\qquad

ABBOTSLEIGH

AUGUST 2008

YEAR 12
ASSESSMENT 4
HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time -3 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks - 120

- Attempt Questions 1-8.
- All questions are of equal value.
- Answer each question in a new booklet.

Outcomes assessed

HSC course

E1 appreciates the creativity, power and usefulness of mathematics to solve a broad range of problems
E2 chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings
E3 uses the relationship between algebraic and geometric representations of complex numbers and of conic sections
E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials
E5 uses ideas and techniques from calculus to solve problems in mechanics involving resolution of forces and resisted motion
E6 combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions
E7 uses the techniques of slicing and cylindrical shells to determine volumes
E8 applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems
E9 communicates abstract ideas and relationships using appropriate notation and logical argument

Harder applications of the Extension 1 Mathematics course are included in this course. Thus the Outcomes from the Extension 1 Mathematics course are included.

From the Extension 1 Mathematics Course Preliminary course

PE1 appreciates the role of mathematics in the solution of practical problems
PE2 uses multi-step deductive reasoning in a variety of contexts
PE3 solves problems involving inequalities, polynomials, circle geometry and parametric representations
PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas
PE5 determines derivatives that require the application of more than one rule of differentiation
PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations
HSC course
HE1 appreciates interrelationships between ideas drawn from different areas of mathematics
HE2 uses inductive reasoning in the construction of proofs
HE3 uses a variety of strategies to investigate mathematical models of situations involving projectiles, simple harmonic motion or exponential growth and decay
HE4 uses the relationship between functions, inverse functions and their derivatives
HE5 applies the chain rule to problems including those involving velocity and acceleration as functions of displacement
HE6 determines integrals by reduction to a standard form through a given substitution
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

Total marks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Marks
QUESTION 1 (15 marks)
Use a SEPARATE writing booklet.
(a) Using the table of standard integrals find $\int \frac{d x}{\sqrt{x^{2}+7}}$
(b) By completing the square find $\int \frac{d x}{\sqrt{4 x-x^{2}}}$
(c) Find $\int \frac{1-2 x}{\sqrt{1-x^{2}}} d x, \quad|x|<1$.
(d) Find $\int \cos ^{3} x d x$.
(e) (i) Use the substitution $x=\frac{2}{3} \sin \theta$ to prove that $\int_{0}^{\frac{2}{3}} \sqrt{4-9 x^{2}} d x=\frac{\pi}{3}$.
(ii) Hence or otherwise, find the area enclosed by the ellipse $\frac{9 x^{2}}{4}+\frac{y^{2}}{4}=1$.
(f) Evaluate $\int_{0}^{1} \tan ^{-1} x d x$.

QUESTION 2 (15 marks)
 Start a new writing booklet.

(a) Given $z_{1}=3-i$ and $z_{2}=2+5 i$, express the following in the form $a+i b$ where a and b are real:
(i) $\left(\bar{z}_{1}\right)^{2}$
(ii) $\frac{z_{1}}{z_{2}}$
(iii) $\left|z_{1} z_{2}\right|$
(b) (i) Sketch the region $|z+1+i| \leq 1$.
(ii) Find the maximum and minimum values of $|z|$.
(c) (i) The complex number $z=x+i y$ is represented by the point P. If $\frac{z-1}{z-2 i}$ is purely imaginary, show that the locus of P is the circle $x^{2}-x+y^{2}-2 y=0$.
(ii) Sketch this locus showing all important features.

QUESTION 3 (15 marks)
Start a new writing booklet.
(a) Sketch on separate diagrams, the graphs of:
(i) $y=(x-1)^{2}(x+2)$
(ii) $y^{2}=(x-1)^{2}(x+2)$
(iii) $y=\frac{1}{(x-1)^{2}(x+2)}$
(b) Sketch $y=\log _{e}(x+1)^{2}$
(c) Sketch the graph of the function $y=\frac{x^{2}-x+1}{(x-1)^{2}}$, clearly showing the coordinates of any points of intersection with the x and y axes, the coordinates of any turning points and the equations of any asymptotes. There is no need to investigate points of inflexion.
(d) If α, β and γ are the roots of $x^{3}+2 x^{2}-3 x-4=0$,
(i) Evaluate $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(ii) Form the equation whose roots are $\beta \gamma, \alpha \gamma$ and $\alpha \beta$.

