ABBOTSLEIGH EXTENSION 2 TRIAL 2004

Total marks — 120 Attempt Questions 1-8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

3

QUESTION 1 (15 marks) Use a SEPARATE writing booklet.

- (a) Consider the function $f(x) = \frac{x-1}{x+3}$.
 - (i) Sketch the graph of y = f(x) showing clearly the coordinates of any points of intersection with the x axis or the y axis, and the equations of any asymptotes.
 - (ii) Show that the line y = x is a tangent to the curve y = f(x) and find the coordinates of its point on contact. Draw the tangent line on the graph and show the coordinates of its point of contact.
 - (iii) On separate axes, sketch the graphs of $y = \frac{1}{f(x)}$ and $y = f^{-1}(x)$. In each case, show clearly the coordinates of any points of intersection with the x axis or the y axis, the equations of any asymptotes and the line y = x.
- (b) Find

(i)
$$\int \frac{3x \, dx}{(2x^2 - 1)^4}$$

(ii)
$$\int 2xe^{x}dx$$

(c) Determine the minimum value of
$$f(x) = 4\cos^2 x - 4\sin^2 x$$

M	9	•	Ŀ	E

QUESTION 2 (15 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\int_{-2}^{2} \sqrt{4-x^2} dx$$
 2

(b) If
$$w = 3 + 4i$$
 and $z = 5 - 2i$, find $z(|w| - \overline{w})$.

- (c) For a particle moving on the x axis, the acceleration at time t is given by $\frac{d^2x}{dt^2} = -\tan x$. Initially the particle is at the origin with velocity u > 0.
 - (i) Show $\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$ where v is the velocity of the particle. Hence find v in terms of x.
 - (ii) Explain why motion could only exist for $0 \le x < \frac{\pi}{2}$.
 - (iii) Discuss briefly the value of u for the particle to move from its initial position to near $\frac{\pi}{2}$.
- (d) Given $z = 1 i\sqrt{3}$
 - (i) Write z in modulus-argument form.
 - (ii) Hence find z^k , giving your answer in the form x+iy, where x = x and y are real.
- (e) Sketch the following loci on separate Argand diagrams:

(i)
$$|z-1|=|z+i|$$

(ii)
$$z\overline{z} - i\overline{z} + iz = 0$$

Marks

4

QUESTION 3 (15 marks) Use a SEPARATE writing booklet.

The diagram shows the path of an object launched at an angle of $\theta = \tan^{-1} \frac{1}{\sqrt{3}}$ to the horizontal with an initial speed of 40 ms⁻¹ from O. The acceleration due to gravity is taken as 9.8 ms⁻², and air resistance is ignored.

- (i) Derive expressions for x(t) and y(t) where t is time in seconds.
- (ii) Show that the path of the object is parabolic.
- (iii) Find the angle and speed of the object at 1.5 seconds.
- (iv) Calculate the time and range of the flight.
- (b) If ω and ω^2 are the complex roots of unity, show that $\omega^4 + \omega^3 + 2\omega^2 = \omega^5$.

The shaded area shown on the diagram between the curve $y = 4x - x^2$, the x axis, x = 1 and x = 3, is rotated about the y axis to form a solid. Use the method of cylindrical shells to find the volume of the solid.

- (b) Show that 2+i is a zero of $x^3 11x + 20 = 0$. Hence or otherwise solve $x^3 11x + 20 = 0$.
- (c) The equation $x^3 + 2x 1 = 0$ has roots α, β, γ
 - (i) Find the value of $\sum \alpha$ and the value of $\sum \alpha \beta$.
 - (ii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$.
 - (iii) Find the equation with roots $\frac{1}{\alpha-1}$, $\frac{1}{\beta-1}$, $\frac{1}{\gamma-1}$.

QUESTION 5 (15 marks) Use a SEPARATE writing booklet.

3

- (a) A body P of mass 0.5 kg is suspended from a fixed point O by means of a light rod of length 1 m. The mass is rotated in a horizontal circle at a constant speed and the rod makes an angle of 30° with the downward direction of the vertical using $g = 9.8 \,\text{ms}^2$.
 - (i) Resolve the vertical and horizontal forces at P and show that $\tan \theta = \frac{v^2}{rg}$ where v is the linear velocity of P and r is the radius of the circle.
 -) Find the tension (T) in the rod
 - (iii) Find the linear velocity of P.
 - (iv) Find the period of the motion.

(b) B C

D

Marks

2

QUESTION 5 (continued)

- (c) The velocity of a particle moving in a straight line is given by $v^2 = 4(8 + 2x x^2)$ where x is the displacement in metres from the origin.
 - (i) Show the motion is Simple Harmonic Motion
 - (ii) Determine the centre of the motion
 - (iii) Determine the rest positions of the particle.
- (d) A satellite travels in a circular orbit of radius 20 000 km around the earth, taking 15 hours to complete a revolution. Find the angular velocity of the satellite.

