Student Number_

ABBOTSLEIGH

AUGUST 2007 YEAR 12 ASSESSMENT 4

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks – 120

- Attempt Questions 1-8.
- All questions are of equal value.
- Answer each question in a new booklet.

Outcomes assessed

HSC course

- E1 appreciates the creativity, power and usefulness of mathematics to solve a broad range of problems
- **E2** chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings
- **E3** uses the relationship between algebraic and geometric representations of complex numbers and of conic sections
- **E4** uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials
- **E5** uses ideas and techniques from calculus to solve problems in mechanics involving resolution of forces and resisted motion
- **E6** combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions
- E7 uses the techniques of slicing and cylindrical shells to determine volumes
- **E8** applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems
- E9 communicates abstract ideas and relationships using appropriate notation and logical argument

Harder applications of the Extension 1 Mathematics course are included in this course. Thus the Outcomes from the Extension 1 Mathematics course are included.

From the Extension 1 Mathematics Course Preliminary course

- **PE1** appreciates the role of mathematics in the solution of practical problems
- **PE2** uses multi-step deductive reasoning in a variety of contexts
- **PE3** solves problems involving inequalities, polynomials, circle geometry and parametric representations
- **PE4** uses the parametric representation together with differentiation to identify geometric properties of parabolas
- **PE5** determines derivatives that require the application of more than one rule of differentiation
- **PE6** makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

HSC course

- **HE1** appreciates interrelationships between ideas drawn from different areas of mathematics
- **HE2** uses inductive reasoning in the construction of proofs
- **HE3** uses a variety of strategies to investigate mathematical models of situations involving projectiles, simple harmonic motion or exponential growth and decay
- **HE4** uses the relationship between functions, inverse functions and their derivatives
- **HE5** applies the chain rule to problems including those involving velocity and acceleration as functions of displacement
- HE6 determines integrals by reduction to a standard form through a given substitution
- **HE7** evaluates mathematical solutions to problems and communicates them in an appropriate form

Total marks – 120 Attempt Questions 1-8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

QUESTION 1 (15 marks)
Use a SEPARATE writing booklet.Marks(a) Find $\int \sin^3 \theta \, d\theta$.2(b) (i) Express $\frac{3x+1}{(x+1)(x^2+1)}$ in the form $\frac{a}{x+1} + \frac{bx+c}{x^2+1}$.2

(ii) Hence find
$$\int \frac{3x+1}{(x+1)(x^2+1)}$$
. 2

(c) Use the substitution $x = 2\sin\theta$, or otherwise, to evaluate $\int_{1}^{\sqrt{3}} \frac{x^2}{\sqrt{4-x^2}} dx$. 3

(d) Find
$$\int x^2 \sqrt{3-x} \, dx$$
. **3**

(e) Evaluate
$$\int_0^1 \tan^{-1}\theta \ d\theta$$
.

The diagram above is a sketch of the function y = f(x).

On separate diagrams sketch:

(i)
$$y = (f(x))^2$$
 2

(ii)
$$y = \sqrt{f(x)}$$
 2

(iii)
$$y = \ln[f(x)]$$
 2

(iv)
$$y^2 = f(x)$$
 2

(b) (i) If
$$f'(x) = \frac{2-x}{x^2}$$
 and $f(1) = 0$, find $f''(x)$ and $f(x)$. 3

- (ii) Explain why the graph of f(x) has only one turning point and find the value of the function at that point, stating whether it is a maximum or a minimum value.
- (iii) Show that f(4) and f(5) have opposite signs and draw a sketch of f(x).

QUESTION 3 (15 marks) Start a new writing booklet.

- (a) Express $(\sqrt{3}+i)^8$ in the form x+iy.
- (b) On an Argand diagram, sketch the region where the inequalities

$$|z| \le 3$$
 and $-\frac{2\pi}{3} \le \arg(z+2) \le \frac{\pi}{6}$ both hold.

(c) Show that
$$\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta} = \sin\theta+i\cos\theta$$
. 3

(d) (i) Express
$$z = \frac{-1+i}{\sqrt{3}+i}$$
 in modulus-argument form.

(ii) Hence evaluate
$$\cos \frac{7\pi}{12}$$
 in surd form.

(e) The Argand diagram below shows the points A and B which represent the complex numbers z_1 and z_2 respectively.

Given that ΔBOA is a right-angled isosceles triangle, show that $(z_1 + z_2)^2 = 2z_1z_2$.

3

3

2

2

QUESTION 4 (15 marks) Start a new writing booklet.

