\qquad
\qquad
Teacher Name: \qquad

ABBOTSLEIGH

AUGUST 2011

YEAR 12
ASSESSMENT 4

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time -3 hours.
- Write using black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks - 120

- Attempt Questions 1-8.
- All questions are of equal value
- Answer each question in a new booklet.

Outcomes assessed

HSC course

E1 appreciates the creativity, power and usefulness of mathematics to solve a broad range of problems
E2 chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings
E3 uses the relationship between algebraic and geometric representations of complex numbers and of conic sections
E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials
E5 uses ideas and techniques from calculus to solve problems in mechanics involving resolution of forces and resisted motion
E6 combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions
E7 uses the techniques of slicing and cylindrical shells to determine volumes
E8 applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems
E9 communicates abstract ideas and relationships using appropriate notation and logical argument

Harder applications of the Extension 1 Mathematics course are included in this course. Thus the Outcomes from the Extension 1 Mathematics course are included.

From the Extension 1 Mathematics Course Preliminary course

PE1 appreciates the role of mathematics in the solution of practical problems
PE2 uses multi-step deductive reasoning in a variety of contexts
PE3 solves problems involving inequalities, polynomials, circle geometry and parametric representations
PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas
PE5 determines derivatives that require the application of more than one rule of differentiation
PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

HSC course

HE1 appreciates interrelationships between ideas drawn from different areas of mathematics
HE2 uses inductive reasoning in the construction of proofs
HE3 uses a variety of strategies to investigate mathematical models of situations involving projectiles, simple harmonic motion or exponential growth and decay
HE4 uses the relationship between functions, inverse functions and their derivatives
HE5 applies the chain rule to problems including those involving velocity and acceleration as functions of displacement
HE6 determines integrals by reduction to a standard form through a given substitution
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

Total marks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Marks
QUESTION 1 (15 Marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{1+x}{4+x^{2}} d x$

2
(b) By completing the square find $\int \frac{1}{\sqrt{6-x^{2}-x}} d x$
(c) Find $\int \sin ^{3} x \cos ^{3} x d x$
(d) Use integration by parts to evaluate $\int_{0}^{\ln 2} x e^{-x} d x$. Give your answer in simplest form.

3
(e) By making the numerator rational, or otherwise, find $\int \sqrt{\frac{5-x}{5+x}} d x$
(f) Use a trigonometric substitution to find $\int \frac{d x}{x^{2} \sqrt{4-x^{2}}}$

QUESTION 2 (15 Marks) Use a SEPARATE writing booklet.
(a) The following is a sketch of a function $y=f(x)$

Not to scale

Draw separate one-third page sketches of the following: (clearly showing important features)
(i) $y=-f(x)$
(ii) $y=\sqrt{f(x)}$
(iii) $y=f(1-x)$
(iv) $y=\cos ^{-1} f(x)$
(v) $y=\frac{1}{1-f(x)}$
(b) Write down the equation of $P(x)$ if it is a monic polynomial of degree 3 with integer coefficients, a constant term of 12 and one root equal to $\sqrt{3}$. Leave your answer in factored form.
(c) Evaluate $\int_{0}^{3}|x+1| d x$
(d) The base of a solid is in the circle $x^{2}+y^{2}=16$ and every plane section perpendicular to the x axis is a rectangle whose height is twice its base (which lies inside the circle). Find the volume of the solid.

QUESTION 3 (15 Marks) Use a SEPARATE writing booklet.
(a) Let $z=\frac{2-3 i}{1+i}$
(i) Find \bar{z} in the form $x+i y$
(ii) Evaluate $|z|$
(b) Consider $w=-\sqrt{3}+i$
(i) Express w in modulus-argument form
(ii) Hence or otherwise show that $w^{7}+64 w=0$
(c) Sketch the region in the complex plane where the inequalities $1 \leq|z-i| \leq 2$ and $\operatorname{Im}(z) \geq 0$ hold simultaneously.

Clearly mark in all \boldsymbol{x} and \boldsymbol{y} intercepts.

(d) In an Argand diagram z is a point on the circle $|z|=2$.

Given that $\arg z=\theta$ and $0<\theta<\frac{\pi}{2}$
(i) Draw a diagram to represent this information.
(ii) Find, in terms of θ, an expression for $\arg z^{2}$
(iii) Find, in terms of θ, giving brief reasons, expressions for:
(A) $\arg (z+2)$
(B) $\arg (z-2)$
(C) $\left|\frac{z-2}{z+2}\right|$

QUESTION 4 (15 Marks) Use a SEPARATE writing booklet.
(a) Consider the rectangular hyperbola $x y=c^{2}$ where $c>0$.

(i) Prove that the equation of the chord joining points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ where $0<p<q$ is given by $x+p q y=c(p+q)$.
(ii) The chord $P Q$ intersects the x and y axes at A and B respectively. Prove $A P=B Q$.
(iii) Show that the area enclosed by the hyperbola $x y=c^{2}$ and chord $P Q$ is $\frac{c^{2}\left(q^{2}-p^{2}\right)}{2 p q}+c^{2} \ln \left(\frac{p}{q}\right)$ square units.
(b) (i) Divide the polynomial $P(x)=x^{4}+3 x^{3}-7 x^{2}+11 x-1$ by $x^{2}+2$ and write your result in the form $P(x)=\left(x^{2}+2\right) Q(x)+c x+d$.
(ii) Hence determine the values of a and b for which the polynomial $\left(x^{4}+3 x^{3}-7 x^{2}+2 x\right)+a x+b$ is exactly divisible by $x^{2}+2$.
(c) The equation $|z-3|+|z+3|=10$ corresponds to an ellipse in the Argand diagram.
(i) Prove that the equation of the ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
(ii) Sketch the ellipse showing all important features.

