ABBOTSLEIGH

AUGUST 2010

YEAR 12
ASSESSMENT 4
TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time -5 minutes.
- Working time -3 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks - 120

- Attempt Questions 1-8.
- All questions are of equal value.

Outcomes assessed

HSC course

E1 appreciates the creativity, power and usefulness of mathematics to solve a broad range of problems
E2 chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings
E3 uses the relationship between algebraic and geometric representations of complex numbers and of conic sections
E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials
E5 uses ideas and techniques from calculus to solve problems in mechanics involving resolution of forces and resisted motion
E6 combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions
E7 uses the techniques of slicing and cylindrical shells to determine volumes
E8 applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems
E9 communicates abstract ideas and relationships using appropriate notation and logical argument

Harder applications of the Extension 1 Mathematics course are included in this course. Thus the Outcomes from the Extension 1 Mathematics course are included.

From the Extension 1 Mathematics Course Preliminary course

PE1 appreciates the role of mathematics in the solution of practical problems
PE2 uses multi-step deductive reasoning in a variety of contexts
PE3 solves problems involving inequalities, polynomials, circle geometry and parametric representations
PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas
PE5 determines derivatives that require the application of more than one rule of differentiation
PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

HSC course

HE1 appreciates interrelationships between ideas drawn from different areas of mathematics
HE2 uses inductive reasoning in the construction of proofs
HE3 uses a variety of strategies to investigate mathematical models of situations involving projectiles, simple harmonic motion or exponential growth and decay
HE4 uses the relationship between functions, inverse functions and their derivatives
HE5 applies the chain rule to problems including those involving velocity and acceleration as functions of displacement
HE6 determines integrals by reduction to a standard form through a given substitution
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

Total marks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

QUESTION 1 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x$.
(b) Find $\int \frac{x^{2}+4}{x^{2}+1} d x$.
(c) Use integration by parts to evaluate $\int_{0}^{1} x e^{-3 x} d x$.
(d) (i) Find real numbers a, b and c such that

$$
\frac{x}{(x-1)^{2}(x-2)} \equiv \frac{a}{x-1}+\frac{b}{(x-1)^{2}}+\frac{c}{x-2} .
$$

(ii) Evaluate $\int \frac{x}{(x-1)^{2}(x-2)} d x$.
(e) Use the substitution $x=\sin \theta$ to evaluate $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$.

QUESTION 2 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z=3-i$ and $w=2+i$. Express the following in the form $x+i y$, where x and y are real numbers:
(i) $\frac{z}{w}$
(ii) $\overline{-2 i z}$
(b) Let $z=\frac{1}{2}+\frac{\sqrt{3}}{2} i$.
(i) Express z in modulus-argument form.
(ii) Show that $z^{6}=1$.
(iii) Hence, or otherwise, graph all the roots of $z^{6}-1=0$ on an Argand diagram.
(c) The complex numbers α, β, γ and δ are represented on an Argand diagram by the points A, B, C and D respectively.
(i) Describe the point that represents $\frac{1}{2}(\alpha+\gamma)$.
(ii) Deduce that if $\alpha+\gamma=\beta+\delta$ then $A B C D$ is a parallelogram.
(d) Let $z=x+i y$. Find the points of intersection of the curves given by:

$$
\begin{equation*}
|z-i|=1 \text { and } \operatorname{Re}(z)=\operatorname{Im}(z) \tag{2}
\end{equation*}
$$

QUESTION 3 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram below shows the graph of the function $y=f(x)$.

Draw separate one-third page sketches of the graphs of the following:
(i) $y=f(|x|)$
(ii) $y=f(2-x)$
(iii) $\quad y=\log _{e} f(x)$.
(b) Sketch the graph of $y=\frac{1}{x(x-2)}$, without the use of calculus.
(c) (i) Find the value of g for which $P(x)=9 x^{4}-25 x^{2}+10 g x-g^{2}$ is divisible by both $x-1$ and $x+2$.
(ii) With this value of g, solve the equation $9 x^{4}-25 x^{2}+10 g x-g^{2}=0$.

QUESTION 4 (15 marks) Use a SEPARATE writing booklet.
(a) The area bounded by the curve $y=x^{2}+2$ and the line $y=4-x$ is rotated about the line $y=1$.
(i) Find the points of intersection of the two curves.
(ii) By considering slices perpendicular to the x axis, show that the area, $A(x)$ of a typical slice is given by:

$$
A(x)=\pi\left(8-6 x-x^{2}-x^{4}\right) .
$$

(iii) Find the volume of the solid formed.
(b) Show that for all real $x, 0<\frac{1}{x^{2}+2 x+2} \leq 1$.
(c) (i) If $I_{n}=\int x^{3}\left(\log _{e} x\right)^{n} d x$, show that $I_{n}=\frac{x^{4}}{4}\left(\log _{e} x\right)^{n}-\frac{n}{4} I_{n-1}$.
(ii) Hence, or otherwise, evaluate $\int_{1}^{2} x^{3}\left(\log _{e} x\right)^{2} d x$.

