\qquad

Ascham School

 2010
Mathematics Extension 2: Year 12 Trial Examination
 Time Allowed:
 3 hours plus 5 minutes' READING TIME
 Examination Date: 30 JUly 2010

Instructions

ALL QUESTIONS MAY BE ATTEMPTED.
ALL QUESTIONS ARE OF EQUAL VALUE (15 MARKS).
Elegance and Rigour in solutions will attract HIGHER MARKS.
All necessary working must be shown.
MARKS MAY NOT BE AWARDED FOR CARELESS OR POORLY ARRANGED WORK.
APPROVED CALCULATORS AND TEMPLATES MAY BE USED.

Collection

Start each question in a new booklet.
If you use a second booklet for a question, place IT INSIDE THE FIRST.
Attach the Graph Answer sheet to Q3 Answers. Write your name, teacher's name and question NUMBER ON EACH BOOKLET.

JMH
\qquad

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, \quad x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, \quad a \neq 0
\end{aligned}
$$

$$
\int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0
$$

$$
\int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0
$$

$$
\int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0
$$

$$
\int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

NOTE: $\ln x \quad=\log _{e} x, \quad x>0$

Name: \qquad

Question 1

(a) Use the Table of Standard Integrals to find $\int \frac{2 x d x}{\sqrt{x^{4}+16}}$.
(b) Evaluate $\int_{0}^{1} \sin (a \pi x) \sin (b \pi x) d x$ where $a, b \in \mathbb{Z}$.
(c) By using geometric evidence, explain why
(d) Let f be a continuous function for $-5 \leq x \leq 10$ and let $g(x)=f(x)+2$.

If $\int_{-5}^{10} f(t) d t=4$, what is $\int_{-5}^{10} g(u) d u$? Give reasons.
(e) Consider the lemniscate curve given by $\left(x^{2}+y^{2}\right)^{2}=12\left(x^{2}-y^{2}\right)$.

Find $\frac{d y}{d x}$.
\qquad

Question 2

(a) Find the Cartesian equation of the locus described by the equation $\operatorname{Re}(z)=|z-2|$.
Draw a sketch.
(b) (i) Sketch $|z-i|=\frac{1}{2}$.
(ii) Find the greatest value of $\arg z$ when $|z-i|=\frac{1}{2}$.

2
(c) Express $\sqrt{8+6 i}$ in the form $a+i b \quad(a>0)$ and hence solve the equation 4 $z^{2}+2(1+2 i) z-(11+2 i)=0$. Express answers in the form $x+i y, x, y \in \mathbb{R}$.
(d) Prove that any equation of the form $x^{3}-m x^{2}+n=0, m, n \neq 0$, cannot have 4 a triple root. Assuming the equation has a double root, find the relation between m and n.
\qquad

Question 3

(a) Consider the graph of the function $f(x)=|x|-1$ shown below.

Graph the transformations of $y=f(x)$ whose equations are shown below on the answer sheet provided at the back of this examination paper. Detach and place it with your answers to Question 3. Show distinguishing features. Sketch:
(i) $y=x f(x)$
(ii) $|y|=f(x)$
(iii) $y=e^{f(x)}$
(iv) $y=\sqrt{f(x)}$
(b) (i) Prove that if the line $a x+b y+c=0$ is a tangent to the circle $x^{2}+y^{2}=R^{2}$ then $R^{2}\left(a^{2}+b^{2}\right)=c^{2}$.
(ii) A straight line with equation $a x+b y+c=0$ moves so that the sum of the perpendicular distances, d_{1} and d_{2} from each of the points $(2,0)$ and $(-2,0)$ to the line is always equal to 6 units. Prove that the line always touches a circle and find the equation of this circle.
[You may assume for convenience that $c>2 a$ if required.]
\qquad

Question 4

(a) A solid yet buoyant life ring can be generated by rotating the ellipse $\frac{x^{2}}{64}+\frac{y^{2}}{25}=1$ around the line $x=28$.