Start a new writing booklet.
(a) The foci of a hyperbola of eccentricity $\frac{13}{12}$ are the points $(\pm 13,0)$.
(i) Show that the equation of the hyperbola is $\frac{x^{2}}{144}-\frac{y^{2}}{25}=1$.
(ii) Find the equation of the tangent to the hyperbola at the point $(12 \sec \theta, 5 \tan \theta)$.
(b) (i) Show that the condition for the line $y=m x+c$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is that $c^{2}=a^{2} m^{2}+b^{2}$.
(ii) Show that the pair of tangents drawn from the point $(3,4)$ to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ are at right angles to each other.
(c) (i) Verify that $\alpha=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$ is a root of $z^{5}+z-1=0$.
(ii) Find the monic cubic equation with real coefficients whose roots are also the roots of $z^{5}+z-1=0$ but do not include α.

QUESTION 5 (15 marks)

Start a new writing booklet.
(a) The base of a certain solid is a circle with radius 2 . Each parallel cross-section of the solid is a square. Find the volume of the solid.
(b) The area enclosed by the curve $y=(x-2)^{2}$ and the line $y=4$ is rotated around the y-axis. Use the method of cylindrical shells to find the volume formed.

(c) (i) Show that the tangent to the rectangular hyperbola $x y=4$ at the point $T\left(2 t, \frac{2}{t}\right)$ has equation $x+t^{2} y=4 t$.
(ii) This tangent cuts the x-axis at the point Q. Find the coordinates of Q.
(iii) Show that the line through Q which is perpendicular to the tangent at T has equation $t^{2} x-y=4 t^{3}$.
(iv) This line through Q cuts the rectangular hyperbola at the points R and S. Show that the midpoint of $R S$ has coordinates $M\left(2 t,-2 t^{3}\right)$.
(v) Find the equation of the locus of M as T moves on the rectangular hyperbola, stating any restrictions that may apply.

QUESTION 6 (15 marks)
 Start a new writing booklet.

(a) $A B C D$ is a cyclic quadrilateral. $D A$ produced and $C B$ produced meet at $P . T$ is a point on the tangent at $D . P T$ cuts $C A$ and $C D$ at E and F respectively. $T F=T D$.

(i) Copy the diagram and show that $A E F D$ is a cyclic quadrilateral.
(ii) Show that $A E B P$ is a cyclic quadrilateral.
(b) (i) If $I_{n}=\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{n}}$ prove that $2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}$.
(ii) Hence evaluate $\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{3}}$.
(c) (i) Use the substitution $x=a-y$ where a is a constant to prove that

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

(ii) Hence show that $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\frac{\pi^{2}}{4}$

QUESTION 7 (15 marks)
 Start a new writing booklet.

(a) The functions $S(x)$ and $C(x)$ are defined by the formulae:

$$
S(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right) \text { and } C(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right) .
$$

(i) Verify that $S^{\prime}(x)=C(x)$.
(ii) Show that $S(x)$ is an increasing function for all real values of x.
(iii) Prove that $[C(x)]^{2}=1+[S(x)]^{2}$.
(iv) $\quad S(x)$ has an inverse function $S^{-1}(x)$ for all values of x. Briefly justify this statement.
(v) Let $y=S^{-1}(x)$. Prove $\frac{d y}{d x}=\frac{1}{\sqrt{1+x^{2}}}$.
(vi) Hence, or otherwise, show that $S^{-1}(x)=\log _{e}\left(x+\sqrt{1+x^{2}}\right)$.
(b) (i) Using the remainder theorem, or otherwise, show that $x-a-b-c$ is a factor of $P(x)=(x-a)(x-b)(x-c)-(b+c)(c+a)(a+b)$.
(ii) Hence, or otherwise, solve the equation $(x-2)(x+3)(x+1)-4=0$.
(c) In $\triangle A B C$ the lengths b and c and $\angle B$ are given and have such values that two distinct triangles are possible as shown in the diagram below.