QUESTION 5 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Factorise the polynomial $z^{3}-1$ over the rational field.
(b) Prove that if $a \neq c$ there are always two real values of k which will make $a x^{2}+2 b x+c+k\left(x^{2}+1\right)$ a perfect square.
(c) The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ are two variable points on the hyperbola $x y=c^{2}$ which move so that the points P, Q and $S(c \sqrt{2}, c \sqrt{2})$ are always collinear. The tangents to the hyperbola at P and Q meet at the point R.
(i) Show that the equation of the chord $P Q$ is $x+p q y=c(p+q)$
(ii) Hence show that $p+q=\sqrt{2}(1+p q)$.
(iii) Show that R is the point $\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$. You may assume that the tangent at any point $T\left(c t, \frac{c}{t}\right)$ has equation $x+t^{2} y=2 c t$. (Do NOT prove this)

QUESTION 6 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Prove that if x and y are positive numbers then $(x+y)^{2} \geq 4 x y$.
(ii) Deduce that if a, b, c and d are positive numbers then

$$
\begin{equation*}
\frac{1}{4}(a+b+c+d)^{2} \geq a c+a d+b c+b d \tag{2}
\end{equation*}
$$

(b) Scientists use a pressure gauge which measures depth as it sinks towards the ocean floor. The gauge of mass 2 kg is released from rest at the ocean's surface. As it sinks in a vertical line, the water exerts a resistance to its motion of $4 v$ Newtons, where $v \mathrm{~ms}^{-1}$ is the velocity of the gauge.

Let x be the displacement of the ball measured vertically downwards from the ocean's surface, t be the time in seconds elapsed after the gauge is released, and g be the constant acceleration due to gravity.
(i) Show that $\frac{d^{2} x}{d t^{2}}=g-2 v$.
(ii) Hence show that $t=\frac{1}{2} \log _{e}\left(\frac{g}{g-2 v}\right)$.
(iii) Show that $v=\frac{g}{2}\left(1-e^{-2 t}\right)$.
(iv) Write down the limiting (terminal) velocity of the gauge.
(v) At a particular location, the gauge takes 180 seconds to hit the ocean floor. Using $g=10 \mathrm{~ms}^{-2}$, calculate the depth of the ocean at that location, giving your answer correct to the nearest metre.

QUESTION 7 (15 marks) Use a SEPARATE writing booklet.
(a) In the diagram $X Y$ is a tangent to the circle and $X Y=X A$.

(i) Show that $\triangle X C Y \mid \| \triangle X B Y$.
(ii) Hence explain why $\frac{X Y}{B X}=\frac{C X}{X Y}$.
(iii) Show that $\triangle A X C|\mid \triangle A X B$.
(iv) Prove that $D E \| A X$.
(b) Consider the function $y=f(x)$ in the interval $1 \leq x \leq n$.
(i) Sketch a possible graph of $y=f(x)$ given $f(x) \geq 0$ and $f^{\prime \prime}(x)<0$.
(ii) Show, by comparing the area under the curve $y=f(x)$ between
$x=1$ and $x=n$, with the area of a region found using repeated applications of the Trapezoidal Rule, each of width 1 unit, that

$$
\begin{equation*}
\int_{1}^{n} f(x) d x>\frac{1}{2} f(1)+\frac{1}{2} f(n)+\sum_{r=2}^{n-1} f(r) . \tag{2}
\end{equation*}
$$

(iii) By taking $f(x)=\log _{e} x$ in the inequality from (b) part (ii) above, deduce that if n is a positive integer, then

$$
n!<n^{n+\frac{1}{2}} e^{-n+1}
$$

(a)