- (a) If z = 1 + i is a root of the equation $z^3 + pz^2 + qz + 6 = 0$ where *p* and *q* are real, find *p* and *q*.
- (b) Show that if the polynomial $f(x) = x^3 + px + q$ has a multiple root, then $4p^3 + 27q^2 = 0$. 3
- (c) The base of a solid is the region in the first quadrant bounded by the curve $y = \sin x$, **3** the *x*-axis and the line $x = \frac{\pi}{2}$.

Find the volume of the solid if every cross-section perpendicular to the base and the x – axis is a square.

- (d) (i) Find the five roots of the equation $z^5 = 1$. Give the roots in modulus-argument form. 2
 - (ii) Show that $z^5 1$ can be factorised in the form :

$$z^{5} - 1 = (z - 1)(z^{2} - 2z\cos\frac{2\pi}{5} + 1)(z^{2} - 2z\cos\frac{4\pi}{5} + 1)$$

(iii) Hence show that
$$\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$$
.

QUESTION 5 (15 marks) Start a new writing booklet.

- (a) The ellipse $(x-1)^2 + \frac{y^2}{4} = 1$ is rotated about the *y*-axis. Use the method of slicing to find the volume of the solid formed by the rotation. **4**
- (b) In the triangle ABC, AD is the perpendicular from A to BC. E is any point on AD and the circle drawn with AE as diameter cuts AC at F and AB at G.

Prove B, G, F and C are concyclic.

(c) The diagram below shows the part of the circle $x^2 + y^2 = a^2$ in the first quadrant.

(i) If the horizontal line *LM* through L(0,b), where 0 < b < a, divides the area between the curve and the coordinates axes into two equal parts, show that

$$\sin^{-1}\frac{b}{a} + \frac{b\sqrt{a^2 - b^2}}{a^2} = \frac{\pi}{4}.$$

- (ii) If the radius of the circle is 1 unit, show that *b* can be found by solving the equation $\sin 2\theta = \frac{\pi}{2} 2\theta$, where $\theta = \sin^{-1}b$.
- (iii) Without attempting to solve the equation, how could θ (and hence b) be approximated? 1

3

Marks

QUESTION 6 (15 marks) Start a new writing booklet.

- (i) Find its eccentricity, coordinates of its foci, S and S', and the equations of its directrices. 3
- (ii) Prove that the sum of the distances SP and S'P is independent of the position of P. 2
- (iii) Show that the equation of the tangent to the ellipse at *P* is $\frac{xx_1}{4} + \frac{yy_1}{3} = 1$.
- (iv) The tangent at $P(x_1, y_1)$ meets the directrix at T. Prove that angle PST is a right angle. **3**
- (b) If a + b + c = 1,
 - (i) Prove $a^2 + b^2 \ge 2ab$. **1**

(ii) Prove
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$$
. 2

(iii) Prove $(1-a)(1-b)(1-c) \ge 8abc$.

QUESTION 7 (15 marks) Start a new writing booklet.

(a) The point $T(ct, \frac{c}{t})$ lies on the hyperbola $xy = c^2$. The tangent at *T* meets the *x*-axis at *P* and the *y*-axis at *Q*.

The normal at T meets the line y = x at R.

You may assume that the tangent at *T* has equation $x + t^2 y = 2ct$.

- (i) Find the coordinates of P and Q. 2
- (ii) Find the equation of the normal at T.

(iii) Show that the x-coordinate of R is
$$x = \frac{c}{t}(t^2+1)$$
.

(iv) Prove that ΔPQR is isosceles.

(b) (i) If
$$I_n = \int \frac{dx}{(x^2 + 1)^n}$$
 prove that $I_n = \frac{1}{2(n-1)} \left[\frac{x}{(x^2 + 1)^{n-1}} + (2n-3)I_{n-1} \right].$ 4

(ii) Hence evaluate
$$\int_{0}^{1} \frac{dx}{(x^2+1)^2}$$
. 2

9

2

QUESTION 8 (15 marks) Start a new writing booklet.

- (a) A plane of mass *M* kg on landing, experiences a variable resistive force due to air resistance of magnitude Bv^2 newtons, where *v* is the speed of the plane. That is, $M \ddot{x} = -Bv^2$.
 - (i) Show that the distance (D_1) travelled in slowing the plane from speed V to speed U under the effect of air resistance only, is given by:

$$D_1 = \frac{M}{B} \ln(\frac{V}{U})$$

After the brakes are applied, the plane experiences a constant resistive force of *A* Newtons (due to brakes) as well as a variable resistive force, Bv^2 . That is, $M\ddot{x} = -(A + Bv^2)$.