Show that $a_{1}-a_{2}=2 \sqrt{b^{2}-c^{2} \sin ^{2} B}$
(a) A particle of mass 1 kg moves in a straight line before coming to rest. The resultant force acting on the particle directly opposes its motion and has magnitude $m(1+v)$ where v is its velocity. Initially the particle is at the origin and travelling with velocity Q where $Q>0$
(i) Show that v is related to the displacement x by the formula $x=Q-v+\log _{e}\left(\frac{1+v}{1+Q}\right)$.
(ii) Find an expression for v in terms of t.
(iii) Find an expression for x in terms of t.
(iv) Show that $Q=x+v+t$
(v) Find the distance travelled and the time taken by the particle in coming to rest.
(b) (i) State why, for $x<1$, the sum of n terms of the series $1+x+x^{2}+x^{3}+\ldots \ldots .+x^{n-1}$ is $\frac{1-x^{n}}{1-x}$.
(ii) Show that $1+2 x+3 x^{2}+\ldots \ldots .+(n-1) x^{n-2}=\frac{(n-1) x^{n}-n x^{n-1}+1}{(1-x)^{2}}$
(iii) Hence find an expression for $1+1+\frac{3}{4}+\frac{4}{8}+\ldots \ldots . .+\frac{n-1}{2^{n-2}}$ and show that this sum is always less than 4.

END OF PAPER

TABLE OF STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x=\quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \\
& =\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x \text {, } \\
& x>0
\end{aligned}
$$

ABBOTSLEIGH

AUGUST 2008
 YEAR 12
 ASSESSMENT 4

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2 Solutions

Question 1

(a) $=\ln \left(x+\sqrt{x^{2}+7}\right)+C$
(b) $=\int \frac{d x}{\sqrt{4-(x-2)^{2}}}$
$=\sin ^{-1} \frac{x-2}{2}+C$
(c) $=\int \frac{1}{\sqrt{1-x^{2}}}-2 x\left(1-x^{2}\right)^{-\frac{1}{2}} d x$
$=\sin ^{-1} x-2 \sqrt{1-x^{2}}+C$
(d) $=\int \cos x\left(1-\sin ^{2} x\right) d x$
$=\sin x-\frac{1}{3} \sin ^{3} x+C$
(e) i.
$d x=\frac{2}{3} \cos \theta d \theta, \quad\left\{\begin{array}{l}x=0, \sin \theta=0 \\ x=\frac{2}{3}, \sin \theta=\frac{\pi}{2}\end{array}\right.$
$\therefore I=\int_{0}^{\frac{\pi}{2}} \frac{4}{3} \cos ^{2} \theta d \theta$
$=\int_{0}^{\frac{\pi}{2}} \frac{2}{3}(\cos 2 \theta+1) d \theta$

$$
=\left[\frac{1}{3} \sin 2 \theta+\frac{2}{3} \theta\right]_{0}^{\frac{\pi}{2}}
$$

$=\frac{\pi}{3}$
ii.

Note that $\int_{0}^{\frac{2}{3}} \sqrt{4-9 x^{2}} d x=\int_{\frac{2}{3}}^{0} \sqrt{4-9 x^{2}} d x$
Now, the top part of the ellipse has the equation $y=\sqrt{4-9 x^{2}}$
$A_{\text {top }}=2 I=\frac{2 \pi}{3}, \quad($ from part $i)$
Similarily, due to symmetry, the bottom part of the ellipse has the same area
$A_{\text {total }}=\frac{4 \pi}{3}$
(f) Observing the graph of $y=\tan ^{-1} x$ between $(0,0)$ and $\left(1, \frac{\pi}{4}\right)$
$I=\frac{\pi}{4}-\int_{0}^{\frac{\pi}{4}} \tan y d y$
$=\frac{\pi}{4}+[\ln (\cos x)]_{0}^{\frac{\pi}{4}}$
$=\frac{\pi}{4}-\frac{1}{2} \ln 2$

Question 2

(a) i.
$\left(\overline{z_{1}}\right)^{2}=4-6 i$
ii.
$\frac{z_{1}}{z_{2}}=\frac{(3-i)(2-5 i)}{29}$

$$
=\frac{1-17 i}{29}
$$

(b) i.

ii.