QUESTION 5 (15 Marks) Use a SEPARATE writing booklet.
(a) If $u_{1}=1, u_{2}=5$ and $u_{n}=5 u_{n-1}-6 u_{n-2}$ for integers $n \geq 3$, prove by induction that $u_{n}=3^{n}-2^{n}$ for integers $n \geq 1$.
(b) In the diagram below $P Q$ and $R M$ are parallel chords in a circle. The tangent at Q meets $R M$ produced at S and $S K$ is another tangent to the circle. $P K$ cuts $R M$ at L.

(i) Copy or trace this diagram into your answer booklet.

Let $\angle S Q K=x^{\circ}$ and prove $\angle S Q K=\angle S L K$
(ii) Explain why $L K S Q$ is a cyclic quadrilateral.
(iii) Prove $P L=Q L$
(c) It is given that $\sum_{r=0}^{n}(-1)^{n} \frac{{ }^{n} C_{r}}{x+n}=\frac{n!}{x(x+1)(x+2) \ldots \ldots .(x+n)}$. (DO NOT PROVE)

Hence prove $1-\frac{1}{2}{ }^{n} C_{1}+\frac{1}{3}{ }^{n} C_{2}-\ldots \frac{(-1)^{n}{ }^{n} C_{n}}{n+1}=\frac{1}{n+1}$

Question 5 continues on the next page.

(d) The curve $y=8 x-x^{2}$ and the line $y=12$ is sketched below.

(i) Find the coordinates of the points of intersection A and B
(ii) The shaded area is rotated around the y axis.

Use the method of cylindrical shells to find the exact volume formed. (You may leave your answer unsimplified in fractional form)

QUESTION 6 (15 Marks) Use a SEPARATE writing booklet.
(a) (i) If $\frac{1}{x(\pi-2 x)}=\frac{A}{x}+\frac{B}{\pi-2 x}$ and $A=\frac{1}{\pi}$ find B in terms of π.
(ii) Hence show that $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{d x}{x(\pi-2 x)}=\frac{2}{\pi} \ln 2$
(iii) By using the substitution $u=a+b-x$ show that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x
$$

(iv) Hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos ^{2} x d x}{x(\pi-2 x)}$
(b) A curve is defined by the equation $y=\frac{a}{2}\left(e^{\frac{x}{a}}+e^{-\frac{x}{a}}\right)$
(i) Show that $1+\left(\frac{d y}{d x}\right)^{2}=\frac{y^{2}}{a^{2}}$
(ii) The arc length S between points $(0, a)$ and (x, y) of the curve is given by

$$
S=\int_{0}^{x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \quad \text { (DO NOT PROVE THIS) }
$$

$$
\text { Show that } S=\sqrt{y^{2}-a^{2}}
$$

QUESTION 7 (15 Marks) Use a SEPARATE writing booklet.
(a) (i) Explain why the domain of the function, $f(x)=\sqrt{2-\sqrt{x}}$ is $0 \leq x \leq 4$
(ii) Show that $f(x)$ is a decreasing function and hence find its range.
(iii) Using the substitution, $u=2-\sqrt{x}$ or otherwise, find the area bounded by the curve and the x and y axes.
(b) Let $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ where n is an integer and $n \geq 3$.

Show that $I_{n}+I_{n-2}=\frac{1}{n-1}$
(c) A body mass of 1 kg falls vertically downwards, from rest, in a medium which exerts a resistance to its motion of $\frac{1}{100} v^{2}$ Newtons (where v metres per second is the speed of the body when it has fallen a distance of x metres).
(i) Show (on a diagram) that the equation of motion of the body is $\ddot{x}=g-\frac{1}{100} v^{2}$ where g is the acceleration due to gravity.
(ii) Show that the terminal speed V_{T} is given by $V_{T}=10 \sqrt{g}$
(iii) Prove that $v^{2}=\left(V_{T}\right)^{2}\left(1-e^{-\frac{x}{50}}\right)$

QUESTION 8 (15 Marks) Use a SEPARATE writing booklet.
(a) A curve is defined implicitly by the equation $x^{2}+2 x y+y^{5}=4$
(i) Show that the gradient of the tangent at $P(X, Y)$ is given by

$$
\frac{d y}{d x}=\frac{-2 X-2 Y}{5 Y^{4}+2 X}
$$

(ii) The tangent is horizontal at P. Show that X satisfies $X^{5}+X^{2}+4=0$.
(iii) Show that X is the unique real solution of $X^{5}+X^{2}+4=0$ and that $-2<X<-1$
(b) (i) Solve $\tan 4 \theta=1$ for $0 \leq \theta \leq \pi$
(ii) Express $\tan 2 \theta$ in terms of $\tan \theta$.
(iii) Hence show $\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}$.
(iv) Hence show $x^{4}+4 x^{3}-6 x^{2}-4 x+1=0$ has roots

$$
\begin{equation*}
\tan \frac{\pi}{16}, \tan \frac{5 \pi}{16}, \tan \frac{9 \pi}{16} \text { and } \tan \frac{13 \pi}{16} . \tag{2}
\end{equation*}
$$

(v) Hence evaluate $\tan \frac{\pi}{16} \tan \frac{5 \pi}{16} \tan \frac{9 \pi}{16} \tan \frac{13 \pi}{16}$
(vis1) By solving $x^{4}+4 x^{3}-6 x^{2}-4 x+1=0$ another way, show the exact value of

$$
\begin{equation*}
\tan \frac{\pi}{16}-\cot \frac{\pi}{16}=-2-2 \sqrt{2} \tag{2}
\end{equation*}
$$

TABLE OF STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \\
& =\ln x, \quad x>0 \\
& \int e^{a x} d x=\quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \\
& x>0
\end{aligned}
$$