(ii) After the brakes are applied when the plane is travelling at speed U, show that the distance D_2 required to come to rest is given by:

$$D_2 = \frac{M}{2B} \ln \left[1 + \frac{B}{A} U^2 \right].$$

- (iii) Use the above information to estimate the total stopping distance after landing, for a 100 tonne plane if it slows from 90 m/s^2 to 60 m/s^2 under a resistive force of $125 v^2$ Newtons and is finally brought to rest with the assistance of a constant braking force of magnitude 75 000 Newtons.
- (b)

The diagram above represents the curve $y = n \sin \frac{\pi x}{2n}$, $0 \le x \le 2n$, where *n* is any integer $n \ge 2$. The points O(0,0), A(n,n) and B(2n,0) lie on this curve.

(i) By considering the areas of the lower rectangles of width 1 from x = 0 to x = n, prove that

$$\sin\frac{\pi}{2n} + \sin\frac{2\pi}{2n} + \sin\frac{3\pi}{2n} + \dots + \sin\frac{\pi(n-1)}{2n} < \frac{2n}{\pi}.$$

(ii) Hence or otherwise, explain why
$$2n \sum_{r=1}^{n-1} \sin \frac{\pi r}{2n} < \frac{\pi n^2}{2}$$
.

END OF PAPER

4

d)

ŧ

 $\sqrt{4-x^2} = \sqrt{4-4sin^2}\Theta$ x=2sin O dhc =20050 d0 = 20050 $\lambda = \sqrt{3} \quad \sin \theta = \frac{\sqrt{3}}{2} , \quad \theta = \frac{\pi}{3}$ $\lambda = 1 \quad \sin \theta = \frac{1}{2} , \quad \theta = \frac{\pi}{6}$ $\therefore I = \int_{\eta_{2}}^{\eta_{3}} \frac{4 \sin^{2} \theta \times 2 \cos \theta \, d\theta}{2 \cos \theta}$ $\frac{7}{4} = \frac{2}{3} \frac{7}{7} + \sin^2 \theta \, d\theta = \frac{2\pi}{3} - \sin^2 \theta \, d\theta = \frac{2\pi}{3} + \sin^2$

$$I = \int x^{2} \sqrt{3-x} \, dy$$

$$u = 3-x$$

$$du = -oh$$

$$\therefore I = \int (3-u)^{2} \sqrt{u} \times -du$$

$$= \int (9-6u+u^{2}) \times -\sqrt{u} \, du$$

$$= \int (-9\sqrt{u} + 6u^{3/2} - u^{5/2}) \, du$$

$$= -9u^{3/2} \times \frac{2}{3} + 6u^{5/2} \times \frac{2}{5} - 4u^{7/2} \times \frac{2}{7} + C$$

$$= -6 (3-2c)^{3/2} + \frac{12}{5} (3-2c)^{7/2} + C$$

$$I = \int_{0}^{1} \tan^{-1} x \, dx$$

let $U = \tan^{-1} x \, dV = dx$
 $du = \frac{1}{1+x^{2}} \, dx \, V = x$

$$\vec{I} = \left[x \tan^{2} x \right]_{0}^{1} - \int_{0}^{1} x x \frac{1}{1 + x^{2}} dx$$

$$= \tan^{2} 1 - 0 - \left[\frac{1}{2} \ln (1 + x^{3}) \right]_{0}^{1}$$

$$= \frac{\pi}{4} - \frac{1}{2} \ln 2 + \frac{1}{2} \ln 1$$

$$= \frac{\pi}{4} - \frac{1}{2} \ln 2 + \frac{1}{2} \ln 1$$

$$=\frac{\pi}{4}-\frac{1}{2}\ln 2$$

$$(i) + (\pi) = \frac{1}{\pi^2} = \frac{1}{\pi^2} - \frac{1}{2\pi} - \frac{1}{$$

$$f''(x) = -4x^{-3} + 3x^{-2}$$
$$= -\frac{4}{x^3} + \frac{1}{x^2}$$

(i) Stationary points at
$$f(x) = 0$$

 $\therefore at 2 - x = 0 = 3x = 2$
 $at x = 2, y = -1 - \ln 2 + 2$
 $= 1 - \ln 2$
 $f''(x) = -\frac{4}{8} + \frac{1}{4}$
 $= -\frac{4}{4} < 0 \therefore max + p at$
 $(2, 1 - \ln 2)$
(111) $f(4) = 0.1137$
 $f(5) = -0.009$