Find the volume of rubber required to make it by taking slices perpendicular to the y-axis, using the steps:
(i) Show that the volume of 1 slice δy thick can be approximated by $V=\pi\left(\frac{896}{5} \sqrt{25-y^{2}}\right) \delta y$.
(ii) Hence find the volume of rubber required to make the life ring.
(b) Show that $\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x, n=1,2,3, \ldots$

Hence evaluate $\int_{0}^{1} x^{3} e^{x} d x$.
(c) A particle of mass 10 kg is found to experience a resistive force, in Newtons, of one-ninth of the square of its velocity v, in metres per second, when it moves through the air.
The particle is projected vertically upwards from a point O with a velocity of $30 \sqrt{3} \mathrm{~m} / \mathrm{s}$ and the point A , vertically above O , is the highest point reached by the particle before it starts to fall to the ground again.
Assuming the value of $g=10 \mathrm{~ms}^{-2}$,
(i) Explain why $\quad \ddot{x}=-10-\frac{1}{90} v^{2}$.
(ii) Find the time the particle takes to reach A from O .
\qquad

Question 5

(a) Solve the equation $\cos 3 x=\sin 7 x$.
(b) Consider the ellipse E with semi-major and semi-minor axes a and b. Point $P(a \cos \theta, b \sin \theta)$ lies on E. Rectangle $P Q R S$ is inscribed in E.
(i) Show that an expression for the perimeter, l, of $P Q R S$ is given by

$$
l=4 a \cos \theta+4 b \sin \theta
$$

(ii) Find the largest perimeter possible and the value of θ for which it occurs.
(c)

X and Y are points on the sides $B C$ and $A C$ of a triangle $A B C$ respectively such that $\angle A X C=\angle B Y C$ and $B X=X Y$.
Copy the diagram into your examination booklet then,
(i) prove $A B X Y$ is a cyclic quadrilateral.
(ii) Hence or otherwise, prove $A X$ bisects $\angle B A C$.
\qquad

Question 6

(a) (i) Evaluate exactly the integral $\int_{1}^{n} \ln x d x$.
(ii) Consider the curve $y=\ln x$. The area under the curve for
$1 \leq x \leq n$ is approximated by dividing it into rectangles under the curve each of width 1 unit.
See diagram below (not to scale).

Show that the sum of the rectangles, S_{u}, is given by

$$
S_{u}=\ln ((n-1)!) .
$$

Another approximation, S_{a}, is made by dividing the area into rectangles that lie above the curve. See diagram above (not to scale). Find a similar expression for this area, S_{a}.

Year 12 Trial Examination Mathematics Extension 22010
© Ascham School
Name: \qquad

Question 6 (a) continued

(iv) Hence explain why

$$
\begin{equation*}
\ln ((n-1)!)<n \ln n-n+1<\ln (n!) \tag{1}
\end{equation*}
$$

(v) Further, show that
(b) (i) Use the substitution $t=\tan \frac{x}{2}$ to prove $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x}=\frac{\pi}{3 \sqrt{3}}$.
(ii) Show that $\int_{0}^{2 a} f(x) d x=\int_{0}^{a}\{f(x)+f(2 a-x)\} d x$. 2

$$
\text { [Hint: let } w=2 a-x .]
$$

(iii) Hence or otherwise evaluate $\int_{0}^{\pi} \frac{x d x}{2+\sin x}$.
\qquad

Question 7

(a) Show that:

$$
\cot 2 x-\tan 2 x=2 \cot 4 x
$$

Hence prove by Mathematical Induction that for $n=1,2,3, \ldots$
$\tan x+2 \tan 2 x+4 \tan 4 x+\ldots+2^{n-1} \tan \left(2^{n-1} x\right)=\cot x-2^{n} \cot \left(2^{n} x\right)$.
(b)

Consider the diagram (not to scale) of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and circle $x^{2}+y^{2}=a^{2} . T$ lies on the circle and P lies on the hyperbola.
(i) Show that P has coordinates $P(a \sec \theta, b \tan \theta)$.

Q lies on the hyperbola and has coordinates $Q(a \sec \phi, b \tan \phi)$.
(ii) If $\theta+\phi=\frac{\pi}{2}, \theta \neq \frac{\pi}{4}$, show that the chord PQ has equation
$a y=b(\cos \theta+\sin \theta) x-a b$.
(iii) Show that every such chord passes through a fixed point and find its coordinates.
(iv) Show that as θ approaches $\frac{\pi}{2}$, the chord PQ approaches a line parallel to an asymptote.
\qquad

Question 8

(a) Sketch the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$, where $a>0$ for $x \geq 0, y \geq 0$.

Show that the curve touches the x, y axes.
The tangent at $P\left(x_{0}, y_{0}\right)$ on it has equation $y_{0}^{\frac{1}{3}} x+x_{0}^{\frac{1}{3}} y=x_{0}^{\frac{1}{3}} y_{0}^{\frac{1}{3}} a^{\frac{2}{3}}$.
This tangent cuts the x and y axes at A and B respectively. Show that the line segment $A B$ is independent of the position of P.
(b) Let $\rho=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$.