Ex $\neq 2$ Trial Solutions 2011
QI
a) $\int \frac{1+x}{4+x^{2}} d x=\int \frac{1}{4+x^{2}} d x+\frac{1}{2} \int \frac{2 \pi x}{4+x^{2}} d x$ $=\frac{1}{2} \tan ^{-1} \frac{x}{2}+\frac{1}{2} \ln \left(4+x^{2}\right)+c$
b) $\int \frac{1}{\sqrt{6-x^{2}-x}}=\int \frac{1}{\sqrt{-\left(x^{2}+x-6\right)}}$

$$
=\int \frac{1}{\left.\sqrt{-\left[\left(x^{2}-x+\frac{1}{4}\right)\right.}-\frac{25}{4}\right]}
$$

$$
=\int \frac{1}{\sqrt{\left(\frac{5}{2}\right)^{2}-\left(x+\frac{1}{2}\right)^{2}}}
$$

$=\sin ^{-1} \frac{x+\frac{1}{2}}{5 / 2}+c$
$=\sin ^{-1} \frac{2 x+1}{5}+c$
c) $\int \sin ^{3} x \cos ^{3} x d x=\int \sin ^{3} x \cos x\left(1-\sin ^{2} x\right) d x$

$$
\begin{aligned}
& =\int \sin ^{3} x \cos x-\int \sin ^{5} x \cos x d x \\
& =\frac{\sin ^{4} x}{4}-\frac{\sin ^{6} x}{6}+c
\end{aligned}
$$

d) $\int_{0}^{\ln 2} x e^{-x} d x \quad$ Lt $u=x \quad d v=e^{-x} d x$ $=\left[-x e^{-x}\right]_{0}^{\ln 2}+\int_{0}^{\operatorname{le}^{2}-x} d x$
$=-\ln 2 e^{-\ln 2}-0+\left[0-e^{-x}\right]_{0}^{\ln 2}$
$=-\ln 2 \times \frac{1}{2}+\left(-e^{-\ln 2}--e^{e}\right)$
$=-\frac{\ln 2}{2}-\frac{1}{2}+1=\frac{1-\ln 2}{2}$

Q1 e) $\int \frac{\sqrt{5-x}}{\sqrt{5+x}} \cdot \frac{\sqrt{5-x}}{\sqrt{5-x}}=\int \frac{5-x}{\sqrt{25-x^{2}}} d x$
$=\int \frac{5}{\sqrt{25-x^{2}}} d x+\frac{1}{2} \int \frac{-2 x}{\sqrt{25-x^{2}}} d x$
$=5 \sin ^{-1} \frac{x}{5}+\sqrt{25-x^{2}}+c$
$f)=\int \frac{d x}{x^{2} \sqrt{4-x^{2}}} \quad \begin{aligned} & \text { Construct right angled } \Delta \\ & \text { with sinallur length } \sqrt{4-x^{2}} \text { : }\end{aligned}$

$$
\begin{aligned}
x+2
\end{aligned} \begin{aligned}
\sin \theta & =\frac{x}{2} \\
x & =2 \sin \theta \\
d x & =2 \cos \theta d \theta \\
\text { also, } \cos \theta & =\frac{\sqrt{4-x^{2}}}{2}
\end{aligned}
$$

$$
\therefore=\int \frac{2 \cos \theta d \theta}{4 \sin ^{2} \theta \cdot 2 \cos \theta}
$$

$$
\therefore \sqrt{4-x^{2}}=2 \cos \theta
$$

$$
=\frac{1}{4} \int \frac{d \theta}{1 \cdot L^{2} \theta}
$$

$$
=\frac{1}{4} \int \operatorname{cosec}^{2} \theta d \theta
$$

$$
=-\frac{1}{4} \cot \theta+c
$$

$$
=-\frac{\sqrt{4-x^{2}}}{4 x}+c
$$

2) (a) (i) All diagrams are not strictly to scale.

$$
\begin{aligned}
& y=f(1-x)=f\left(-(x-1)^{\prime},\right. \\
& \text { flip over } y \text { axis } \\
& \text { and shift 1 to } \\
& \text { the right } \\
& x=0 \quad f(1)=0 \\
& x=1 \quad f(0)=1 \\
& x=2 \quad f(-1)=2 \\
& x=-1 \quad f(2)=1 \\
& x=3 \quad f(-2)=1 \\
& x=4 \quad f(-3)=0
\end{aligned}
$$

Q2b) $P(x)=\left(x^{2}-3\right)(x-4)$
c) $\int_{0}^{3}|x+1| d x=\begin{array}{r}\text { area under } \\ \text { graph: }\end{array}$

(d)

typical rectangular
prism has vol:

$$
\begin{gathered}
=8 y^{2} \delta x \\
\therefore V=\int_{-4}^{4} \delta y^{2} d x
\end{gathered}
$$

given the symmetry $V=2 \int_{0}^{4} 8 y^{2} d x$

$$
\begin{aligned}
& =16 \int_{0}^{4} 16-x^{2} d x \\
& =16\left[16 x-\frac{x^{3}}{3}\right]_{0}^{4} \\
& =16\left[\left(64-\frac{64}{3}\right)-0\right] \\
& =\frac{2048}{3} u^{3}
\end{aligned}
$$