$$\frac{QUESTION 3}{a} (\sqrt{3} + i)^{8} = (2 cis \frac{\pi}{6})^{8} \frac{2}{\sqrt{16}} \frac{1}{\sqrt{5}}$$

$$= 2^{8} cis \frac{8\pi}{6}$$

$$= 256 cis (-\frac{2\pi}{3})$$

$$= 256 (cos (-\frac{2\pi}{3}) + i sin (-\frac{2\pi}{3}))^{3}$$

$$= 256 (cos (-\frac{2\pi}{3}) + i sin (-\frac{2\pi}{3}))^{3}$$

$$= 256 (cos (-\frac{2\pi}{3}) - i sin (\frac{2\pi}{3}))^{3}$$

$$= 256 (-\frac{1}{2} - i \times \frac{\sqrt{3}}{2})$$

$$= -128 - 128 \sqrt{3}i$$

り

C) LHS = $\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta} \times \frac{1+\sin\theta+i\cos\theta}{1+\sin\theta+i\cos\theta}$ = $((1+\sin\theta)^2 + 2i\cos\theta((1+\sin\theta)) + (i\cos\theta)^2)$

$$((tsin\theta)^2 + (cos \theta)^2$$

 $= \frac{1+2\sin\theta + \sin^2\theta + 2i\cos\theta + 2i\cos\theta\sin\theta - \cos^2\theta}{1+2\sin^2\theta + \sin^2\theta + \cos^2\theta}$

$$= \frac{2 \sin^2 \theta + 2 \sin \theta + 2 i \cos \theta \sin \theta + 2 i \cos \theta}{2 + 2 \sin \theta}$$
$$= \frac{2 \sin \theta (\sin \theta + i)}{2 (1 + \sin \theta)} + 2 i \cos \theta (\sin \theta + i)}{2 (1 + \sin \theta)}$$

$$= 2(\sin\theta + i\cos\theta)(\sin\theta + i)$$

$$= 2(1+\sin\theta)$$

= Sin O+icosO = RHS

$$d = \frac{-1+i}{\sqrt{3}+i}$$

$$= \frac{\sqrt{2} \operatorname{cis}\left(\frac{3\pi}{4}\right)}{2\operatorname{cis}\overline{7}}$$

$$= \frac{\sqrt{2} \operatorname{cis}\left(\frac{3\pi}{4}\right)}{\sqrt{2}\operatorname{cis}\overline{7}}$$

$$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{\sqrt{2}} \operatorname{cis}\left(\frac{7\pi}{12}\right)$$

$$= \frac{1}{\sqrt{5}}\operatorname{cis}\frac{7\pi}{12}$$

$$d) (1) \frac{-1+i}{\sqrt{3}+i} \times \frac{\sqrt{3}-i}{\sqrt{3}-i} = \frac{-\sqrt{3}+i+i\sqrt{3}+1}{3+1}$$
$$= \frac{1-\sqrt{3}+i(1+\sqrt{3})}{4}$$
$$\frac{1-\sqrt{3}}{4} + \frac{i(1+\sqrt{3})}{4} = \frac{1}{\sqrt{2}} \left(\cos^{2}\frac{\pi}{12} + i\sin^{2}\frac{\pi}{12}\right)$$
$$\frac{1-\sqrt{3}}{4} = \frac{1}{\sqrt{2}} \cos\frac{\pi}{12}$$
$$\cos\frac{\pi}{12} = \frac{\sqrt{2}-\sqrt{6}}{4}$$

QUESTION 4
a) If
$$z = 1+i$$
 is a root of $P(z)$
then $z = 1-i$ is also a root.
 $z^{3} + pz^{2} + qz + 6 = (z^{-1-i})(z^{-1+i})(z^{-a})$
 $= (z^{2}-2z+1+i)(z^{-a})$
 $= (z^{2}-2z+2)(z^{-a})$
equating constant terms, $a = -3$
 $z = P(z) = (z^{2}-2z+2)(z+3)$
 $= z^{3}+z^{2}-4z+6$
 $-p = 1$ and $q = -4$

b)
$$f(x) = x^3 + px + q$$

 $f'(x) = 3x^2 + p$

.