The complex number $\alpha=\rho+\rho^{2}+\rho^{4}$ is a root of the quadratic equation $x^{2}+a x+b=0$ where a and b are real.
(i) Prove that $1+\rho+\rho^{2}+\ldots+\rho^{6}=0$.
(ii) The second root of the quadratic equation is β. Express β in terms of positive powers of ρ. Justify your answer.
(iii) Find the values of the coefficients a and b.
(iv) Deduce that $-\sin \frac{\pi}{7}+\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}=\frac{\sqrt{7}}{2}$.
End of fun!
\qquad

This page has been left intentionally blank
\qquad
Year 12 Ext 2 Graphing Transformations Answer sheet - DETACH and PLACE in QUESTION 3 booklet

$$
y=f(x)
$$

$|y|=f(x)$

$y=\sqrt{f(x)}$

$$
y=x f(x)
$$

$$
y=e^{f(x)}
$$

Solutions to
Title: Ascham 2010 Ext 2 Maths Trinal Yr 12
120
Q1 a) $\int \frac{2 x d x}{\sqrt{x^{4}+16}}=\ln \left(x^{2}+\sqrt{x^{4}+16}+c\right)$
b) $\int_{0}^{1} \sin (a \pi x) \sin (b \pi x) d x$
$=\int_{0}^{1} \frac{1}{2}[\cos (a-b) \pi x-\cos (a+b) \pi x] d x$
$=\frac{1}{2}\left[\frac{\sin (a-b) \pi x}{(a-b) \pi}-\frac{\sin (a+b) \pi x}{(a+b) \pi}\right]_{0}^{1}$
$=\frac{1}{2}\left[\frac{\sin (a-b) \pi}{(a-b) \pi}-\frac{\sin (a+b) \pi}{(a+b) \pi}\right.$
(3) $-\left(\frac{\left.\left.\sin \frac{0}{(a-b) \pi}-\frac{\sin 0}{(a+b) \pi}\right)\right]}{(a-b \in \mathbb{\pi}}\right.$
since $a, b \in \mathbb{Z}$ then $\sin (a \pm b) \pi=0$
$=0$ unless $a= \pm b$ then undefined
 0| $=\int y^{\frac{1}{n}} d y$ then $\int_{0}^{1} x^{n} d x+\int_{0}^{1} x^{\frac{1}{n}} d x=$ Sum of areas

Q2 a) $\begin{aligned} & \text { is } \\ & 0\end{aligned}$
b)

$y^{2}=4(x-1)$.
Find θ :
$\xrightarrow[0]{0 \arg z} x \quad \theta=\frac{\pi}{6}$. (2)
\therefore Max avg $z=\frac{\pi}{2}+\frac{\pi}{6}=\frac{2 \pi}{3}$
C) Let $\sqrt{8+6 i}=a+i b, a>0$.

$$
\therefore(a+i b)^{2}=8+6 i
$$

$a^{2}+2 a i b+i^{2} b^{2}=8+6 i$
$a^{2}-b^{2}=8 \quad 2 a b=6 \Rightarrow a b=3$.
By inspection, $a=3, b=1$.
$\therefore \sqrt{8+6 i}=3+i$
$z^{2}+2(1+2 i) z-(11+2 i)=0$ under curve sod to night of y-axis They are inverse functions so sum $=1 . x$
d) $\int_{-5}^{10} f(t) d t=4 \quad \therefore \int_{-5}^{10} g(u) d u$
$=\int_{-5}^{10} g(x) d x=\int_{-5}^{10} f(x)+2 d x$
$=\int_{-5}^{10} f(x) d x+\int_{-5}^{-5} 2 d x=4+[2 x]_{-5}^{10}$

$$
\begin{align*}
z & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-2(1+2 i) \pm \sqrt{4(1+2 i)^{2}-4(1)(-(1+2 i)}}{2(1)} \tag{3}\\
& =\frac{-2-4 i \pm \sqrt{4(1+4 i-4)+44+8 i}}{2}
\end{align*}
$$

$$
=\frac{-2-4 i \pm \sqrt{4(4 i-3)+44+8 i}}{2}
$$

$$
=-2-4 i \pm \sqrt{-12+16 i+44+8 i}
$$

e) $\left(x^{2}+y^{2}\right)^{2}=12\left(x^{2}-y^{2}\right)=4+30=34$
$\therefore 2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)=12\left(2 x-2 y \frac{d y}{d x}\right)$

$$
2
$$

$$
\begin{equation*}
=\frac{-2-4 i \pm \sqrt{32+24 i}}{2} \tag{4}
\end{equation*}
$$