The ellipse E has equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse.
(i) Show that the equation of the normal to the ellipse at P is

$$
y-b \sin \theta=\frac{a \sin \theta}{b \cos \theta}(x-a \cos \theta) .
$$

(ii) The normal at P meets the x axis at M and the y axis at N as shown in the diagram above.
Prove that $\frac{P M}{P N}=1-e^{2}$ where e is the eccentricity of E .
(b) If $A(x)=\frac{1}{2}+\frac{1}{3}\binom{n}{1} x+\frac{1}{4}\binom{n}{2} x^{2}+$. \qquad ..$+\frac{1}{n+2} x^{n}$,
(i) Show that $\frac{d}{d x}\left\{x^{2} A(x)\right\}=x(1+x)^{n}$.
(ii) Show that $x(1+x)^{n}=(1+x)^{n+1}-(1+x)^{n}$.
(iii) Hence show that $x^{2} A(x)=\frac{(1+x)^{n+2}-1}{n+2}-\frac{(1+x)^{n+1}-1}{n+1}$.
(iv) Deduce that $\sum_{r=0}^{n} \frac{1}{r+2}\binom{n}{r}=\frac{n \cdot 2^{n+1}+1}{(n+1)(n+2)}$.

End of paper

ABBOTSLEIGH EXTENSION 2 TRIAL 2010 SOLUTIONS

QUESTION 1
(a)

$$
\begin{aligned}
\int \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x & =\frac{1}{3} \int 3 x^{2}\left(1+x^{3}\right)^{-2} \\
& =\frac{1}{3}\left(1+x^{3}\right)^{-1}+C \\
& =\frac{-1}{3\left(1+x^{3}\right)}+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int \frac{x^{2}+4}{x^{2}+1} d x & =\int \frac{x^{2}+1+3}{x^{2}+1} d x \\
& =\int\left(1+\frac{3}{x^{2}+1}\right) d x \\
& =x+3 \tan ^{-1} x+C
\end{aligned}
$$

(c) Let $I=\int_{0}^{1} x e^{-3 x} d x$

Let $u=x \quad d v=e^{-3 x} d x$

$$
d u=d x \quad V=-\frac{1}{3} e^{-3 x}
$$

$$
\therefore I=\left[x \times-\frac{1}{3} e^{-3 x}\right]_{0}^{1}-\int_{0}^{1}-\frac{1}{3} e^{-3 x} d x
$$

$$
=-\frac{1}{3} e^{-3}+0+\left[\frac{1}{3} \times \frac{e^{-3 x}}{-3}\right]_{0}^{1}
$$

$$
=-\frac{1}{3 e^{3}}+\frac{1}{-9}\left(e^{-3}-e^{0}\right)
$$

$$
=\frac{1}{9} \times\left(\frac{-1}{e^{3}}-\frac{3}{e^{3}}+1\right)
$$

$$
=\frac{e^{3}-4}{9 e^{3}}
$$

(d) (1)

Let $x=1,1=-b \Rightarrow b=-1$
Let $x=2,2=c \Rightarrow c=2$
Let $x=0,0=a \times 2-\mid \times-2+2 \times 1 \Rightarrow$

$$
\therefore a=-2
$$

(II)

$$
\begin{aligned}
\therefore \int \frac{x d x}{(x-1)^{2}(x-2)} & =\int\left\{\frac{-2}{x-1}-\frac{1}{(x-1)^{2}}+\frac{2}{x-2}\right\} d x \\
& =-2 \ln (x-1)+\frac{1}{x-1}+2 \ln (x-2) \\
& =\frac{1}{x-1}+2 \ln \left(\frac{x-2}{x-1}\right)+c
\end{aligned}
$$

$Q(e) \operatorname{Let} I=\int_{-1 / 2}^{1 / 2} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$ $=2 \int_{0}^{1 / 2} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$ (even fin)
Let $x=\sin \theta$

$$
x=1 / 2, \quad \theta=\pi / 6
$$

$d x=\cos \theta d \theta$

$$
x=0, \quad \theta=0
$$

$$
\therefore I=2 \int_{0}^{\pi / 6} \frac{\sin ^{2} \theta}{\sqrt{1-\sin ^{2} \theta}} \times \cos \theta d \theta
$$

$$
=2 \int_{0}^{\pi / 6} \frac{\sin ^{2} \theta}{\cos \theta} \times \cos \theta d \theta
$$

$$
=2 \int_{0}^{\pi / 6} \frac{1}{2}(1-\cos 2 \theta) d \theta
$$

$$
=\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\pi / 6}
$$

$$
=\left(\frac{\pi}{6}-\frac{\sin \pi / 3}{2}\right)-\left(0-\frac{\sin 0}{2}\right)
$$

$$
=\frac{\pi}{6}-\frac{\sqrt{3} / 2}{2}-0
$$

$$
=\frac{1}{12}(2 \pi-3 \sqrt{3})
$$

Q2 (a)

$$
\text { (1) } \begin{aligned}
\frac{z}{\omega} & =\frac{3-i}{2+i} \times \frac{2-i}{2-i} \\
& =\frac{6-5 i-1}{4+1} \\
& =\frac{5-5 i}{5} \\
& =1-i \\
\text { (11) } \overline{-2 i z} & =\overline{-2 i(3-i)} \\
& =\frac{(-6 i-2)}{2} \\
& =-2+6 i
\end{aligned}
$$