ļ

If f(x) has a multiple root then f'()=0

$$3x^{2} + p = 0$$

$$x^{2} = -\frac{P}{3}$$

$$\therefore f(x) = x(x^{2} + p) + q = 0$$

$$x(-\frac{P}{3} + p) + q = 0$$

$$x(-\frac{P}{3} + p) + q = 0$$

$$x(-\frac{P}{3} + p) + q = 0$$

$$yc = -\frac{3q}{2p}$$

$$\therefore f(x) = (-\frac{3q}{2p})^{3} + P(-\frac{3q}{2p}) + q = 0$$

$$-\frac{27q^{3}}{8p^{3}} - \frac{3q}{2} + q = 0$$

$$-27q^{3} - 12p^{3}q + 8p^{3}q = 0$$

$$4p^{3} + 27q^{2} = 0$$

c)
$$(x,y)$$
 $y=\sin x$
 δx $\pi/2$
Area of cross

Area of cross-section = since

- Volume of cross-section = sin 2x Sxc

Vol. of solid =
$$\lim_{\substack{S_{22} \to 0}} \sum_{\chi=0}^{\pi/2} \sin^{2} \chi \cdot S\chi$$
$$= \int_{0}^{\pi/2} \sin^{2} \chi \cdot d\chi$$
$$= \frac{1}{2} \int_{0}^{\pi/2} (1 - \cos 2\pi) d\chi$$
$$= \frac{1}{2} \left[\chi - \frac{\sin 2\pi}{2} \right]_{0}^{\pi/2}$$
$$= \frac{1}{2} \left(\frac{\pi}{2} - \frac{\sin \pi}{2} \right) - \frac{1}{2} \left(0 - \frac{\sin 0}{2} \right)$$
$$= \frac{\pi}{4} \text{ cubic units}$$

d) (i) Let
$$z = \cos \theta + i \sin \theta$$

 $\therefore z^{3} = \cos 5\theta + i \sin 5\theta = 1$
 $5\theta = 0, 2\pi, 4\pi, 6\pi, 8\pi$
 $\theta = 0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}$
 \therefore Roots are $z_{1} = \cos \theta + i \sin \theta$ (=1)
 $z_{2} = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$
 $z_{3} = \cos \frac{4\pi}{5} + i \sin \frac{4\pi}{5}$
 $z_{4} = \cos(\frac{-2\pi}{5}) + i \sin(\frac{-2\pi}{5})$
 $z_{5} = \cos(-\frac{4\pi}{5}) + i \sin(-\frac{4\pi}{5})$

$$\begin{array}{l} (1) \ 3^{2}-1 = (3-3_{1})(3-3_{2})(3-3_{3})(3-3_{4})(3-3_{5}) \\ = (3^{-1})(3^{2}-3(3_{2}^{+}\overline{3}_{2})+3_{2}\overline{3}_{2})(3^{-}3(3_{3}^{+}\overline{3}_{3})+3_{3}\overline{3}_{3} \end{array}$$

$$\begin{aligned} \mathcal{J}_{2} + \overline{\mathcal{J}}_{2} &= \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5} + \cos \frac{2\pi}{5} - i \sin \frac{2\pi}{5} \\ &= 2 \cos \frac{2\pi}{5} \\ \mathcal{J}_{2} \overline{\mathcal{J}} &= (\cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5})(\cos \frac{2\pi}{5} - i \sin \frac{2\pi}{5}) \\ &= \cos^{2} \frac{2\pi}{5} + \sin^{2} \frac{2\pi}{5} \\ &= i \end{aligned}$$

(11) Sum of roots
$$= -\frac{b}{a}$$

 $\therefore 1 + 2\cos\frac{2\pi}{5} + 2\cos\frac{4\pi}{5} = 0$
 $\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} = -\frac{1}{2}$

= sector + triangle

$$\frac{1}{2}a^{2}\theta + \frac{1}{2}b\sqrt{a^{2}-b^{2}} = \frac{\pi a^{2}}{8}$$

$$a^{2}\sin^{1}\frac{b}{a} + b\sqrt{a^{2}-b^{2}} = \frac{\pi a^{2}}{4}$$

$$\sin^{1}\frac{b}{a} + \frac{b}{a^{2}}\sqrt{a^{2}-b^{2}} = \frac{\pi}{4}$$

(1) If
$$a = 1$$
, then
 $\sin^{-1}b + b\sqrt{1-b^2} = \frac{\pi}{4}$
 $\theta + \sin\theta\sqrt{1-\sin^2\theta} = \frac{\pi}{4}$
 $\theta + \sin\theta \times \cos\theta = \frac{\pi}{4}$
 $\theta + \frac{1}{2}\sin 2\theta = \frac{\pi}{4}$
 $\therefore \sin 2\theta = \frac{\pi}{2} - 2\theta$

(111) Could use Newton's Method to solve this equation.