Distance of centre of locus from $(0,0)=\sqrt{2}$
Minimum value of $|z|=\sqrt{2}-1, \quad$ maximum value of $|z|=\sqrt{2}+1$
(c) i.
$\frac{z-1}{z-2 i}=\frac{x+i y-1}{x+i y-2 i}$
$=\frac{(x+i y-1)(x-i y+2 i)}{x^{2}+(y-2)^{2}}$
$=\frac{x^{2}+2 i x+y^{2}-2 y-x-i y-2 i}{x^{2}+(y-2)^{2}}$
Since the real part of $\frac{z-1}{z-2 i}$ is 0 (i. e. the expression is purely imaginary)
It follows that $x^{2}-x+y^{2}-2 y=0$
ii.

Question 3

(a) i.

ii.

Question 3 (continued)
(a) iii.

(b)

Question 3 (continued)

(c) $y=x-1+\frac{x}{(x-1)^{2}}$
$\frac{d y}{d x}=-\frac{x+1}{(x-1)^{3}}, \quad \frac{d^{2} y}{d x^{2}}=\frac{2(x+2)}{(x-1)^{4}}$
At S.Ps, $\frac{d y}{d x}=0$
$\left\{\begin{array}{c}x=-1 \\ y=0.75\end{array}\right.$
$y^{\prime \prime}>0 \therefore \min T . P$
Vertical asymptote at $x=1$
As $x \rightarrow \pm \infty, \quad f(x) \rightarrow 1$
Horizontal asymptote at $y=1$

(d) i.
$\Sigma \alpha=-2, \quad \Sigma \alpha \beta=-3, \quad \alpha \beta \gamma=4$
$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2 \times \Sigma \alpha \beta$
$=4+6$
$=10$
ii.

Let the roots be A, B and C
$A+B+C=\alpha \beta+\beta \gamma+\gamma \alpha=-3$
$A B+B C+A C=\alpha^{2} \beta \gamma+a \beta^{2} \gamma+\alpha \beta \gamma^{2}=\alpha \beta \gamma(\alpha+\beta+\gamma)=6$
$A B C=(\alpha \beta \gamma)^{2}=16$
Therefore the equation required is $x^{3}+3 x^{2}+6 x-16=0$

Question 4

(a) i.
$e=\frac{13}{12}, \quad a e= \pm 13$
$a= \pm 12, \quad a^{2}=144$
Using $\mathrm{b}^{2}=a^{2}\left(e^{2}-1\right)$, noting that foci lie on x axis
$b^{2}=25$
Therefore equation is $\frac{x^{2}}{144}-\frac{y^{2}}{25}=0$
ii.
$25 x^{2}-144 y^{2}=0$
$25 x-144 y \frac{d y}{d x}=0$ (implicit differentiation and then dividing all terms by 2)
$\frac{d y}{d x}=\frac{25 x}{144 y}$
At $(12 \sec \theta, 5 \tan \theta), m_{T}=\frac{5 \sec \theta}{12 \tan \theta}$
$12 y \tan \theta-60 \tan ^{2} \theta=5 x \sec \theta-60 \sec ^{2} \theta$
$5 x \sec \theta-12 y \tan \theta-60=0$
(b) i.

Intersect $y=m x+c$ with ellipse gives
$b^{2} x^{2}+a^{2} m^{2} x^{2}+2 a^{2} m c x+a^{2} c^{2}-a^{2} b^{2}=0$
$\left(a^{2} m^{2}+b^{2}\right) x^{2}+\left(2 a^{2} c m\right) x+a^{2} c^{2}-a^{2} b^{2}=0$
When $\Delta=0, \quad y=m x+c$ is a tangent (one solution)
$4 a^{4} c^{2} m^{2}-4\left(a^{2} m^{2}+b^{2}\right)\left(a^{2} c^{2}-a^{2} b^{2}\right)=0$
$a^{4} c^{2} m^{2}-a^{4} m^{2} c^{2}+a^{2} b^{2} c^{2}-a^{2} b^{4}-a^{4} b^{2} m^{2}=0$
$a^{2} b^{2} c^{2}-a^{2} b^{4}-a^{4} b^{2} m^{2}=0$
$c^{2}=a^{2} m^{2}+b^{2}$ (rearranging and dividing by $\mathrm{a}^{2} b^{2}, a \neq 0, b \neq 0$)
ii.