(b)

(1) $z=1\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
(ii) $z^{6}=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{6}$
$=\cos 2 \pi+i \sin 2 \pi$
$=1+i \times 0$
$=1$
(iii)

(c) $(1) \frac{1}{2}(\alpha+\gamma)$ represents the
midpoint of $A C$.
(ii) if $\alpha+\gamma=\beta+\delta$
then $\frac{\alpha+\gamma}{2}=\frac{\beta+\delta}{2}$
\therefore midpoint of $A C=$ midpoint of $B D$
$\therefore A B C D$ is a parallelogram since its
diagonals bisect each other.

Q2 (d) $|z-i|=1$ represents the circle $x^{2}+(y-1)^{2}=1$
$\operatorname{Re}(z)=\operatorname{Im}(z)$ represents
the tine $x=y$
Substitute (2) into (1)
$y^{2}+(y-1)^{2}=1$
$y^{2}+y^{2}-2 y+1=1$
$2 y^{2}-2 y=0$
$y(y-1)=0$
$y=0$ or 1
$y=0, x=0$ or $y=1, x=1$
\therefore Dis of intersection are
$(0,0)$ and $(1,1)$

Q 3(a) (1)

(b) $y=x(x-2) \frac{1}{\text { (b-1 }}$

Q3 (c) (1) $P(1)=P(-2)=0$

$$
\therefore 9-25+10 g-g^{2}=0
$$

$$
g^{2}-10 g+16=0
$$

$$
(g-8)(g-2)=0
$$

$$
\therefore g=8 \text { or } 2
$$

$$
\text { also } 144-100-20 g-g^{2}=0
$$

$$
g^{2}+20 g-44=0
$$

$$
(g+22)(g-2)=0
$$

$$
g=-22 \text { or } 2
$$

$$
\therefore P(1)=P(-2)=0 \text { only }
$$

$$
\text { if } g=2
$$

$$
\text { (i1) } 9 x^{4}-25 x^{2}+20 x-4=(x-1)(x+2) R(x)
$$

$$
\therefore \quad=\left(x^{2}+x-2\right)\left(9 x^{2}+m x+2\right)
$$

$$
x^{3} \text { term: } 0=9+m
$$

$$
\therefore P(x)=(x-1)(x+2)\left(9 x^{2}-9 x+2\right)
$$

$$
=(x-1)(x+2)(3 x-1)(3 x-2)
$$

\therefore Solutions are $x=1,-2,1 / 3,2 / 3$

Q4(a) (1) $x^{2}+2=4-x$

$$
\begin{aligned}
x^{2}+x-2 & =0 \\
(x+2)(x-1) & =0
\end{aligned}
$$

\therefore Prs of intersection are $(1,3)$ and $(-2,6)$
(II)

Area of alice $=\pi R^{2}-\pi r^{2}$

$$
\begin{aligned}
A(x) & =\pi(3-x)^{2}-\pi\left(x^{2}+1\right)^{2} \\
& =\pi\left\{9-6 x+x^{2}-x^{4}-2 x^{2}-1\right\} \\
& =\pi\left\{8-6 x-x^{2}-x^{4}\right\}
\end{aligned}
$$

(III) Vol of salic $=A(x) \delta x$

$$
\text { Vol of solid }=\sum_{x=-2}^{1} \pi\left(8-6 x-x^{2}-x^{4}\right) \delta x
$$

$$
\begin{aligned}
& =\pi \int_{-2}^{1}\left(8-6 x-x^{2}-x^{4}\right) d x \\
& =\pi\left[8 x-3 x^{2}-\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{-2}^{1} \\
& =\pi\left(8-3-\frac{1}{3}-\frac{1}{5}\right)-\pi\left(-16-12+\frac{8}{3}+\frac{32}{5}\right) \\
& =\pi\left(5-\frac{8}{5}+28-\frac{136}{15}\right) \\
& =\frac{117 \pi}{5} \text { cubic units }
\end{aligned}
$$

b) $x^{2}+2 x+2=(x+1)^{2}+1$
min value of $x^{2}+2 x+2$ is 1
\therefore max value of $\frac{1}{x^{2}+2 x+2}$ is 1
Also, $\lim _{x \rightarrow \infty} \frac{1 / x^{2}}{1+2 / x+2 / x^{2}}=\frac{0}{1+0+0}$
\therefore min value of $\frac{1}{k^{2}+2 x+2}=0$ (as a limit)