$4\left(x^{2}+y^{2}\right) x+4\left(x^{2}+y^{2}\right) y \frac{d y}{d x}=24 x-24 y \frac{d y}{d x}$
. $4\left(x^{2}+y^{2}\right) y \frac{d y}{d x}+24 y \frac{d y}{d x}=24 x-1\left(x^{2}+y^{2}\right) x$
(4) $\begin{aligned}=\frac{-2-4 i \pm(6+2 i)}{2} & =\frac{4-2 i}{2} \text { or } \frac{-8-6 i}{2} \\ & =2-i \text { or }-4-3 i\end{aligned}$

$$
=\frac{-2-4 i \pm 2 \sqrt{8+6 i}}{2}
$$

$$
=\frac{-2-4 i \pm 2(3+i)}{2}
$$

$\therefore \frac{d y}{d x}=\frac{24 x-4\left(x^{2}+y^{2}\right) x}{4\left(x^{2}+y^{2}\right) y+24 y}$ (4)

$$
=\frac{-2-i \text { or }-4-3 i}{2}
$$

Solutions to
Title: Ascham $2010 E_{x} t 2$ Maths Trial $Y_{r} 12 \sqrt{120}$ contd d
Q2 contd d) If $P(x)=0$ has triple $Q 3 b$) (i) contd $\therefore R^{2}\left(a^{2}+b^{2}\right)=c^{2}$ QeD root α, then $P(\alpha)=P^{\prime}(\alpha)=P^{\prime \prime}(\alpha)=0$ (3) OR Shaw $\left|\frac{a(0)+b(0)+c}{\sqrt{a^{2}+b^{2}}}\right|^{2}=R^{2}$
$P(\alpha)=\alpha^{3}-m \alpha^{2}+n=0$ $P^{\prime}(\alpha)=3 \alpha^{2}-2 \alpha m=0, P^{\prime \prime}(\alpha)=6 \alpha-2 m=0 \quad \therefore c^{2}=R^{2}\left(a^{2}+b^{2}\right)$ QED
$\therefore \alpha(3 \alpha-2 m)=0 \quad \therefore \alpha=\frac{m}{3}$
$\therefore \alpha=0$ or $\alpha=\frac{2 m}{3} \neq \frac{\mathrm{m}}{3} \therefore$ No.
If double root then $\left.P(\alpha)=P^{\prime}(\alpha)=0\right)\left|\frac{a(2)+b(0)+c}{\sqrt{a^{2}+b^{2}}}\right|+\left|\frac{a(-2)+b(0)+c}{\sqrt{a^{2}+b^{2}}}\right|=6$
\therefore If $\alpha=0 \quad P(\alpha) \neq 0$. Try $\alpha=\frac{2 m}{3}$
$P(\alpha)=\frac{8 m^{3}}{27}-\frac{m \cdot 4 m^{2}}{9}+n=0$
$\therefore \frac{8 m^{3}}{27}-\frac{12 m^{3}}{27}+n=0$
(4) $\begin{aligned} & 27 \\ & \therefore n=\frac{4 m^{3}}{27} \text { or } 4 m^{3}=2 m \text {. }\end{aligned}$
Q3.a) i) $y=x f(x) \quad$ i) $|y|=f(x)$
ii) $d_{1}+d_{2}=6$

$$
\left|\frac{2 a+c}{\sqrt{a^{2}+b^{2}}}\right|+\left|\frac{-2 a+c}{\sqrt{a^{2}+b^{2}}}\right|=6
$$

For convenience $c>2 a$ then if $c>0$

$$
\begin{aligned}
& 4 c^{2}=36\left(\sqrt{a^{2}}+b^{\frac{1}{2}}\right) \quad[\quad y \quad c \leq 0] \\
& \therefore \text { Using (i) } R^{2}=\frac{36}{4} \therefore \text { circle equation } \\
& \text { is } x^{2}+y^{2}=\frac{36}{4}=9 \quad \therefore x^{2}+y^{2}=9 .
\end{aligned}
$$

iii) $y=e^{f(x)} \quad$ iv) $y=\sqrt{f(x)}$
$\frac{\sqrt{(-1,1)} \sqrt[(2)]{(0,1)} \downarrow}{\left(0, e^{-1}\right)}$
b) Solve sim: $\left.y=\frac{-(a x+c)}{6} \Rightarrow x^{2}+y^{2}=R^{2}\right)\left(x_{1}>0\right) \quad \therefore 4 \quad \therefore x_{1}=\frac{8}{5} \sqrt{25-y_{1}^{2}}$
$b^{2} x^{2}+a^{2} x^{2}+2 a c x+c^{2}-b^{2} R^{2}=0$
If tangent then $\Delta=0$ (ii) $\therefore V \doteqdot \sum_{y=-5}^{5} \frac{896 \pi}{5} \sqrt{25-y^{2}} \delta y$