Note that $\mathrm{c}=4-3 \mathrm{~m}$
For each of the tangents in the form $y=m x+c$
$c^{2}=a^{2} m^{2}+b^{2}$, from (a)
$c^{2}=16 m^{2}+9$
$(4-3 m)^{2}=16 m^{2}+9$
$16-24 m+9 m^{2}=16 m^{2}+9$
$7 m^{2}+24 m-7=0$
product of roots $=\alpha \beta=\mathrm{m}_{1} m_{2}=-\frac{7}{7}=-1, \quad \therefore$ Tangents are perpendicular
(c) i.
$\alpha=\operatorname{cis} \frac{\pi}{3}, \quad \alpha^{5}=\beta=\operatorname{cis} \frac{5 \pi}{3}=\operatorname{cis}-\frac{\pi}{3}$
Test $\mathrm{P}(\alpha)$
$\alpha^{5}+\alpha-1=$
$=0, \quad$ since $\alpha+\beta=1$
ii.

Original equation is $\mathrm{z}^{5}+0 z^{4}+0 z^{3}+0 z^{2}+z-1=0$
The other root is $\beta=\operatorname{cis}-\frac{\pi}{3}, \quad \alpha+\beta=1, \alpha \beta=1$
Method 1:
α and β are roots to $z^{2}-z+1=0, \quad$ Long division gives $z^{3}+z^{2}-1=0$

Method 2:

Let the other roots be A, B and C
$A+B+C=-1, \quad A B+A C+B C=0, \quad A B C=1$
which gives the required equation $z^{3}+z^{2}-1=0$

Question 5

(a) Take a typical strip of width Δx, height of $2 \sqrt{4-x^{2}}$
$\Delta V=4\left(4-x^{2}\right) \Delta x$
$V=\lim _{\Delta x \rightarrow 0} \sum_{-2}^{2} 4\left(4-x^{2}\right) \Delta x$
$V=4 \int_{-2}^{2} 4-x^{2} d x$
$=8 \int_{0}^{2} 4-x^{2} d x$
$=8\left[4 x-\frac{1}{3} x^{3}\right]_{0}^{2}$
$=\frac{128}{3}$ cubic units.
(b)

Radius of typical shell $=\Delta x$
Height of typical shell $=(4-y)=4-(x-2)^{2}=4-x^{2}+4 x$
Circumference of typical shell $=2 \pi x$
$\Delta V=2 \pi x\left(4 x-x^{2}\right) \Delta x$
$V=2 \pi \times \lim _{\Delta x \rightarrow 0} \sum_{0}^{4}\left(4 x^{2}-x^{3}\right) \Delta x$
$V=2 \pi \int_{0}^{4} 4 x^{2}-x^{3} d x$
$=2 \pi\left[\frac{4}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{4}$
$=\frac{128}{3} \pi$ cubic units.
(c) i .
$y=\frac{4}{x}$
$\frac{d y}{d x}=-\frac{4}{x^{2}}$
$m_{T}($ at $x=2 t)=-\frac{1}{t^{2}}$
$y-\frac{2}{t}=-\frac{1}{t^{2}}(x-2 t)$
$t^{2} y-2 t=-x+2 t$
$x+t^{2} y=4 t$
ii.

At Q, $\quad y=0$
$\therefore \mathrm{Q}$ is $(4 t, 0)$
iii.
$m_{Q S}=t^{2}$
$y=t^{2}(x-4 t)$
$t^{2} x=4 t^{3}+y$,
iv.

Intersect $\mathrm{xy}=4$ with ($*$)
$t^{2} x(x-4 t)=4$
$t^{2} x^{2}-4 t^{3} x-4=0$
Sum of roots $=x_{1}+x_{2}=4 t$
$x_{M}=\frac{x_{1}+x_{2}}{2}=2 t$
Similarily
$y\left(4 t^{3}+y\right)=4 t^{2}$
$y^{2}+4 t^{3} y-4 t^{2}=0$
Sum of roots $=y_{1}+y_{2}=-4 y^{3}$
$y_{M}=\frac{y_{1}+y_{2}}{2}=-2 t^{3}$
v.
$x=2 t$
$y=-2 t^{3}$
$x^{3}=8 t^{3}$
\therefore Locus of M is $x^{3}=-4 y$

Question 6

(a) i.

Let $\angle C A D=x$
$\angle C D T=x, \quad$ (angle in the alternate segment theorem)
$\angle D F T=x, \quad$ (angles opposite equal sides of isosceles triangle equal)
$\angle E F D=180-x, \quad$ (angles in a straight angle)
$\therefore A E F D$ is a cyclic quadrilateral, (opposite angles supplementary)
ii.