Q 3

$$
\begin{aligned}
(a)(i) & \frac{2-3 i}{1+i} \cdot \frac{1-i}{1-i} \\
& =\frac{2-2 i-3 i+3 i^{2}}{1+i} \\
& =-\frac{1}{2}-\frac{5 i}{2} \\
\therefore \bar{Z} & =-\frac{i}{2}+\frac{5 i}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
|z| & =\sqrt{\frac{1}{4}+\frac{25}{4}} \\
& =\frac{\sqrt{26}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6)(i) } \omega=-\sqrt{3}+i \\
& \therefore \omega=2 \operatorname{cis} \frac{5 \pi}{6} \quad \frac{\left.1 / \frac{2}{2}\right)^{2}}{\sqrt{3}} \\
& \text { (ii) } \begin{aligned}
\omega^{7}+64 \omega & =2^{7} \operatorname{cis} \frac{35 \pi}{6}+64 \cdot 2 \operatorname{cis} \frac{5 \pi}{6} \\
& =128 \operatorname{cis}\left(\frac{-\pi}{6}\right)+128 \operatorname{is} \frac{5 \pi}{6} \\
& =-128 \operatorname{cis} \frac{5-\pi}{6}+128 \operatorname{cis} \frac{5 \frac{\pi}{6}}{6} \\
& =0
\end{aligned}
\end{aligned}
$$

For x intercepts, longer circle given by

$$
x^{2}+(y-1)^{2}=4
$$

when $y=0$

$$
\begin{aligned}
x^{2}+1 & =4 \\
x^{2} & =3 \\
x & = \pm \sqrt{3}
\end{aligned}
$$

Q3 (d)
(i)

(ii)

$$
\begin{aligned}
\arg z^{2} & =2 \arg z \\
& =2 \theta
\end{aligned}
$$

(iii) A.

$Z+2$ can be represented by te vector, V.

$$
\arg (z+2)=\alpha
$$

where $\alpha=\frac{\theta}{2}$ (angle at the centre = twice angle at the circumference)

$z-2$ con te represented by the vector, w

$$
\arg (z-2)=\beta
$$

$$
\beta=\alpha+90^{\circ} \text { (ext angle of } \Delta \text {, }
$$ the Δ is right-angled (angle in semi-citcle))

$$
=\frac{\theta}{2}+90
$$

C. $\left|\frac{z-2}{z+2}\right|=\frac{|z-2|}{|z+2|}=\frac{|w|}{|v|}$

Now $\tan \alpha=\frac{|\omega|}{N \mid}$
i.e $\tan \frac{\theta}{2}=\frac{|\omega|}{|V|}$

24
a) $x y=c^{2}$

$$
\begin{aligned}
\text { (i) } M_{p Q} & =\frac{c}{p}-\frac{c}{q} \\
c p-c q & =\frac{c \frac{q-p}{p q}}{c(p-q)}=\frac{-(p-q)}{p q} \\
\therefore y-\frac{c}{p} & =-\frac{1}{p q}(x-c p) \\
\therefore p q y-c q & =-x+c p \\
x+p q y & =c(p+q)
\end{aligned}
$$

(ii) Chord at x axis: $x=c(p+q)$ ie $A[(c(p+q), 0)]$ at y axis: $p q y=c(p+q)$ ie $\beta\left(0, \frac{c(p+q)}{p q}\right)$

$$
\begin{aligned}
\left(d_{A O}\right)^{2} & =(c p-c(p+q))^{2}+\left(\frac{c}{p}\right)^{2} \\
& =c^{2} q^{2}+\frac{c^{2}}{p^{2}} \\
\left(d_{B Q}\right)^{2} & =(c q-0)^{2}+\left[\frac{c}{q}-\frac{c(p+q)}{p q}\right]^{2} \\
& =c^{2} q^{2}+\left[\frac{c p-c p-c q}{p q}\right]^{2} \\
& =c^{2} q^{2}+\frac{c^{2}}{p^{2}} \\
& =\left(d_{A P}\right)^{2} \\
\therefore d_{A P} & =d_{B Q}
\end{aligned}
$$

(iii) Area $=$ trapezium $P Q R S-\int_{c p}^{c q} \frac{c^{2}}{x} d x$

$$
\begin{aligned}
& =\frac{1}{2} c(q-p)\left[c\left(\frac{1}{p}+\frac{1}{q}\right)\right]-c^{2} \int_{c p}^{c q} \frac{1}{x} d x \\
& =\frac{1}{2} c^{2}(q-p) \frac{(q+p)}{p q}-c^{2}[\ln x]_{c p}^{c q} \\
& =\frac{1}{2} c^{2} \frac{\left(q^{2}-p^{2}\right)}{p q}-c^{2}(\ln c q-\ln (p) \\
& =c^{2} \frac{\left(q^{2}-p^{2}\right)}{}+c^{2} \ln \left(\frac{p}{q}\right)
\end{aligned}
$$

4(b) (i) $x ^ { 2 } + 2 \longdiv { x ^ { - } + 3 x - 9 }$

$$
-\frac{\left(x^{4}+\frac{\left.2 x^{2}\right)}{3 x^{3}-9 x^{2}}\right.}{\text { (}}
$$

$$
\frac{-\left(3 x^{3}+6 x\right)}{-9 x^{2}+5 x}
$$

$$
\frac{-\left(-9 x^{2}-18\right)}{5 x+17}
$$

$P(x)=\left(x^{2}+2\right)\left[x^{2}+3 x-9\right]+5 x+17$
(ii) $x^{2}+2$ divides in to the first 3 terms
as above, but the algorithym gets modified with the $2 x$

$$
\begin{aligned}
& -\frac{2 x}{-(+6 x)} \\
& -9 x^{2}-4 x \\
& -\frac{\left(-4 x^{2}-15\right)}{-4 x+18} \leftarrow \text { Remainder. }
\end{aligned}
$$

$\therefore a x+b \equiv 4 x-18$ to ensure the remainder cancels.
alternatively: use result

$$
\begin{aligned}
& x^{4}+3 x^{3}-7 x^{2}+11 x-1=\left(x^{2}+2\right)\left(x^{2}+3 x-9\right)+5 x+17 \\
& x^{4}+3 x^{3}-7 x^{2}+11 x-1-5 x-18=\left(x^{2}+2\right)\left(x^{2}+3 x-9\right) \\
& x^{4}+3 x^{3}-7 x^{2}+6 x-18=\left(x^{2}+2\right)\left(x^{2}+3 x-9\right) \\
& b=-18 \\
& 2 x+a x=6 x \\
& a=4
\end{aligned}
$$