(or halving the interval method OR graph $y = 5in 20 + y = \frac{\pi}{2} - 20$ and find their points of intersection).

ZAGF = ZAEF (2^s in same segment)
EDFC is a cyclic quad with diameter
EC since < EDC = 90°</p>
: < AEF = < DCF (ext. < of a cyclic quad.)</p>
: < ZAGF = < DCF</p>
: GBFC is a cyclic quad Since its
ext. < is equal to the opposite interior <.</p>

QUESTION 6
a)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$

 $a=2, b=\sqrt{3}$
(i) $b^2 = a^2(1-e^2)$
 $3 = 4(1-e^2)$
 $e = \frac{1}{2}$
Foci at $(\pm ae, o) = (\pm 1, o)$
Directrices $x = \pm \frac{a}{2}$
 $= \pm \frac{2}{\frac{1}{2}}$
 $= \pm \frac{2}{\frac{1}{2}}$

(1) P(x,y,)

By definition, SP=e×PM

- SP=exPM S'P = ex PM' SP+S'P = e(PM+PM')= 1 (MM') = 12×8 = 4 which is accustent

SP+SP' is independent of the position of P.

$$(11) \frac{2\pi}{4} + \frac{2y}{3} \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-3\pi}{4y}$$

A+P, m of tangent = $\frac{-3\pi}{4y}$.
:. Equation for tangent is $y - y_{1} = \frac{-3\pi}{4y_{1}}(\pi - \pi_{1})$
 $4yy_{1} - 4y_{1}^{2} = -3\pi \times 1 + 3\pi^{2}$
 $3\pi \times 1 + 4yy_{1} = 3\pi^{2} + 4y_{1}^{2}$
 $\frac{\pi\pi}{4} + \frac{3y_{1}}{3} = \frac{\pi^{2}}{4} + \frac{y_{1}^{2}}{3}$
:. $\frac{\pi\pi}{4} + \frac{3y_{1}}{3} = 1$

(N) At T,
$$x = 4$$
 $\therefore x_{1} + \frac{yy_{1}}{3} = 1$
 $\therefore T(4, \frac{3}{y_{1}}(1-x_{1}))$, $S(1,0)$
If $< PST$ is a right $<$, $m_{PS} \times m_{ST} = 1$
 $LHS = \frac{y_{1}}{x_{1}-1} \times \frac{\frac{3}{y_{1}}(1-x_{1})}{\frac{1}{y_{1}-1}}$
 $= \frac{y_{1}}{x_{1}-1} \times \frac{\frac{3}{y_{1}}(x_{1}-1)}{\frac{1}{y_{1}-1}}$
 $= \frac{y_{1}}{x_{1}-1} \times \frac{\frac{3}{y_{1}}(x_{1}-1)}{\frac{1}{y_{1}-1}}$
 $= \frac{y_{1}}{2RHS}$
 $\therefore < PST$ is a right angle
2) (i) $(a-b)^{2} \ge 0$
 $a^{2} - 2ab + b^{2} \ge 0$
 $\therefore a^{2} + b^{2} \ge 2ab$
(ii) $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$
 $= \frac{ab + ac + bc}{abc}$
 $= \frac{(ab + ac + bc)}{abc}$
 $= \frac{a^{2}b + a^{2}c + abc + ab^{2} + abc + b^{2}c + abc + ac^{2} + bc^{2}}{abc}$
 $= \frac{3abc + c(a^{2} + b^{2}) + a(b^{2} + c^{2}) + b(a^{2} + c^{2})}{abc}$
 $\ge \frac{3abc + c \times 2ab + a \times 2bc + b \times 2ac}{abc}$ from(i)
 $= \frac{q_{abc}}{abc}$
 $= 9$ $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$
hil) (1-a)(1-b)(1-c)
 $= (b+c)(a^{2}+ab + ac + bc)$

6)

$$(111) (1-a)(1-b)(1-c)$$

= (b+c)(a+c)(a+b) since a+b+c=1
= (b+c)(a²+ab+ac+bc)
= a²b+ab²+abc+b²c+a²c+abc+ac²+bc²
= b(a²+c²)+a(b²+c²)+c(b²+a²)+2abc
> b × 2ac + a × 2bc + c × 2ab + 2abc
= 8 abc