Let $\angle P E A=a$
$\angle A E F=180-a, \quad$ (angles on a straight line)
$\angle A D F=a, \quad$ (opposite angles in cyclic quadrilateral are supplementary \& part i)
$\angle A B C=180-a, \quad$ (opposite angles in cyclic quadrilateral are supplementary)
$\angle A D F=a, \quad$ (angles on a straight line)
$\therefore A E B P$ is a cyclic quadrilaterial, (angles standing on the same arc $A P$ are equal)
(b) i.
$I_{n}=\int_{0}^{1}\left(1+x^{2}\right)^{-n} \frac{d}{d x}(x) d x$
$I_{n}=\left[x\left(1+x^{2}\right)^{-(n)}\right]_{0}^{1}+2 n \int_{0}^{1} x^{2}\left(1+x^{2}\right)^{-(n+1)} d x$
$I_{n}=2^{-n}+2 n \int_{0}^{1}\left(1+x^{2}\right)\left(1+x^{2}\right)^{-(n+1)} d x-2 n I_{n+1}$
$2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}$
$I_{n+1}=\frac{1}{n(2)^{(n+1)}}+\frac{2 n-1}{2 n} I_{n}$
ii.
$I_{1}=\int_{0}^{1}\left(1+x^{2}\right)^{-1} d x=\left[\tan ^{-1} x\right]_{0}^{1}=\frac{\pi}{4}$
$I_{2}=\frac{1}{4}+\frac{\pi}{8}$
$I_{3}=\frac{1}{16}+\frac{3}{4}\left(\frac{1}{4}+\frac{\pi}{8}\right)=\frac{1}{4}+\frac{3 \pi}{32}$

Question 6 (continued)

(c) i .
$I=\int_{0}^{a} f(x) d x$
Let $\mathrm{x}=\mathrm{a}-\mathrm{y}$
$d x=-d y$
$\{x=a, y=0$
$\{x=0, y=a$
$I=\int_{a}^{0} f(a-y)-d y$
$=\int_{0}^{a} f(a-y) d y$
$=\int_{0}^{a} f(a-x) d x, \quad$ changing variable to x
ii.
$I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
$\therefore I=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x$
$I=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x$
$2 I=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x$
Let $\mathrm{u}=\cos x$
$\left\{\begin{array}{l}x=\pi, u=-1 \\ x=0, u=1\end{array}\right.$
$d u=-\sin x d x$
$2 I=\pi \int_{1}^{-1}-\frac{1}{1+u^{2}} d u$
$2 I=\pi \int_{-1}^{1} \frac{1}{1+u^{2}} d u$
$2 I=\pi\left[\tan ^{-1} u\right]_{-1}^{1}$
$2 I=\pi\left(\frac{\pi}{4}+\frac{\pi}{4}\right)$
$\therefore I=\frac{\pi^{2}}{4}$

Question 7

(a) i.
$S^{\prime}(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
$=C(x)$
ii.
$C(x)>0 \forall x$
$S^{\prime}(x) \geq 0 \forall x$
iii.

LHS $=\left(\frac{1}{2}\left(e^{x}+e^{-x}\right)\right)^{2}$
$\frac{1}{4}\left(e^{2 x}+e^{-2 x}\right)+\frac{1}{2}$
$=1-\frac{1}{2}+\frac{1}{4}\left(e^{2 x}+e^{-2 x}\right)$
$=1+\left(\frac{1}{2}\left(e^{x}-e^{-x}\right)\right)^{2}$
$=R H S$
iv.

For every x value there is a unique y value.
v.
$x=\frac{1}{2}\left(e^{y}-e^{-y}\right)$
$\frac{d x}{d y}=\frac{1}{2}\left(e^{y}+e^{-y}\right), \quad$ using part i.
$=C(y)$
$=\sqrt{1+\frac{1}{2}\left(e^{-y}-e^{-y}\right)}, \quad$ using part iii.
$=\sqrt{1+x^{2}}, \quad$ from line 1
$\frac{d y}{d x}=\frac{1}{\sqrt{1+x^{2}}}$
vi.
$(0,0)$ lies on $S(x)$
\therefore by reflective property of inverse $(0,0)$ lies on $\mathrm{S}^{-1}(x)$
$y=\int \frac{d x}{\sqrt{1+x^{2}}}$
$y=\log _{\mathrm{e}}\left(x+\sqrt{1+x^{2}}\right)+C$
Substituting the point $(0,0)$ gives $C=0$
$\therefore y=S^{-1}(x)=\log _{\mathrm{e}}\left(x+\sqrt{1+x^{2}}\right)$
(b) i.