Marks

QUESTION 6 (15 marks) Use a SEPARATE writing booklet.

(a)

A sandstone cap on the corner of a fence is shown above, formed in the shape of two intersecting parabolic cylinders.

On the front face, the equation of the parabola is $z = 4 - x^2$, where x is the horizontal distance measured from the mid-point of the base of the front face, and z is the height.

The shape of a horizontal slice of thickness dz taken at height z is also shown. It is a square with four smaller squares removed, one from each corner.

- (i) Find x in terms of z. (ii) Show that the volume is $V = \int_{0}^{4} \left(4^2 - 4(2 - \sqrt{4 - z})^2\right) dz$.
- (iii) Hence find the volume of stone in the cap.
- (b) A rock of mass 5 kg is propelled vertically upward into the air from the ground with initial speed 12ms^{-1} . The rock is subject to air resistance of $\frac{v^2}{2}$ Newtons in the opposite direction to its velocity, $v \text{ ms}^{-1}$. The rock is also subject to downward gravitational force of 50 Newtons. Thus the equation of motion of the rock until it reaches it highest point is $x = -\frac{v^2}{10} 10$, where x metres is the height of the rock above the ground when its velocity is $v \text{ ms}^{-1}$.
 - (i) Using $x = v \frac{dv}{dx}$, show that $v^2 = 244e^{-\frac{x}{5}} 100$ while the rock is rising.
 - ii) Find the maximum height reached by the rock.
 - (iii) Using $x = \frac{dv}{dt}$, find the time taken by the rock to reach maximum height. 3

		Marks
QUESTION 7 (15 marks)	Use a SEPARATE writing booklet.	

- (a) (i) Show that the tangent to the rectangular hyperbola xy = 4 at the point $T\left(2t, \frac{2}{t}\right)$ has equation $x + t^2y = 4t$.
 - (ii) This tangent cuts the x axis at point Q. Show that the line through Q = 2 which is perpendicular to the langent at T has equation $t^2x y = 4t^3$.
 - (iii) This line through Q cuts the rectangular hyperbola at the points R and S. 2 Show that the midpoint M of RS has coordinates $M(2t, -2t^3)$.
 - (iv) Find the equation of the locus of M as T moves on the rectangular hyperbola, stating any restrictions that may apply.
- (b) Find the roots of the equation $(2+i)z^2 4z + (2-i) = 0$ expressing any complex roots in the form a + bi where a and b are real.
- (c) Given the function $f(x) = 2\cos^{-1}(x^2 1)$
 - (i) State the domain and range of f(x).
 - (ii) Hence make a neat sketch of f(x).

QUESTION 8 (15 marks) Use a SEPARATE writing booklet.

Marks

1

- (a) The line y = x meets a directrix of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) at the point V in the first quadrant. Tangents from V meet the ellipse at P (x_1, y_1) and Q (x_2, y_2) . The eccentricity of the ellipse is e.
 - i) Show this information on a sketch.
 - ii) Given that the chord of contact of tangents from the point (x_0, y_0) to the clipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ has equation $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$, deduce that the equation of PQ is $\frac{x}{ae} + \frac{y}{ac(1-e^2)} = 1$ and verify that PQ is a focal chord of the ellipse.
 - (iii) Show that x_1 and x_2 are roots of the equation $(2 - e^2)x^2 - 2ae(1 - e^2)x + a^2(e^2 - e^4 - 1) = 0$
- (b) (i) Use the substitution $t = \tan \frac{x}{2}$ to show that $\int_{\frac{x}{3}}^{\frac{2x}{3}} \frac{dx}{\sin x} = \ln 3$
 - (ii) Use the substitution $u = \pi x$ to show that $\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{x}{\sin x} dx = \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{\pi x}{\sin x} dx$ 2
 - (iii) Hence find the exact value of $\int_{\frac{1}{3}}^{\frac{2r}{3}} \frac{x}{\sin x} dx$
- (c) Show that the greatest coefficient of $(2+3x)^{12}$ is $\left(\binom{6}{6}\binom{6}{1} + \binom{6}{3}\binom{6}{2} + \binom{6}{3}\binom{6}{3}(2)^{6} \cdot \binom{6}{3}\binom{6}{3}(2)^{7} \right). \text{ You may assume the result}$ $t_{k+1} \ge t_{k} \text{ in } (a+bx)^{n} \text{ is } (n-r+1)b \ge ar .$

End of Paper