

H.S.C. TRIAL EXAMINATION, 1986 MATHEMATHCS - FORM 6 - 4 UNIT - SECOND PAPER

PAGE 2

Question 1

- (i) Find fcosec x dx by using the substitution $t = tan(\frac{x}{2})$
- (11) Find $\int_{X} \frac{dx}{(1+x^2)}$
- (iii) Find (a) $\int x \sqrt{x^2-1} dx$

(b)
$$\int_{1}^{2} x \sqrt{3x-2} \, dx$$

(iv) If $\int_{n} = \int_{0}^{1} x^{n} e^{x} dx$ where n is a positive

integer, show that

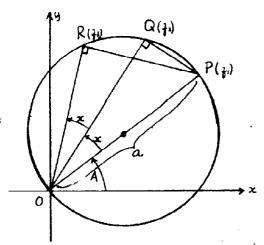
$$I_{n+1} = e - (n+1)I_n.$$

Hence evaluate $\int_{0}^{\frac{1}{4}} \frac{3}{t \cdot e} dt$ leaving your

answer in terms of e.

٠.

Question 2



- (1) P is the point on the

 Argand diagram for which

 OP = a and xÔP = A

 A circle is drawn on OP as
 a diameter, and on it Q

 and R are the points such
 that PÔQ = QOR = x

 The points P, Q, R represent
 the complex numbers z₁, z₂, z₃.
- (a) Show that $z_3 = a\cos 2x[\cos(2x+A)+i\sin(2x+A)]$ and express z_2 and z_1 also in the form $z=r(\cos 0 + i\sin 0)$.
- (b) Prove that $z_1 z_2 \cos^2 x = (z_2)^2 \cos 2x$.
- (ii) A point z on the Argand diagram is given by $z = t^2 + 2it$ where t = u + iv, and z = x + iy.
 - (a) Find expressions for x and y in terms of u and v.
 - (b) Show that the equation of the locus of z when $v = 0 \text{ and } u \text{ varies is } y^2 = 4x. \text{ Also find the locus of } z \text{ when }$
 - $(\dot{\alpha})$ v = 1 and u varies
 - (β) u = 0 and v varies

PAGE 4.

Question 3

(a) Prove that the curves

$$6y = x^3 + 3x^2 - 9x - 27$$

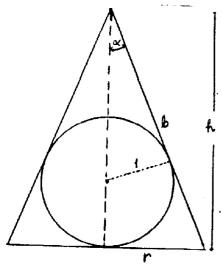
and
$$3y = x^3 - 3x^2 + 9x - 27$$

have one common point only and they cross one another there.

- (b) Sketch the parts of the curves for $-3.5 \le x \le 3.5$ and $-10 \le y \le 1$. Show maximum, minimum turning points and points of inflexions clearly.
- (c) Find the equation of the common tangent and the coordinates of all the points in which it meets each curve.

Question 4

A right circular cone is circumscribed about a given sphere; radium - 1. The circular base also touching the sphere.



- (i) Show that $r^2 = \frac{h^2}{h(h-2)}$
- (ii) If the total surface area of the cone is $(S = \pi r^2 + \pi r b)$ is to be a minimum, prove that the semi vertical angle α must be $\sin^{-1}(\frac{1}{3})$.

(ii) Given $u_1 = 1$, $u_2 = 5$, $u_n = 5u_{n-1} - 6u_{n-2}$ for $n = 2, 3, 4, \dots$

Prove that $u_n = 3^n - 2^n$ by using induction.

H.S.C. TRIAL EXAMINATION, 1986 ATHEMATICS - FORM 6 - 4 UNIT - SECOND PAPER

PAGE 6.

Question 5

- (a) Deduce that the equation of the tangent at $P(x_1y_1)$ on the hyperbola $x^2-y^2=1$ is $xx_1-yy_1=1$.
- (b) T (X,Y) is the point where the perpendicular from 0 the origin meets the tangent drawn at $P(x_1,y_1)$ on the hyperbola $x^2-y^2=1$.

 Deduce that the equation of OT is $y=-y_1^x$

Deduce that the equation of OT is $y = \frac{-y_1x}{x_1}$ and find expressions for X and Y in terms of x_1 and y_1 .

(c) Eliminate x_1 and y_1 from the equations in (b) and show that the equation of the locus of T as P moves on the hyperbola is $X^2 - Y^2 = (X^2 + Y^2)^2$

Question 6

- (a) A is the area of the region R bounded by the upper branch of the hyperbola $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$ the x axis and the lines $x = \pm a$
 - (a) Show that the area of region R is $A = ab[\sqrt{2} + \ln(1+\sqrt{2})] \text{ sq. units.}$
 - (b) S_1 is the solid whose base is the ellipse $E = \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$

Cross-section perpendicular to the base E and to the minor axis of E, are plane figures similar to region R. Find the volume of \mathbf{S}_1 .

(c) The solid $S_{\text{\tiny 2}}$ is obtained by rotating region R about the y axis.

Use the cylindrical shell method to computate the volume of $S_{\mbox{\scriptsize 2}}$

H.S.C. TRIAL EXAMINATION, 1986 MATHEMATICS - FORM 6 - 4 UNIT - SECOND PAPER

PAGE 8.

Question 7

- (i) The roots of a cubic equation are α , β and γ . $\Sigma\alpha^{t} = \alpha^{t} + \beta^{t} + \gamma^{t}.$ It is given that $\Sigma\alpha = -1$, $\Sigma\alpha^{2} = 7$, $\Sigma\alpha^{3} = 8$.
 - (a) Deduce that the equation is $x^3 + x^2 3x 6 = 0$.
 - (b) Using the above information, evaluate $3\Sigma\alpha^4$.
- (ii) At least one zero of $P(x) = 3x^3 + px^2 + 15x + 10$ is purely imaginary, p is real. Find p and hence write P(x) as a product of lineal factors.
- (iii) x_1 , x_2 and x_3 are the roots of x^3 +bx+c = 0. Find the cubic equation whose roots are x_1x_2 , x_1x_3 and x_2x_3 .

Question 8

- (i) D is any point on BC of triangle ABC. P is a point on the extension of side AB towards B such that BP = BD.

 The line through PD meets AC at E.
 - (a) Draw a clear diagram showing the given information
 - (b) Prove that PE is perpendicular to AC only if $\hat{CAB} = \hat{ACB}$
- (ii) AB and CD are the parellel sides of trapezium ABCD.

AB = 10cm, CD = 6cm. E and F are points on sides AD and CB respectively such that EF is parellel to AB.

EF divides the area of trapezium ABCD such that the area of trapezium EFCD is $\frac{2}{3}$ of the area of trapezium ABCD.

Find the length of interval EF.

...