(9)
(9)

(i) $|z-3|+|z+3|=10$

$$
\begin{aligned}
Z S+Z S^{\prime} & =2 a \quad \text { by definition. } \\
& =10
\end{aligned}
$$

$$
\therefore a=5
$$

$$
\begin{aligned}
b^{2} & =25-9 \quad(\text { from } \Delta 05 b) \\
& =16
\end{aligned}
$$

$$
\therefore b=4
$$

$$
\text { Hence } \frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

(ii) Directrices $x= \pm \frac{a}{e} \quad\left(e=\frac{3}{5}\right)$

$$
\therefore x= \pm 5 \times \frac{5}{3}
$$

$$
= \pm \frac{25}{3}
$$

force $(\pm 3,0)$

(10)

Q 5
(a) $u_{1}=1 \quad u_{2}=5 \quad u_{n}=5 u_{n-1}-6 u_{n-2}$

Prove $u_{n}=3^{n}-2^{n}$
For $n=3: \quad u_{3}=5 u_{2}-6 u_{1}$

$$
\begin{aligned}
& =5(5)-6(1) \\
& =19
\end{aligned}
$$

1. Show true for $n=3$

$$
\begin{aligned}
u_{3} & =3^{3}-2^{3} \\
& =27-8=19
\end{aligned}
$$

\therefore true for $n=3$
2. Assume true for $n=k$
i.e given $u_{k}=5 u_{k-1}-6 u_{k-2}$
then $u_{k}=3^{k}-2^{k}$
3. Prove true for $n=k+1$
i.e given $u_{k+i}=5 u_{k}-6 u_{k-1}$
show that $u_{k+1}=3^{k+1}-2^{k+1}$

$$
\begin{aligned}
L+1 S & =5 u_{k}-6 u_{k-1} \\
& =5\left(3^{k}-2^{k}\right)-6\left(3^{k-1}-2^{k-1}\right) \\
& =5\left(3^{k}-2^{k}\right)-\left[2 \cdot 3 \cdot 3^{k-1}\right]+\left[3 \cdot 2^{k} \cdot 2^{k-1}\right] \\
& =5 \cdot 3^{k}-5 \cdot 2^{k}-2 \cdot 3^{k}+3 \cdot 2^{k} \\
& =3 \cdot 3^{k}-2 \cdot 2^{k} \\
& =3^{k+1}-2^{k+1} \\
& =\text { RHO }
\end{aligned}
$$

Q $5(b)$
(i)
(ii)

$$
\angle S Q K=\angle Q P K=x
$$

(く between tangent a chord $=\langle$ in ait segment).

$$
\angle Q P K=\angle S \angle K
$$

(ionrespinding L's in II lines =;

$$
\therefore \angle S Q K=\angle S \angle K
$$

Both LSQK o CSCK stand on same $\operatorname{arC} K S$ of circle $\angle K S Q$
(iii) $\triangle K S Q$ is isosceles with $K S=Q S \therefore \angle S K Q=\angle S Q K=x$
(iii) in $\triangle K S Q, \angle K S Q=180-2 x$ ($\angle \sin$ of Δ)
\therefore in cyclic quad $(\angle K S Q)<K L Q=2 x$ (suppl with $\angle K S Q$).
now $\angle K \angle Q$ is ext $<$ of $\triangle P L Q$.

$$
\therefore \angle P Q \angle=x
$$

$\therefore \triangle P Q L$ is isosceles

$$
\therefore \angle Q=\angle P\left(\text { sides opp }=\angle{ }^{\prime} s\right) \text {. }
$$

$$
\begin{aligned}
& 5(c) \\
& \sum_{r=0}^{n}(-1)^{n} \frac{n c_{r}}{x+n}=\frac{n!}{x(x+1)(x+2) \cdots(x+n)} \\
& \text { if } x=1 \text { : } \\
& \sum_{r=0}^{n}(-1)^{n} \frac{n c_{r}}{1+n}=\frac{n!}{1(2)(3) \cdots(n+1)} \\
& \text { RHS }=\frac{n!}{(n+1)!} \\
& =\frac{1}{n+1} \\
& \text { iHS }=\frac{(-1)^{0}{ }^{n} C_{0}}{1}+\frac{(-1)^{1} C_{1}}{2}+\frac{(-1)^{2} C_{2}}{3}+\cdots+\frac{(-1)^{n} C_{n}}{1+n} \\
& 1+-\frac{n_{1}}{2}+\frac{n c_{2}}{3}+\cdots+\frac{(-1)^{n}}{1+n} \\
& \text { i.e } 1-\frac{1}{2} n_{1}+\frac{1}{3} n^{n} C_{2}-\cdots \frac{(-1)^{n}}{1+n}=\sum_{n+1}^{1} \\
& \text { (d) } 12=8 x-x^{2} \\
& x^{2}-8 x+12=0 \\
& (x-6)(x-2)=0 \\
& \text { POI: }(2,12) \&(6,12) \\
& \begin{array}{l}
\therefore \text { total volume } \\
=2 \pi \int_{2}^{6} x\left(8 x-x^{2}-12\right) d x \\
=2 \pi \int_{2}^{6} x^{3}-x^{3}-12 x d x
\end{array} \\
& =2 \pi \int_{2}^{6} 8 x^{2}-x^{3}-12 x d x \\
& =2 \pi\left[\frac{5 x^{3}}{3}-\frac{x^{4}}{4}-6 x^{2}\right]_{2}^{6} \\
& =2 \pi\left[\left(\frac{8 \times 6^{3}}{3}-\frac{6^{4}}{4}-6 \times 36\right)-\left(8 \times \frac{x^{3}}{3}-\frac{2^{4}}{4}-6 \times 4\right)\right] \\
& \text { Q6 } \\
& \text { a(i) } \frac{A(\pi-2 x)+B x}{x(\pi-2 x)}=\frac{1}{x(\pi-2 x)} \\
& \text { 六 }(\pi-2 x)+B x=1 \\
& 1-\frac{2 x}{\pi}+B x=1 \\
& B x=\frac{2 x}{\pi} \\
& \therefore B=\frac{2}{\pi} \\
& \text { (ii) } \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\pi} \frac{1}{x}+\frac{1}{\pi}\left(\frac{2}{\pi-2 x}\right) \\
& =\frac{1}{\pi} \ln x-\frac{1}{\pi} \ln (\pi-2 x) \\
& =\frac{1}{\pi}[\ln x-\ln (\pi-2 x)] \\
& =\frac{1}{\pi}\left[\ln \frac{x}{\pi-2 x}\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} \\
& =\frac{1}{\pi}\left[\ln \frac{\pi / 3}{\pi / 3}-\ln \frac{\frac{\pi}{6}}{4 \frac{\pi}{6}}\right] \\
& =\frac{1}{\pi}\left[0-\ln \frac{1}{4}\right] \\
& =\frac{1}{\pi}\left[-\ln 2^{-2}\right] \\
& =\frac{1}{\pi}[2 \ln 2] \\
& =\frac{2}{\pi} \ln 2
\end{aligned}
$$