$$
\begin{aligned}
& (2 a c)^{2}-4\left(a^{2}+b^{2}\right) \cdot\left(c^{2}-b^{2} R^{2}\right)=0 \quad y=-5 \\
& \left.4 a^{2} c^{2}-4\left(a^{2} c^{2}-a^{2} b^{2} R^{2}+b^{2} c^{2}-b^{4} R^{2}\right)=0\right)=2 \int_{0}^{5} \frac{896}{5} \pi \sqrt{25 \cdot y^{2}} d y
\end{aligned}
$$

$$
\left.4 a^{2} c^{2}-4\left(a^{2} c^{2}-a^{2} b^{2} R^{2}+b^{2} c^{2}-b^{4} R^{2}\right)=0\right)=2 \cdot \frac{596}{5} \pi \cdot \frac{1}{4} \cdot 5^{2} \pi(3)
$$

$$
\therefore 4 a^{2} b^{2} R^{2}-4 b^{3} c^{2}+4 b^{4} R^{2}=0
$$

. $=2240 \pi^{2} u^{3}$.

Title: Ascham 2010 Ext 2 Maths Trial Ir 12 T 120
Q4 contd b) $\int x^{n} e^{x} d x=u v-\int v d u \quad$ Q5 a) $\cos 3 x=\sin 7 x$
where $u=x^{n} d v=e^{x} d x$
$\cos 3 x=\cos \left(\frac{\pi}{2}-7 x\right)$

$$
\begin{aligned}
& \text { Where } u=x^{n} d v=e^{n} d x \\
& \\
& \qquad \begin{aligned}
d u & =n x^{n-1} d x \quad v=e^{x}
\end{aligned} \quad \therefore \quad 3 x=2 k \pi \pm\left(\frac{\pi}{2}-7 x\right), k \in \mathbb{Z} \\
& \therefore \int x^{n} e^{x} d x=x^{n} e^{x}-\int e^{x} \cdot n x^{n-1} d x \operatorname{Case} 1: 3 x=2 k \pi+\frac{\pi}{2}-7 x / 3 x=2 k \pi-\left(\frac{\pi}{2}-7 x\right) \\
& \\
& \\
& =x^{n} e^{x}-n \int x^{n-1} e^{x} d x \\
& \left.\therefore 10 x=\frac{4 k \pi+\pi}{2} \quad \right\rvert\, \therefore-4 x=\frac{4 k \pi}{2}
\end{aligned}
$$

$$
\therefore \int_{0}^{1} x^{3} e^{x} d x=\left[x^{3} e^{x}\right]_{0}^{1}-3 \int_{0}^{1} x^{2} e^{x} d x \quad \therefore x=\frac{\pi(4 k+1)}{20} \text { or } x=\frac{\pi}{8}(1-4 k)
$$

$$
\begin{equation*}
\left.n=3=e-3\left[\left[x^{2} e^{x}\right]_{0}^{1}-2 \int_{0}^{1} x e^{1} d x\right]\right\} \tag{4}
\end{equation*}
$$

$$
=e-3\left[e-2\left[\left(x e^{x}\right]_{0}^{1}-1 \int_{0}^{0} x^{0} e^{x} d x\right]\right.
$$

(i) Perinctér $=2 P Q+2 P S$

$$
\begin{align*}
&\text { Perinelés }=2 P Q+2 r) \tag{2}\\
&=2(2 a \cos \theta+2 b \sin \theta) \\
& \therefore l=4 a \cos \theta+4 b \sin \theta
\end{align*}
$$

$$
\text { (ii) } \frac{d l}{d \theta}=-4 a \sin \theta+4 b \cos \theta
$$

$$
\begin{aligned}
& \frac{d \theta}{d \theta}=-4 a \cos \theta-4 b \sin \theta \\
& \frac{d^{2} l}{d \theta^{2}}=\text { occurs when } \frac{d l}{1 \theta}=
\end{aligned}
$$

$\operatorname{Max} l$ occurs when $\frac{d l}{d \theta}=0$
(ii)
\therefore Max ℓ When $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$.