9)
$$xy = c^{2} T(ct, \frac{c}{t})$$

tangent at T: $x + t^{2}y = 2ct$
(1) $P(2ct, o)$
 $Q(0, \frac{3c}{t})$
(1) at T, $m = \frac{-t^{2}}{t^{2}} \cdot m_{Norm} = t^{2}$
 $\therefore eq^{1}n \text{ of normal :}$
 $y = \frac{c}{t} = t^{2}(x - ct)$
 $y = t^{2}x - ct^{3} + \frac{c}{t}$
(11) at R, $y = x$
 $\therefore x = t^{2}x - ct^{3} + \frac{c}{t}$
(11) at R, $y = x$
 $\therefore x = t^{2}x - ct^{3} + \frac{c}{t}$
 $x(t^{2}-1) = c(t^{3} - \frac{1}{t})$
 $x(t^{2}-1) = \frac{c}{t}(t^{4}-1)$
 $7c = \frac{c}{t}(t^{4}-1)$
 $7c = \frac{c}{t}(t^{2}+1)$
 $\therefore x = \frac{c}{t}(t^{2}+1)$
 $f = \Delta \text{ oTR 1s isosceles},$
 $OT = TR$
 $LHs = \sqrt{c^{2}(t^{2} + \frac{1}{t^{2}})}$
 $RHS = \sqrt{(ct - \frac{c}{t}(t^{2}+1))^{2} + (\frac{c}{t} - \frac{c}{t}(t^{2}+1))^{2}}$
 $= \sqrt{c^{2}((t-t+\frac{1}{t}))^{2} + (c^{2}(\frac{1}{t}-t-\frac{1}{t}))^{2}}$
 $= LHS$
 $\Delta OTR is isosceles$

• · · ·

b)
$$I_{n} = \int \frac{dx}{(x^{2}+1)^{n}}$$
 let $U = (x^{2}+1)^{-n}$
(1) $dU = -n \times 2x (x^{2}+1)^{-n-1} dx$
 $U = dx$
 $\therefore V = 2x$
 $\therefore I_{n} = 2x (x^{2}+1)^{-n} - \int x(x - nx) 2x (x^{2}+1)^{-n-1} dx$
 $= \frac{x}{(x^{2}+1)^{n}} + 2n \int \frac{2x^{2}}{(x^{2}+1)^{n+1}} dx$
 $= \frac{x}{(x^{2}+1)^{n}} + 2n \int \frac{2x^{2}}{(x^{2}+1)^{n+1}} dx$
 $= \frac{x}{(x^{2}+1)^{n}} + 2n \int \frac{2x^{2}}{(x^{2}+1)^{n+1}} dx$
 $= \frac{x}{(x^{2}+1)^{n}} + 2n \int \frac{dx}{(x^{2}+1)^{n+1}} dx$
 $= \frac{x}{(x^{2}+1)^{n}} + 2n \int \frac{dx}{(x^{2}+1)^{n+1}} dx$
 $= \frac{x}{(x^{2}+1)^{n}} + 2n \int \frac{dx}{(x^{2}+1)^{n}} - 2n \int \frac{dn}{(x^{2}+1)^{n+1}}$
 $\therefore I_{n} = \frac{2x}{(x^{2}+1)^{n}} + 2n \prod_{n} - 2n \prod_{n+1}$
 $2n \prod_{n+1} = \prod_{n} (2n-1) + \frac{x}{(x^{2}+1)^{n}}$
putting $n+1 = n$, $\Rightarrow n = n-1$
 $2(n-1) \prod_{n} = \prod_{n-1} (2(n-1)-1) + \frac{x}{(x^{2}+1)^{n-1}}$
 $I_{n} = \frac{1}{2(n-1)} \left[\frac{x}{(x^{2}+1)^{n}} + (2n-3) \prod_{n-1} \right]$
(1) $\int_{0}^{1} \frac{dx}{(x^{2}+1)^{2}} = I_{2}$
 $\therefore I_{2} = \frac{1}{2} \left[(\frac{2x}{(x^{2}+1)})_{0}^{1} + 1 \times \prod_{n} \right]$
 $= \frac{1}{4} + \left[\frac{1}{2} + an^{-1}x \right]_{0}^{1}$
 $= \frac{1}{4} + \frac{1}{2} \times \left[4an^{-1} - 4an^{-1}0 \right]$
 $= \frac{1}{4} + \frac{1}{2} \times \left[4an^{-1} - 4an^{-1}0 \right]$
 $= \frac{1}{4} + \frac{1}{2} \times \frac{\pi}{4}$
 $= \frac{\pi+2}{8}$