(iii)

$$
\int_{a}^{b} f(x) d x \quad \text { Let } u=a+b-x \quad \Rightarrow d u=-d x
$$

$$
\text { when } x=a, u=b
$$

$$
x=b, \quad u=a
$$

$$
\begin{aligned}
\therefore \int_{a}^{b} f(x) d x & =\int_{b}^{a} f(a+b-u)-d u \\
& =\int_{a}^{b} f(a+b-u) d u \\
& =\int_{a}^{b} f(a+b-x) d x
\end{aligned}
$$

iv)

$$
\begin{aligned}
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos ^{2} x d x}{x(\pi-2 x)} & =\int \frac{\cos ^{2}\left[\frac{\pi}{6}+\frac{\pi}{3}-x\right] d x}{\left(\frac{\pi}{6}+\frac{\pi}{3}-x\right)\left[\pi-2\left(\frac{\pi}{6}+\frac{\pi}{3}-x\right)\right]} \\
& =\int \frac{\cos ^{2}\left(\frac{\pi}{2}-x\right) d x}{\left(\frac{\pi}{2}-x\right)\left[\pi-2\left(\frac{\pi}{2}-x\right)\right]} \\
& =\int \frac{12^{2} x}{\left(\frac{\pi}{2}-x\right)(2 x)} d x \\
& =\int \frac{1-\cos ^{2} x}{x(\pi-2 x)}
\end{aligned}
$$

So, $\int \frac{\cos ^{2} x d x}{x(\pi-2 x)}=\int \frac{1}{x(\pi-2 x)}-\frac{\cos ^{2} x}{x(\pi-2 x)} d x$

$$
\begin{aligned}
\therefore 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos ^{2} x d x}{x(\pi-2 x)} & =\frac{2}{\pi} \ln 2 \\
\therefore \int_{\frac{\pi}{6}}^{\pi \frac{3}{3}} \frac{\cos ^{2} x d x}{x(\pi-2 x} & =\frac{1}{\pi} \ln 2
\end{aligned}
$$

$$
\text { 6(b)(i) } \begin{aligned}
y & =\frac{a}{2}\left(e^{\frac{x}{4}}+e^{-\frac{x}{a}}\right) \quad \text { d } y^{2}=\frac{a^{2}}{4}\left[e^{2 \frac{x}{4}}+2+e^{-2 \frac{x}{a}}\right] \\
\frac{d y}{d x} & =\frac{a}{2}\left[\frac{1}{a} e^{\frac{x}{a}}-\frac{1}{a} e^{-\frac{x}{4}}\right] \\
& =\frac{1}{2}\left[e^{\frac{x}{a}}-e^{-\frac{x}{a}}\right]
\end{aligned}
$$

$$
\left(\frac{d y}{d x}\right)^{2}=\frac{1}{4}\left[e^{\frac{2 x}{a}}-2+e^{-2 \frac{x}{a}}\right]
$$

$$
1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{e^{2 x / 4}}{4}-\frac{1}{2}+\frac{e^{-2 x} 4}{4}
$$

$$
=\frac{1}{4}\left[e^{\frac{2 x}{4}}+2+e^{-2 x} 4\right.
$$

$$
=\frac{y^{2}}{a^{2}}
$$

(ii)

$$
\begin{aligned}
S=\int_{0}^{x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x & =\int_{0}^{x} \sqrt{\frac{y^{2}}{a^{2}}} d x \\
& =\int_{0}^{x} \frac{y}{a} d x \\
& =\frac{1}{2} \int_{0}^{x} e^{x / a}+e^{-x / a} d x \\
& =\frac{1}{2}\left[a e^{x / a}-a e^{-\frac{x}{a}}\right]_{0}^{x} \\
& =\frac{a}{2}\left[e^{x / a}-e^{-x / a}\right]-\frac{a}{2}[a-a] \\
\therefore S & =\frac{a}{2}\left[e^{x / a}-e^{-x / a}\right]
\end{aligned}
$$