$$
\therefore 0<\frac{1}{x^{2}+2 x+2} \leqslant 1
$$

(1) $I_{n}=\int x^{3}\left(\log _{e} x\right)^{n} d x \quad$ let $u=\left(\log _{e} x\right)^{n}$

$$
\begin{align*}
& d u=\left(\log _{e} x\right) \cdot \frac{1-1}{x} \cdot d x \tag{c}\\
& d v=x \\
& V=\frac{x}{4}
\end{align*}
$$

$$
\begin{aligned}
\therefore I_{n} & =\left(\log _{e} x\right)^{n} \times \frac{x^{4}}{4}-\int \frac{x^{4}}{4} \times n\left(\log _{e} x\right)^{4-1} \times \frac{1}{x} d x \\
& =\frac{x^{4}}{4}\left(\log _{e} x\right)^{n}-\frac{n}{4} \int x^{3}\left(\log _{e} x\right)^{n-1} d x \\
I_{n} & =\frac{x^{4}}{4}\left(\log _{e} x\right)^{n}-\frac{n}{4} I_{n-1}
\end{aligned}
$$

$$
\text { (II) } I_{2}=\left[\frac{x^{4}}{4}\left(\log _{e} x\right)^{2}\right]_{1}^{2}-\frac{1}{2} I_{1}
$$

$$
\left.=\frac{16}{4}\left(\log _{e^{2} 2}\right)^{2}-0-\frac{1}{2}\left\{\left[\frac{x^{4}}{4}\left(\log _{2}\right)\right]\right]_{1}^{2}-\frac{1}{4} I_{0}\right\}
$$

$$
=4\left(\log _{e} 2\right)^{2}-\frac{1}{8}\left({ }^{16}\left(\log _{e} 2\right)-0\right)+\frac{1}{8} \int_{1}^{2} x^{3} d x
$$

$$
=4\left(\log _{e} 2\right)^{2}-2 \log _{e} 2+\left[\frac{x^{4}}{32}\right]_{1}^{2}
$$

$$
=4\left(\log _{c} 2\right)^{2}-2 \log _{e} 2+\frac{1}{2}-\frac{1}{32}
$$

$$
=4\left(\log _{e} 2\right)^{2}-2 \log _{e} 2+\frac{15}{32}
$$

Q5 (9)(1) $z^{3}-1=\left(z^{-1}\right)\left(z^{2}+z+1\right)$
(iv) If ω is a complex root then

$$
\omega-1=0 \Rightarrow \omega=1 \text { is not complex }
$$

$$
\therefore \omega^{2}+\omega+1=0
$$

also $\omega^{3}=1$
(III) $\left(1+w^{2}\right)(1+w)\left(1+w^{8}\right)\left(1+w^{10}\right)$
$=(-\omega)\left(1+\omega \cdot \omega^{3}\right)\left(1+\left(\omega^{3}\right)^{2} \cdot \omega^{2}\right)\left(1+\left(\omega^{3}\right)^{3} \cdot \omega\right)$
$=(-\omega)(1+\omega)\left(1+\omega^{2}\right)(1+\omega)$
$=-\omega \times-\omega^{2} \times-\omega \times-\omega^{2}$
$=\omega^{3} \times \omega^{3}$
= 1
(b) R_{e}-arranging quadratic,
$a x^{2}+2 b x+c+k\left(x^{2}+1\right)$
$=x^{2}(a+k)+2 b x+(c+k)$
for a pos., $\Delta=0$
$46^{2}-4(a+k)(c+k)=0$
$b^{2}-a c-a k-c k-k^{2}=0$
$k^{2}+k(a+c)+a c-b^{2}=0$
If there are 2 values of k,
约is $\Delta>0$

$$
\begin{aligned}
\Delta & =(a+c)^{2}-4\left(a c-b^{2}\right) \\
& =a^{2}+2 a c+c^{2}-4 a c+4 b^{2} \\
& =a^{2}-2 a c+c^{2}+4 b^{2} \\
& =(a-c)^{2}+4 b^{2}
\end{aligned}
$$

Which is always >0 if $a \neq c$
\therefore There are always 2 values of K which make the quadratic a perfect square.