If $(x-a-b-c)$ is a factor of $P(x)$ then $P(a+b+c)=0$
$P(a+b+c)=(a+b+c-a)(a+b+c-b)(a+b+c-c)-(b+c)(c+a)(a+b)$
$=(b+c)(c+a)(a+b)-(b+c)(c+a)(a+b)$
$=0$
ii.
$P(x)=(x-a)(x-b)(x-c)-(a+b)(c+a)(b+c)$
Let $a=2, \quad b=-3, \quad c=-1$
$P(x)=(x-2)(x+3)(x+1)-4$
\therefore from part $\mathrm{i},(x+2)$ is a factor.
$P(x)=x^{3}+2 x^{2}-5 x-10$
Long division gives $x^{2}-5$
Solutions to $P(x)=0$
are $x=-2, \quad x=\sqrt{5}, \quad x=-\sqrt{5}$
(c)

Produce perpendicular from A
$h=c \sin B$
$\mathrm{C}_{1} \mathrm{C}_{2}=2 \sqrt{b^{2}-h^{2}}$, noting that $C_{2} D=C_{1} D$
$\therefore a_{1}-a_{2}=2 \sqrt{b^{2}-c^{2} \sin ^{2} B}$

Question 8

(a) i.
$F=-m(1+v)$
$a=-(1+v)$
$v \frac{d v}{d x}=-(1+v)$
$\frac{d v}{d x}=-\frac{1+v}{v}$
$\frac{d x}{d v}=\frac{1}{1+v}-\frac{1+v}{1+v}$
$x=\ln (1+v)-v+C$
At $x=0, \quad v=Q$
$\mathrm{C}-\mathrm{Q}+\ln (1+\mathrm{Q})=0$
$\mathrm{C}=\mathrm{Q}-\ln (1+\mathrm{Q})$
$\therefore x=\ln (1+v)-\ln (1+Q)+Q$
$x=\ln \left(\frac{1+v}{1+Q}\right)+Q-v$
(b) i.

Geometric series for $\mathrm{r}<1$ is $\frac{a\left(1-r^{n}\right)}{1-r}$
In this series, $\quad a=1, r=1$
which gives the sum as
$\frac{1-x^{n}}{1-x}$
ii.
$1+x+x^{2}+\ldots+x^{n-1}=\frac{\left(1-x^{n}\right)}{1-x}$
Differentiate both sides
$1+2 \mathrm{x}+3 \mathrm{x}^{2}+\ldots+(n-1) x^{n-2}=\frac{n(x-1) x^{n-1}+1-x^{n}}{(1-x)^{2}}$
$1+2 \mathrm{x}+3 \mathrm{x}^{2}+\ldots+(n-1) x^{n-2}=\frac{(n-1) x^{n}-n x^{n-1}+1}{(1-x)^{2}}$
iii.

Let $\mathrm{x}=\frac{1}{2}$
LHS $=1+1+\frac{3}{4}+\frac{(n-1)}{2^{n-2}}$
$=4\left(-\left(\frac{1}{2}\right)^{n+1}-n\left(\frac{1}{2}\right)^{n-1}+1\right), \quad n>0$
$=4-\left(2^{1-n}\right)(4 n+1)$
$\leq 4 \forall n>0$
iii.
$e^{-t}=\frac{1+v}{1+Q}$
$v=(Q+1) e^{-t}-1(*)$
$\frac{d x}{d t}=(Q+1) e^{-t}-1$
$x=-t-(Q+1) e^{-t}+C$
At $t=0, \quad x=0$
$C=(Q+1)$
$x=Q+1-t-(Q+1) e^{-t}$
iv.
$Q=x+t+(Q+1) e^{-1}-1$
$Q=x+v+t, \quad u \operatorname{sing}(*)$
v.

Find when $v=0$
$x=Q-\ln (1+Q)$
$t=\ln (1+Q)$