and $y^{2}-a^{2}=\frac{a^{2}}{4}\left[e^{x / a}+e^{-3 / a}\right]^{2}-a^{2}$

$$
=\frac{a^{2}}{4}\left[\begin{array}{lll}
e^{2 x / a}
\end{array}+2+e^{-2 y a}-4\right]
$$

$$
=\frac{a^{2}}{4}\left[e^{2 x / a}-2+e^{-2 x} \frac{x}{8}\right]
$$

$$
=\frac{a^{2}}{4}\left(e^{\frac{x}{a}}-e^{-\frac{x}{4}}\right)^{2}
$$

$$
=s^{2}
$$

$$
\therefore S=\sqrt{y^{2}-a^{2}}
$$

Q7
(c) (1) $\left\{\begin{array}{l}\left\{_{i n g}^{\frac{1}{100} v^{2}} F\right. \\ =m \ddot{x}\end{array}=m g-\frac{1}{100} v^{2} \quad m=1\right.$
$a(i)$

$$
\begin{array}{ll}
f(x)=\sqrt{2-\sqrt{x}} & x \geqslant 0 \text { for } \sqrt{x} \\
& x \leqslant 4 \text { fo } \sqrt{2-\sqrt{4}}
\end{array}
$$

(ii)

$$
\begin{aligned}
f(x) & =\left(2-x^{\frac{2}{2}}\right)^{\frac{1}{2}} \\
f^{\prime}(x) & =\frac{1}{2} \cdot\left(-\frac{1}{2} x^{-\frac{1}{2}}\right)\left(2-x^{\frac{1}{2}}\right)^{-\frac{1}{2}} \\
& =\frac{-1}{4 \sqrt{x} \sqrt{2-\sqrt{x}}}<0 \text { for } 0 \leqslant x \leqslant 4
\end{aligned}
$$

\therefore a decrasing function

$$
\begin{array}{ll}
x=0 & f(x)=\sqrt{2} \\
x=4 & f(x)=0
\end{array}
$$

(ivi)

$$
\text { i) } \begin{aligned}
u & =2-\sqrt{x} \\
d u & =-\frac{1}{2} x^{-\frac{1}{2}} d x \\
& =-\frac{1}{2 \sqrt{x}} d x \\
\therefore d x & =-2 \sqrt{x} d u \\
& =-2(2-u) d u \\
\text { when } x & =4, u=0 \\
x & =0, u=2
\end{aligned}
$$

7 (b)

$$
\text { (b) } \begin{aligned}
& I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{x} x d x \\
&=\int_{0}^{\frac{\pi}{4}} \tan ^{2} x \tan ^{n-2} x d x \quad \\
&=\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) \tan ^{n-2} x d x \\
&=\int \sec ^{2} x \tan ^{n-2} x d x-\int \tan ^{n-2} x d x \\
&=\left[\frac{\tan ^{n-1} x}{n-1}\right]_{0}^{\frac{\pi}{4}}-I_{n-2} \\
& I_{n}=\left(\frac{1}{n-1}-0\right) \\
& \therefore I_{n}+I_{n-2}=\frac{1}{n-1}
\end{aligned}
$$

Range $0 \leqslant y \leqslant \sqrt{2}$

$$
\begin{aligned}
& \int_{0}^{4} \sqrt{2-\sqrt{x}} d x \\
= & -2 \int_{2}^{0} \sqrt{u}(2-u) d u \\
= & 2 \int_{0}^{2} 2 u^{\frac{1}{2}}-u^{\frac{3}{2}} d u \\
= & 2\left[\frac{4 u^{\frac{3}{2}}}{3}-\frac{2 u^{\frac{5}{2}}}{5}\right]_{0}^{2} \\
= & 2\left[\left(\frac{4}{3} 2^{\frac{3}{2}}-\frac{2}{5} 2^{\frac{5}{2}}\right)-(0-0)\right] \\
= & 2\left(\frac{8}{3} \sqrt{2}-\frac{5}{5} \sqrt{2}\right)=\frac{32 \sqrt{2}}{15}
\end{aligned}
$$

(ii) V_{T} occurs when $\ddot{x}=0$

$$
\text { i.e } \begin{aligned}
0 & =g-\frac{V_{T}^{2}}{100} \\
V_{T}^{2} & =100 g \\
V_{T} & =10 \sqrt{g}
\end{aligned}
$$

(15) $\ddot{x}=g-\frac{v^{2}}{100}$ we want $v=f(x)$

$$
\begin{aligned}
& V \frac{d v}{d x}=g-\frac{v^{2}}{100} \\
& =\frac{100 \mathrm{~g}-v^{2}}{100} \\
& \therefore \frac{d v}{d x}=\frac{100 \mathrm{~g}-v^{2}}{100 v} \Rightarrow \frac{d x}{d v}=\frac{100 v}{100 y-v^{2}} \\
& x=\int_{0}^{v} \frac{100 v}{100 g-v^{2}} d v \\
& x=-50 \int_{0}^{v} \frac{-2 v}{100 y-v^{2}} d v \\
& =\left[-50 \text { in }\left|\log -v^{2}\right|\right]_{0}^{v} \\
& \therefore x=-50 \ln \left(100 g-v^{2}\right)+50 \ln (100 g) \\
& =50 \ln \frac{100 g}{100 \mathrm{~g}-\nu^{-2}} \\
& \frac{x}{50}=\ln \frac{100 j}{100 j-v^{2}} \\
& e^{\frac{x}{\pi}}=\frac{\operatorname{logg}}{\log g-v^{2}} \\
& \frac{\log g-v^{2}}{100 j}=e^{-\frac{x}{50}} \\
& z^{2}=\log -\log g e^{-\frac{x}{50}} \\
& =\log \left(1-e^{-x} \sqrt{x 0}\right) \\
& =V_{T}^{2}\left(1-e^{-\frac{x}{100}}\right) \\
& 8\left(\text { (0) (i) } x^{2}+2 x y+y^{5}=4\right. \\
& 2 x+2 y+\frac{d y}{d x} 2 x+5 y^{4} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}\left[2 x+5 y^{4}\right]=-2 x-2 y \\
& \therefore \frac{d y}{d x}=\frac{-2 x-2 y}{2 x+5 y^{4}} \\
& \therefore D P(x, y), \frac{d y}{d x i}=\frac{-2 x-2 y}{2 x+5 y^{4}}
\end{aligned}
$$

