^{2} \\
& 1 v^{2}
\end{aligned}
$$

$$
\text { when } x=\int_{0}^{+1} \quad v=4 \mathrm{~cm} / \mathrm{sec}
$$

$$
\therefore v=+4(x+1)
$$

ii) $\frac{d x}{d t}=4 x+4$

$$
\begin{aligned}
& \frac{d t}{d x}=\frac{1}{4 x+4} \quad t=0 \\
& \therefore t=\frac{1}{4} \ln (4 \cdot x+4)+c \quad x=0 \\
& \therefore c=-\frac{1}{4} \ln (4) \\
& t=\frac{1}{4} \ln (4 x+4)-\frac{1}{4} \ln 4 \\
& t=\frac{1}{4} \ln (x+1)
\end{aligned}
$$

$$
\text { ii) } \frac{d x}{d t}=4 x+4
$$

$$
\begin{aligned}
& t=\frac{1}{4} \ln (x+1) \\
& 4 t=\log _{e}(x+1) \\
& 4 t=x+1 \\
& e=e^{4 t}-1
\end{aligned}
$$

Question 14
a) $\ddot{x}=-n^{2} x$
at extremities $x=a \quad \ddot{x}=-1$

$$
\begin{align*}
& \therefore 1=n^{2} a \\
& \quad n^{2}=\frac{1}{a} \text { (1) } \\
& v^{2}=n^{2}\left(a^{2}-x^{2}\right) \quad v=2 \sqrt{2} \quad x=3 \\
& (2 \sqrt{2})^{2}=n^{2}\left(a^{2}-9\right) \quad \text { (2) } \tag{2}
\end{align*}
$$

sub (1) into (2)

$$
\begin{aligned}
& 8=\frac{1}{a}\left(a^{2}-9\right) \\
& 8 a=a^{2}-9 \\
& a^{2}-8 a-9=0 \\
& (a-9)(a+1)=0 \\
& \therefore \quad a=9 \text { only since } a>0 \\
& \quad n=\frac{1}{3}
\end{aligned}
$$

\therefore amplitude is 9 cm period $\frac{2 \pi}{1 / 3}=6 \pi \mathrm{sec}$
b)

ii) DE is the diameter M is the centre of circle
(angle in semicircle is 90°)
$\widehat{D E E}=90^{\circ}$ (angle sum of straight
line $G A D$ and $\widehat{A B E}=90^{\circ}$
iii) $\widehat{D B A}=\hat{E} \hat{G}_{A}=45^{\circ}$ (diagonals of square bisect angles)
$\hat{D B A}=\hat{E G A}$ (angles in same segment equal)
\therefore BDEG is a cyclic quad
iv)

- $\widehat{A E}=x$ (opposite equal sioles \therefore isosceles $\triangle A M E$
(since $A M=M E$ angle in semicircle part ii)
- $T \hat{A B}=x$ (vertically opposite)
- Let $\widehat{G D E}=y$
$\therefore \hat{C B E}=y$ (ate angles in alterate segment') (cyclic quad) BDEG partiii
since. $x+y=90^{\circ}$ angle
sum $\triangle A D E$
$\therefore \hat{B T A}=90^{\circ}$ angle sum

$$
\triangle T B A
$$

$\therefore \quad M A \perp B G$
c)

i)

$$
\begin{aligned}
m_{P Q} & =\frac{p^{2}-q^{2}}{2 p-2 q} \\
& =\frac{(p-q)(p+q)}{2(p-q)}=\frac{p+q}{2}
\end{aligned}
$$

gradient of line $y=m x$ is m

$$
\begin{aligned}
& \therefore \quad m=\frac{p+q}{2} \\
& \therefore 2 m=p+q
\end{aligned}
$$

ii)

$$
\begin{aligned}
& y=\frac{x^{2}}{4} \\
& \frac{d y}{d x}=\frac{2 x}{4}=\frac{x}{2} \quad P\left(2 p, p^{2}\right)
\end{aligned}
$$

at $P \quad m_{T}=P \quad \therefore \quad m_{N}=-\frac{1}{P}$
eqn of normal at p

$$
y-p^{2}=-\frac{1}{p}(x-2 p)
$$

iii) $y=p^{2}-\frac{1}{p}(x-2 p)$ norma) at p $y=q^{2}-\frac{1}{q}(x-2 q)$ normal at Q sim $\in q$

$$
\begin{aligned}
& p^{2}-\frac{1}{p}(x-2 p)=q^{2}-\frac{1}{q}(x-2 q) \\
& p^{2}-\frac{x}{p}+2=q^{2}-\frac{x}{q}+2
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{q}-\frac{x}{p}=q^{2}-p^{2} \\
& x\left(\frac{1}{q}-\frac{1}{p}\right)=(q-p)(q+p) \\
& x\left(\frac{p-q}{p q}\right)=(q-p)(q+p) \\
& x=\frac{p q(q-p)(q+p)}{(p-q)} \\
& x=\frac{-p q(q+p)}{x}= \\
& \therefore y=p^{2}-\frac{1}{p}(-p q(p+q)-2() \\
& x-\frac{1}{p}\left(-p^{2} q-p q^{2}-2 p\right) \\
&
\end{aligned}
$$

w) Locus of N

$$
\begin{aligned}
& x=-p q(q+p) \\
& y=p^{2}+p q+q^{2}+2 \\
& \text { and } p+q=2 m
\end{aligned}
$$

$$
\therefore x=-2 m p q_{2} * p q=\frac{-x}{2 m}
$$

$$
\operatorname{since}(p+q)^{2}=p^{2}+q^{2}+2 p q
$$

substitute * and **

$$
\begin{aligned}
& (2 m)^{2}=\left(p^{2}+q^{2}+p q+2\right)+p q \\
& (2 m)^{2}=y-\frac{x}{2 m}-2 \\
& 4 m^{2}=y-\frac{x}{2 m}-2 \\
& \therefore y=\frac{x}{2 m}+4 m^{2}+2
\end{aligned}
$$

* N must lie inside the parabola as N must is on inside the parabola