$$
\operatorname{Max} l=4 \sqrt{a^{2}+b^{2}} \text { units. }
$$

$$
\begin{align*}
& \text { and } \frac{d^{2} l}{d \theta^{2}}<0 \text {. } \\
& \frac{d v}{d t}=-\left(\frac{900+v^{2}}{9001401}\right) \tag{4}\\
& \begin{array}{l}
\therefore \frac{d t}{d v}=-\frac{300}{900+v^{2}} \\
t=\int_{t 30 / 3} \frac{0^{2}+900}{900+r^{2}} d \int_{30 \sqrt{3}}^{0} \frac{900+t^{2}}{90} d v
\end{array} \\
& \left.=107_{3013}^{86}-90 \tan ^{-1} \frac{v}{30}\right]_{30 / 3}^{0} \\
& \left\{\begin{array}{l}
\therefore \theta=\tan ^{-1}\left(\frac{b}{a}\right) \sin u \\
\therefore \text { Test } d^{2} l
\end{array}\right. \\
& \therefore \text { Test } \frac{d^{2} l}{d \theta^{2}} \\
& 30 r_{3}=-4(a \cos \theta+b \sin \theta) \\
& 0<\theta<\frac{\pi}{2} \\
& \text { (dst Quad) } \\
& \left.=4-30+3 \pi\left[\tan ^{-1} 0-\tan ^{-1} 1 / 3\right]\right] \\
& =3 \pi \cdot \frac{\pi}{3} \\
& t=\pi \text { seconds. } \\
& =-4\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+\frac{b \cdot b}{\sqrt{a^{2}+b^{2}}}\right) \\
& =-4\left(\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}}\right)=-4 \sqrt{a^{2}+b^{2}}<0
\end{align*}
$$

Solutions to
Title: Ascham 2010 Ext 2 Maths Trial Yr 12

Q5 contd: c)

i) RTP: $A B X Y$ is a cyclic quad.

Let $\angle X B Y=\left\langle X Y_{B}=\alpha\left(\begin{array}{l}\text { base } \\ \text { isosceles } \triangle\end{array}\right.\right.$

$$
\text { iii) } \begin{aligned}
& S_{a}=l_{1} b_{1}+l_{2} b_{2}+\ldots+l_{n-1} b_{n-1} \\
= & 1 \times \ln 2+1 \times \ln 3+1 \times \ln 4+\ldots+1 \times \ln n \\
= & \ln (2.3 .4 \ldots n) \\
= & \ln ((n)!)
\end{aligned}
$$

iv) Approx area $S_{u}<$ Real area $<S_{a}$

$$
\begin{equation*}
\therefore \ln (n-1)!<n \ln n-n+1<\ln n! \tag{1}
\end{equation*}
$$

Let $\angle B X A=\beta$. $\quad B X Y$ equal)
$\therefore \angle B Y_{A}=\beta$. (both suppiementryy to equal $\angle s$ given)
(straight lines BC, AC)
(2) (straight hines $B C, A D$
$\therefore B X Y A$ is cyclic quad
(equal $\angle S \beta$ standing on

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x}
$$

$$
\begin{equation*}
\text { If } x=\frac{\pi}{2} \tag{2}
\end{equation*}
$$

same $\operatorname{arc} B A$)
ii) RTP : $\angle B A X(=x)$ and $\angle X A Y(=y)$ are equal.
Proof: $y=\alpha$ ($\angle s$ standing on
(3)
v) $\therefore \ln (n-1)!<\ln n^{n}-\ln e^{n}+\ln e<\ln n!$
$\ln (n-1)!<\ln \left(\frac{n^{n} \cdot e}{\rho^{n}}\right)<\ln n!$
$\therefore(n-1)!<n^{n} e^{1-n}<n!$ PED
b) $t=\tan \frac{x}{2}$

$$
\begin{aligned}
\therefore x=2 \tan ^{-1} t & =\int_{0}^{1} \frac{2+\sin x}{1+t^{2}} \quad x=0 \\
2+\frac{2 d t}{1+t^{2}} & t=0 \\
& =\int_{0}^{1} \frac{2 d t}{1+t^{2}} \times \frac{1+t^{2}}{2+2 t^{2}+2 t}
\end{aligned}
$$

$$
=\int_{0}^{1} \frac{d t}{t^{2}+t+1}=\int_{0}^{1} \frac{d t}{t^{2}+t+\frac{1}{4}+\frac{3}{4}}
$$

$$
\therefore x=y \text { (both }=\alpha \text {) }
$$

$\therefore A X$ bisect $\angle B A Y$ QED.
Q6 a) i) $\int_{1}^{n} \ln x d x=u v-\int v d u$