(8) (b)

$$
\begin{array}{ll}
\text { (i) } \tan 4 \theta=1, & 0 \leqslant \theta \leqslant \pi \\
4 \theta=\frac{\pi}{4}, \pi+\frac{\pi}{4}, 2 \pi+\frac{\pi}{4}, 2 \pi+\frac{5 \pi}{4} \\
4 \theta=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \frac{13 \pi}{4} \\
\theta=\frac{\pi}{16}, \frac{5 \pi}{16}, \frac{9 \pi}{16}, \frac{13 \pi}{16}
\end{array}
$$

(ii) $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
(iii) Let $t=\tan \theta \quad \tan 4 \theta=\frac{2 \tan 2 \theta}{1-\tan ^{2} 2 \theta}$

$$
\begin{aligned}
& =\frac{2\left(\frac{2 t}{1-t^{2}}\right)}{1-\left(\frac{2 t}{1-t^{2}}\right)^{2}} \times \frac{\left(1-t^{2}\right)^{2}}{\left(1-t^{2}\right)^{2}} \\
& =\frac{4 t\left(1-t^{2}\right)}{\left(1-t^{2}\right)^{2}-4 t^{2}}=\frac{4 t-4 t^{3}}{1-2 t^{2}+t^{4}-4 t^{2}}
\end{aligned}
$$

$$
\therefore \tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}
$$

(iv) Let $\tan 4 \theta=1$ and $\tan \theta=x$

$$
\begin{gathered}
1=\frac{4 x-4 x^{3}}{1-6 x^{2}+x^{4}} \\
x^{4}-6 x^{2}+1=4 x-4 x^{3} \\
x^{4}+4 x^{3}-6 x^{2}-4 x+1=0
\end{gathered}
$$

Solus we $x=\tan \theta$ where θ is sole to $\tan 4 \theta=1$
\therefore solus are $\tan \frac{\pi}{16}, \tan \frac{5 \pi}{16}, \tan \frac{9 \pi}{16}, \tan \frac{13 \pi}{16}$.
(v) Product of roots $=+\frac{e}{a}$ in $x^{4}+4 x^{3}-6 x^{2}-4 x+1=0$

$$
=1
$$

$$
\begin{aligned}
& \text { (vi) } \\
& x^{4}+4 x^{3}-6 x^{2}-4 x+1=0 \\
& x^{2}\left(x^{2}+4 x-6-\frac{4}{x}+\frac{1}{x^{2}}\right)=0 \\
& x^{2} \neq 0\left(\left(x^{2}+\frac{1}{x^{2}}\right)+4\left(x-\frac{1}{x}\right)-6\right)=0 \\
& \left(\left(x-\frac{1}{x}\right)^{2}+2+4\left(x-\frac{1}{x}\right)-6\right)=0 \\
& \left(\left(x-\frac{1}{x}\right)^{2}+4\left(x-\frac{1}{x}\right)-4\right)=0
\end{aligned}
$$

Let $u=x+\frac{1}{x}$

$$
\begin{aligned}
& u^{2}+4 u-4=0 \\
& u=\frac{-4 \pm \sqrt{16+4 \times 4}}{2}=\frac{-4 \pm 4 \sqrt{2}}{2} \\
&=-2 \pm 2 \sqrt{2}
\end{aligned}
$$

$$
x-\frac{1}{x}=-2 \pm 2 \sqrt{2}
$$

smallest value is $\tan \frac{\pi}{16}-\frac{1}{\tan \frac{\pi}{16}}=-2-2 \sqrt{2}$

$$
\therefore \tan \frac{\pi}{16}-\cot \frac{\pi}{16}=-2-2 \sqrt{2}
$$

(ii) horiz a P suggests

$$
\begin{array}{r}
x=-y \\
\text { ie } x^{2}+2 x(-x)+(-x)^{5}=4 \\
x^{2}-2 x^{2}-x^{5}-4=0 \\
\text { i.e } x^{5}+x^{2}+4=0
\end{array}
$$

(iii) $\operatorname{Let} y=x^{5}+x^{2}+4$

$$
\begin{aligned}
\frac{d y}{d x}=5 x^{4}+2 x
\end{aligned} \quad \begin{aligned}
\text { Let } \frac{d y}{d x}=0 \quad 2 x+5 x^{4} & =0 \\
x\left(2+5 x^{3}\right) & =0 \\
x & =0 \text { or } x^{3}=\frac{-2}{5} \\
x & =\sqrt[3]{-\frac{2}{5}}
\end{aligned}
$$

$$
\frac{d^{2} y}{d x^{2}}=20 x^{3}+2
$$

$$
\partial x=0 \quad \frac{d^{2} y}{d x^{2}}=2>0 \quad \therefore U \text { min }
$$

at $x=\sqrt[3]{-\frac{2}{5}} \quad \frac{d^{2} y}{d x^{2}}=20\left(\sqrt[3]{\frac{-2}{5}}\right)^{3}+2<0 \wedge$ max
\therefore minat $(0,4)$ o max at $x=\sqrt[3]{\frac{-2}{5}}$

when $x=-1, y=-1+1+4>0$

$$
x=-2, y=-32+4+4<0
$$

\therefore a unique real solution occurs between $-1 \propto-2$.