5(c) (1) $p\left(c p, \frac{c}{p}\right) Q\left(c q, \frac{c}{q}\right)$

$$
\left.\left.\begin{array}{rl}
\frac{y-c}{p} & =\frac{c}{q}-\frac{c}{p} \\
c-c p \\
\therefore \quad & =\frac{1}{q-c p}-\frac{1}{p} \\
& =\frac{p q}{p-p} \times q \\
& =-\frac{1}{p q(q-p)} \\
& \therefore p q y-c q
\end{array}\right)=-x+c p\right)
$$

is the equation of $P Q$
(iI) Since $S(c \sqrt{2}, c \sqrt{2})$ lies on $P Q$,

$$
\phi \sqrt{2}+p q \times \phi \sqrt{2}=\phi(p+q)
$$

$$
\therefore \sqrt{2}(1+p q)=p+q
$$

(iii) tangent at p is $x+p^{2} y=2 c p$ (1) tangent at Q is $x+q^{2} y=2 c q$ (2)
(1) -(2) $\quad y\left(p^{2}-q^{2}\right)=2 c(p-q)$

$$
y=\frac{2 c(p-q)}{(p-q)(p+q)}
$$

$\therefore y=\frac{2 c}{p+q}$ into (1)

$$
x+p^{2} \times \frac{2 c}{p+q}=2 c p
$$

$$
x=2 c p-\frac{2 c p^{2}}{p+q}
$$

$$
=\frac{2 c p^{2}+2 c \psi q-2 \alpha p^{2}}{p+q}
$$

$$
=\frac{2 c p q}{p+q}
$$

$\therefore R\left(\frac{2 c p q}{p+q}, \frac{z c}{p+q}\right)$
(iv) $x=\frac{2 c p q}{p+q}$ (1) $\quad y=\frac{2 c}{p+q}$ (2)
(1) (2) $x+y=\frac{2 c}{p+q}(p q+1)$

$$
x+y=\frac{2 c}{p+q} \times \frac{p+q}{\sqrt{2}}(\text { from(niv) })
$$

$$
=\frac{2 c}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
$$

$$
\therefore x+y=c \sqrt{2}
$$

Q6(a) (1) $(x-y)^{2} \geqslant 0$

$$
\begin{gathered}
x^{2}-2 x y+y^{2} \geqslant 0 \\
x^{2}+y^{2} \geqslant 2 x y \\
x^{2}+2 x y+y^{2} \geqslant 4 x y \\
\therefore \quad(x+y)^{2} \geqslant 4 x y
\end{gathered}
$$

(ii) let $x=\frac{a+b}{2}$ and $y=\frac{c+\alpha}{2}$
$\therefore\left(\frac{a+b+c+d}{2}\right)^{2} \geqslant 4\left(\frac{a+b}{2}\right)\left(\frac{c+d}{2}\right)$
$\frac{1}{4}(a+b+c+d)^{2} \geqslant a c+a d+b c+b d$
(b) (1) $F=m a$

$$
\begin{aligned}
& 2 g-4 v=2 \times \frac{d^{2} x}{d t^{2}} \\
\therefore & \frac{d^{2} x}{d t^{2}}=g-2 v
\end{aligned}
$$

(ii) $\therefore \frac{d v}{d t}=g-2 v$

$$
\frac{d t}{d v}=\frac{1}{g-2 v}
$$

$$
t=\int_{0}^{v} \frac{1}{g-2 v} d v \quad \begin{gathered}
\text { since starts } \\
\text { at rest. }
\end{gathered}
$$

$$
=\left[-\frac{1}{2} \ln (g-2 v)\right]_{0}^{v}
$$

$$
=-\frac{1}{2} \ln (g-2 v)^{0}+\frac{1}{2} \ln g
$$

$$
\therefore t=\frac{1}{2} \ln \frac{g}{g-2 v}
$$

(III) From(II) $2 t=\ln \frac{g}{g-2 v}$

$$
e^{2 t}=\frac{g}{g-2 v}
$$

$$
\begin{aligned}
& \frac{g-2 v}{g}=e^{-2 t} \\
& g-2 v=g e^{-2 t}
\end{aligned}
$$

$$
g-2 v=g e^{-2 t}
$$

$$
2 v=9\left(1-e^{-2 t}\right)
$$

$$
\therefore v=\frac{9}{2}\left(1-e^{-2 t}\right)
$$

(iv) From (iii) as $t \rightarrow \infty \quad e^{-2 t} \rightarrow 0$
$\therefore v \rightarrow \frac{9}{2} \mathrm{~m} / \mathrm{s}$ (terminal velocity)