$$
\begin{equation*}
=\left[\ln x x_{x} x\right]_{1}^{n}-\int_{1}^{n} x \cdot \frac{1}{\psi} d x \tag{2}
\end{equation*}
$$

$$
=n \ln n-0-[x]_{1}^{n}
$$

$$
\begin{equation*}
=n \ln n-n+1 \text {. } \tag{2}
\end{equation*}
$$

ib)

$$
\begin{align*}
& S_{u}=l_{2} b_{2}+l_{3} b_{3}+\ldots+l_{n-1} b_{n-1} \\
& =(\ln 2) \times 1+(\ln 3) x 1+\ldots+\left(\ln (n-1) x_{1}\right)=\int_{0}^{a} f(x)+f(2 a-x) d x \tag{2}\\
& =\ln \left(2 \cdot 3 \cdot 4 \ldots(x) d x-\int_{2 a}^{a} f(w) d w\right. \\
& =\ln ((n-1)!)
\end{align*}=\int_{0}^{a} f(x) d x+\int_{a}^{2 a} f(\omega) d .
$$

(since $\int f(\Delta) d \Delta=\int f(\Delta) d \Delta$.)

Solutiops to
Title: Ascham 2010 Ext 2 Maths Trid Yr 12 T20

$$
\begin{align*}
& \text { QW conth (b) (ii) } \quad \begin{array}{c}
y a=\frac{\pi}{2} \\
\therefore \int_{0}^{\pi} \frac{x d x}{2+\sin x}=\int_{0}^{\frac{\pi}{2}} \frac{x d x}{2+\sin x} \\
+\int_{0}^{\frac{\pi / 2}{\pi}-x} \frac{\text { from }}{2+\sin (\pi-x)} d x \text { (ii) } \\
=\int_{0}^{\frac{\pi}{2}} \frac{x \sin }{2+\sin x}+\frac{\pi-x}{2+\sin x} d x \\
=\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2+\sin x} d x=\pi \cdot \frac{\pi}{3 \sqrt{3}} \\
=\frac{\pi^{2}}{3 \sqrt{3}} \quad(\operatorname{tran}(i))
\end{array}
\end{align*}
$$

Q7a) $\cot 2 x-\tan 2 x=\frac{\cos 2 x}{\sin 2 x}-\frac{\sin 2 x}{\cos 2 x}$

$$
=\frac{\cos ^{2} 2 x-\sin ^{2} 2 x}{\sin 2 x \cos 2 x}=\frac{\cos 4 x}{\frac{1}{2} \sin 4 x}
$$

$$
\begin{equation*}
=2 \cot 4 x \text { Q } \tag{2}
\end{equation*}
$$

RHS $=\cot x-2 \cot 2^{14} x$
(3) $=\tan x$ (fram above identit))
(ii) $\theta+\varnothing D=\frac{\pi}{2}, \theta \neq \frac{\pi}{4}$. Chord $P Q$:
b) (i) phould satiafy $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\therefore \frac{a \sec ^{2} \theta}{a^{2}}-\frac{b^{2} \tan ^{2} \theta}{b^{2}}$
(ii) $\theta+\not \theta=\frac{\pi}{2}, \theta \neq \frac{\pi}{4}$
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{x-x_{1}}$
if $\theta+\phi=\frac{\pi}{2}$ then $\sin \phi=\cos \left(\frac{\pi}{2}-\phi\right)$

$$
=\cos \theta \text { etc. }
$$

Assume $P(k)$ trme i.e.

$$
\begin{aligned}
& \text { Assume } P(k) \text { trae } \\
& \tan x+2 \tan 2 x+\ldots 2^{k-1} \tan 2^{k-1} x \\
& =\cot x-2^{k} \cot 2^{k} x .
\end{aligned}
$$

RTP: $P(k+1)$ the i.

$$
\begin{aligned}
& \text { RTP:P }(k+1) \text { time } e 2^{k} \tan 2^{k} x \\
& \tan x+2 \tan 2 x+\ldots+2^{k+1} \cot 2^{k+1} x \\
& =\cot x-2^{k+1}
\end{aligned}
$$