a) (1)
$$M \dot{x} = -Bv^{2}$$

 $v \frac{dv}{dt} = -\frac{Bv^{2}}{M}$
 $\frac{dw}{dt} = -\frac{Bv}{M}$
 $\frac{dw}{dt} = -\frac{Bv}{M}$
 $\frac{dw}{dt} = -\frac{m}{Bv}$
 $\frac{dw}{dt} = -\frac{m}{Bv}$
 $x = \int_{v} -\frac{m}{Bv} dv$
 $x = -\frac{m}{B} \ln (u + \frac{m}{B} \ln v)$
 $0, = \frac{M}{B} \ln (u + \frac{m}{B} \ln v)$
 $0, = \frac{M}{B} \ln (\frac{V}{u})$
(1) $M \dot{x} = -(A + Bv^{2})$
 $v \frac{dv}{dv} = -\frac{(A + Bv^{2})}{Mv}$
 $\frac{dv}{dv} = -\frac{(A + Bv^{2})}{Mv}$
 $\frac{dw}{dv} = -\frac{Mv}{A + Bv^{2}} dv$
 $\frac{dw}{dv} = -\frac{Mv}{A + Bv^{2}} dv$
 $\frac{w}{A + Bv^{2}} dv$
 $\frac{w}{A + Bv^{2}} dv$
 $\frac{w}{A + Bv^{2}} \ln (A + Bu^{2})$
 $\frac{w}{2B} \ln (A + Bu^{2})$
 $\frac{w}{2B} \ln (A + Bu^{2})$
 $D_{x} = \frac{M}{2B} \ln (l + \frac{B}{A} U^{2})$

b) (i) By adding area of rectangles,
A=drea under curve

$$\frac{1}{2}n\sin\frac{\pi}{2n} + n\sin\frac{2\pi}{2n} + n\sin\frac{3\pi}{2n} + ... + n\sin\frac{(n-1)\pi}{2n}$$
By integrating to find the area under curve,

$$A_{2} = \int_{0}^{n} n\sin\frac{\pi}{2n} dx$$

$$= \left[\frac{n \times 2n}{\pi} \times -\cos\frac{\pi}{2n} + \frac{2n^{2}}{\pi} \cos 0 \right]$$

$$= -\frac{2n^{2}}{\pi} \cos \frac{-n\pi}{2n} + \frac{2n^{2}}{\pi} \cos 0$$

$$= -\frac{2n^{2}}{\pi} \cos \frac{\pi}{2n} + \frac{2n^{2}}{\pi} \cos 0$$

$$= \frac{2n^{2}}{\pi} (0+1)$$

$$= \frac{2n^{2}}{\pi} (0+1)$$

$$= \frac{2n^{2}}{\pi} (0+1)$$

$$= \sin\frac{\pi}{2n} + \sin\frac{2\pi}{2n} + \sin\frac{3\pi}{2n} + ... + \sin\frac{\pi(n-1)}{2n} \right] < \frac{2n^{2}}{\pi}$$
(") From (i) $\sum_{r=1}^{n-1} \sin\frac{n\pi}{2n} < \frac{2n}{\pi} < \frac{2n}{\pi}$

$$\int_{r=1}^{n-1} \sin\frac{n\pi}{2n} < \frac{4n\pi}{\pi} = \frac{4\pi\pi^{2}}{\pi^{2}}$$

$$\int_{r=1}^{n} \sin\frac{n\pi}{2n} < \frac{\pi}{2n} < \frac{\pi}{\pi} = \frac{\pi^{2}}{\pi^{2}}$$

$$\int_{r=1}^{n-1} \sin\frac{n\pi}{2n} < \frac{\pi}{\pi} = \frac{\pi^{2}}{\pi^{2}}$$

$$\int_{r=1}^{n-1} \sin\frac{n\pi}{2n} < \frac{\pi}{\pi} = \frac{\pi^{2}}{\pi^{2}}$$

$$\int_{r=1}^{n-1} \sin\frac{n\pi}{2n} < \frac{\pi}{\pi} = \frac{\pi^{2}}{\pi^{2}}$$

(iii) M=100000 kg, V = 90, U=60 $Bv^2 = 125v^2$: B = 125, A=75000 : total distance = $D_1 + D_2$ $= \frac{100000}{125} \ln \left(\frac{90}{60}\right) + \frac{100000}{250} \ln \left(1 + \frac{125}{75000} \times 60^2\right)$ $= 800 \ln 1.5 + 400 \ln (.7)$ = 1102.736... $\stackrel{\circ}{=} 1103 \text{ metres}.$

.