Q7(a) (1) In $\Delta^{s} X C Y$ and $X B Y$,
$\angle X$ is common
$\angle C Y X=\angle C B Y$ (\angle in the
alternate segment the)
$\therefore \triangle X C Y|\mid \triangle X B Y$ (equiangular)
(ii) $\frac{x y}{B X}=\frac{c x}{x y}$ because they are pairs of corresponding sides in the similar Δ^{s} in part (1).
(iii) $X Y=A X$ (Given)
$\therefore \frac{A X}{B X}=\frac{C X}{A X}$
also, in $\triangle^{S} A X C$ and $A X B$, $\angle X$ is common,
$\therefore \triangle A X C||\mid \triangle A X B$ (2pairs of sides in same ratio and the included angle is equal)

$$
\text { (iv) } \angle A C X=\angle B A X
$$

(corresp. angles in similar Δ^{5})
$\angle B D E=\angle A C X$ (ext \angle of
acyclic quad. $=$ opp. interior \angle)
$\therefore \angle B A X=\angle B D E$
$\therefore D E \| A X$ (corresp. \angle Sore equal)
(b) (1)

(v) From(IIi) $\frac{d x}{d t}=\frac{9}{2}\left(1-e^{-2 t}\right), g=10$
$x=5 \int_{0}^{180}\left(1-e^{-2 t}\right) d t$
$=\left[5 t+\frac{5 e^{-2 t}}{2}\right]_{0}^{180}$
$=5 \times 180+2.5 e^{-360}-0-\frac{5}{2} e^{0}$
$\doteqdot 897.5$
$\doteqdot 898$ metres deep.
(ii) $\int_{1}^{n} f(x) d x>\frac{1}{2} \times 1 \times(f(1)+f(2))+\frac{1}{2} \times 1 \times(f(2)+f(3))$ $+\cdots+\frac{1}{2} \times 1 \times(f(n-1)+f(n))$
$=\frac{1}{2}[f(1)+f(n)]+f(2)+f(3)+\cdots+f(n-1)$
$=\frac{1}{2} f(1)+\frac{1}{2} f(n)+\sum_{r=1}^{n-1} f(r)$

$$
\text { 76) (iii) Let } \begin{aligned}
f(x) & =\log _{e} x \operatorname{in}(\text { ii }) \\
\int_{1}^{n} \log _{e} x d x> & \frac{1}{2} \ln 1+\frac{1}{2} \ln n+\ln 2+\ln 3+\cdots+\ln (n-1) \\
& =0+\frac{1}{2} \ln n+\ln 2 \times 3 \times \cdots \times(n-1)
\end{aligned}
$$

Now Let $I=\int_{1}^{n} \log _{e} x d x \quad u=\log _{e} x \quad d v=d x$ $d u=\frac{1}{x} d x \quad v=x$

$$
\begin{aligned}
\therefore \int_{1}^{n} \log _{e} x d x & =\left[x \log _{e} x\right]_{1}^{n}-\int_{1}^{n} x \times \frac{1}{x} d x \\
& =n \log _{e} n-1 \times \log _{e} 1-\int_{1}^{n} d x \\
& =n \log _{e} n-[x]_{1}^{n} \\
& =n \log _{e} n-n+1
\end{aligned}
$$

$$
\begin{aligned}
\therefore n \log _{e} n-n+1 & >\frac{1}{2} \log _{e} n+\log _{e}(n-1)! \\
\ln n^{n}-n+1 & >\ln n^{1 / 2}+\ln (n-1)! \\
\therefore-n+1 & >\ln n^{1 / 2}+\ln (n-1)!-\ln n^{n} \\
& =\ln \left(\frac{n^{1 / 2} \times(n-1)!}{n^{n}}\right) \\
\therefore e^{-n+1} & >n^{n^{1 / 2-n} \times n!} \\
& =n^{-1 / 2-n} \times n! \\
n! & <e^{1-n} \times n^{1 / 2+n} \\
\therefore n! & <n^{n+1 / 2} \cdot e^{-n+1}
\end{aligned}
$$

Q8

$$
\begin{aligned}
& \text { (a) (1) } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0
\end{aligned}
$$

$$
\text { at } P(a \cos \theta, b \sin \theta) \text {, m. of tang: }
$$

$$
\frac{2 a \cos \theta}{a^{2}}+\frac{2 b \sin \theta}{b^{2}} \times \frac{d y}{d x}=0
$$

$$
\frac{2 \cos \theta}{a}+\frac{z \sin \theta}{b} \times \frac{d y}{d x}=0
$$

$$
\therefore \frac{d y}{d x}=-\frac{\cos \theta}{a} \times \frac{b}{\sin \theta}
$$

$$
\therefore m \text { of normal at } P=\frac{a \sin \theta}{b \cos \theta}
$$

\therefore eq'n of normal at P is:

$$
y-b \sin \theta=\frac{a \sin \theta}{b \cos \theta}(x-a \cos \theta)
$$

(11)

$$
\left.\frac{P M}{P N}=\frac{P^{\prime} O}{P^{\prime} N} \quad \begin{array}{c}
\text { (ratio of intercepts } \\
\text { on parallel lines) }
\end{array}\right)
$$

$$
\begin{aligned}
& P^{\prime}(0, b \sin \theta) \\
& \text { at } N, x=0 \text { on normal PN }
\end{aligned}
$$

$$
\therefore y-b \sin \theta=\frac{a \sin \theta}{b c^{\prime} s \theta} \times-a \cos \theta
$$

$$
y=b \sin \theta-\frac{a^{2} \sin \theta}{b}
$$

$$
=\frac{\sin \theta}{b}\left(b^{2}-a^{2}\right)
$$

$$
\therefore N\left(0, \frac{\sin \theta}{b}\left(b^{2}-a^{2}\right)\right)
$$

$$
\therefore \frac{P^{\prime} O}{P^{\prime} N}=\frac{b \sin \theta}{b \sin \theta-\frac{\sin \theta}{6}\left(b^{2}-a^{2}\right)}
$$

$$
=\frac{b^{2}}{b^{2}-\left(b^{2}-a^{2}\right)}
$$

$$
=\frac{b^{2}}{a^{2}}
$$

$$
=1-a^{a^{2}}
$$

$$
\therefore \frac{P M}{P N}=1-e^{2}
$$

8 (b) (1) Show $\frac{d}{d x}\left\{x^{2} A(x)\right\}=x(1+x)^{n}$

$$
\text { LHS }=\frac{d}{d x}\left\{x^{2}\left(\frac{1}{2}+\frac{1}{3}(n) x+\frac{1}{4}\left(\frac{n}{2}\right) x^{2}+\ldots+\frac{1}{n+2} x^{n}\right\}\right.
$$

$$
=\frac{d}{d x}\left\{\frac{x^{2}}{2}+\frac{1}{3}(n) x^{3}+\frac{1}{4}\binom{n}{2} x^{4}+\cdots+\frac{1}{n+2} x^{n+2}\right\}
$$

$$
=\frac{2 x}{2}+\frac{1}{3}\binom{1}{1} \cdot 3 x^{2}+\frac{1}{4}\left(\frac{n}{2}\right) \times 4 x^{3}+\cdots+\frac{1}{n+2} \times(n+2) x^{n+1}
$$

$$
=x+(n) x^{2}+\binom{n}{2} x^{3}+\cdots+x^{n+1}
$$

$$
\text { RUS }=x\left\{1+\binom{1}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\cdots+x^{n}\right)
$$

$$
=x+\binom{n}{1} x^{2}+\binom{n}{2} x^{3}+\cdots+x^{n+1}
$$

$$
=\operatorname{LHS}
$$

(ii) Show $x(1+x)^{n}=(1+x)^{n+1}-(1+x)^{n}$

$$
\text { RUS }=(1+x)^{n}(1+x-1)
$$

$$
\begin{aligned}
& =x(1+x)^{n} \\
& =\operatorname{LHS}
\end{aligned}
$$

(iii) \therefore From (i) $\frac{d}{d x}\left\{x^{2} A(x)\right\}=(1+x)^{n+1}-(1+x)^{n}$

$$
\text { Sb. } x^{2} A(x)=\frac{(1+x)^{n+2}}{n+2}-\frac{(1+x)^{n+1}}{n+1}+C
$$

$$
\begin{aligned}
& \text { Let } x=0 \quad 0=\frac{1}{n+2}-\frac{1}{n+1}+C \\
& \therefore C=\frac{1}{n+1}-\frac{1}{n+2} \\
& \therefore x^{2} A(x)=\frac{(1+x)^{n+2}}{n+2}-\frac{(1+x)^{n+1}}{n+1}+\frac{1}{n+1}-\frac{1}{n+2} \\
& =\frac{(1+x)^{n+2}-1}{(n+2)}-\frac{(1+x)^{n+1}-1}{(n+1)}
\end{aligned}
$$

(iv) Let $x=1$ in (iv)

$$
A(1)=\frac{2^{n+2}-1}{n+2}-\frac{2^{n+1}-1}{n+1}
$$

Also let $x=1$ in original eq'n

$$
\begin{aligned}
A(1)
\end{aligned}=\frac{1}{2}+\frac{1}{3}\binom{n}{1}+\frac{1}{4}\binom{n}{2}+\cdots+\frac{1}{n+2}\binom{n}{n} .
$$