Proff: Consider the $\angle H S$ of $P(k+1)$

$$
=\tan x+2 \tan 2 x+\ldots+2^{k-1} \tan 2^{k-1} x
$$

$$
+2^{k} \tan 2^{k} x
$$

$$
\begin{aligned}
& \therefore b x \cos ^{2} \theta+b x \cos \theta \sin \theta-a b \cos \theta-a b \sin \theta \\
&=a y \cos \theta-a b \sin \theta
\end{aligned}
$$

$$
\therefore \quad a y=b(\cos \theta+\sin \theta) x-a b \quad D E D .
$$

$$
\begin{aligned}
& \text { RTP: } P(n): \tan x+2 \tan 2 x+\ldots \\
& +2^{n-1} \tan \left(2^{n-1} x\right)=\cot x-2 \cot ^{n} x \\
& \text { Proof: Let } n=1: P(1) L H S=\tan x \\
& \Rightarrow \begin{array}{l}
\therefore \frac{b(\tan \phi-\tan \theta)}{a(\sec \phi-\sec \theta)}=\frac{y-b \tan \theta}{x-a \sec \theta} \\
\therefore \frac{\sin \phi}{\cos \phi}-\frac{\sin \theta}{\cos \theta} \\
\frac{1}{\cos \phi}-\frac{1}{\cos \theta}
\end{array}=\frac{a y-a b \frac{\sin \theta}{\cos \theta}}{b x-a b \cdot \frac{1}{\cos \theta}}
\end{aligned}
$$

Solutions to
Title: Ascham 2010 Ext 2 Maths Trial Yo 12 T20

Q7 contd: iii) \therefore (Cord has equ. $y=\frac{b}{a}(\cos \theta+\sin \theta) x-b=m x+k$
$\therefore m$ can vary \therefore fixed y-int.
\therefore fixed point is $(0,-b) .2$
iv) As $\theta \rightarrow \frac{\pi}{2} \quad m \rightarrow \frac{b}{a}(0+1)$
but asymptotes are $\mathrm{b}=\frac{\mathrm{a}}{=} \frac{-b}{a} \cdot x$
\therefore chord // asymptote if $m=\frac{b}{a}$.
Q8 a) $x^{2 / 3}+y^{\frac{2}{3}}=a^{2 / 3}, x, y \geqslant 0, a>0$ Recall $|x|^{n}+|y|^{n}=1$ cases:

$n=1 \quad n>2 \quad n<1$
\therefore In this case, $n=\frac{2}{3}<1$ (7)
\therefore Graph is at
If $y=0 \quad x^{2 / 3}=a^{2 / 3}$
$\therefore x=a$

$$
x=0 \quad y^{2 / 3}=a^{2 / 3} \Rightarrow y=a
$$

(NB:" touches" means tangential so shouldcheci $\frac{d y}{d x}$ tic.)
Tangent $y_{0}^{\frac{1}{3}} x+x_{0}^{\frac{1}{3}} y=x_{0}^{\frac{1}{3}} y_{0}^{\frac{1}{3}} a^{\frac{3 / 3}{3}}$ cuts x-axis at A, when $y=0$:

$$
y_{0}^{\frac{1}{3}} x+0=x_{0}^{\frac{1}{3}} y_{0}^{\frac{1}{3}} a^{2 / 3}
$$

$$
\therefore A\left(x_{0}^{\frac{1}{3}} a^{2 / 3}, 0\right)
$$

Similarly B is $B\left(0, y_{0}^{\frac{1}{3}} a^{\frac{2}{3}}\right)$

$$
\begin{align*}
& \begin{aligned}
\therefore A B & =\sqrt{\left(x_{0}^{\frac{1}{3}} a^{2 / 3}-0\right)^{2}+\left(0-y_{0}^{\frac{1}{3}} a^{2 / 3}\right)^{2}} \\
& =\sqrt{x_{0}^{2 / 3} a^{4 / 3}+y_{0}^{2 / 3} a^{4 / 3}}
\end{aligned} \tag{2}\\
& \begin{aligned}
A B & =\sqrt{\left(x_{0}^{\frac{1}{3}} a^{2 / 3}-0\right)^{2}+\left(0-y_{0}^{\frac{1}{3}} a^{2 / 3}\right)^{2}} \quad \begin{array}{l}
\text { (v) } \\
x= \\
\\
\\
x_{0}^{2 / 3} a^{4 / 3}+y_{0}^{2 / 3} a^{4 / 3}
\end{array} \frac{-1 \pm \sqrt{1^{2}-4.1 .2}}{2}=\frac{-1 \pm i \sqrt{7}}{2} . \\
& : \operatorname{Im}(\alpha)=\operatorname{Im}\left(\rho+\rho^{2}+\rho^{4}\right)
\end{aligned} \tag{7}\\
& \left.=\sqrt{a^{4 / 3}\left(x_{0}{ }^{2 / 3}+y_{0}{ }^{2 / 3}\right)}=\sqrt{a^{4 / 3} \times a^{2 / 3}}\right)=\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin \frac{8 \pi}{7} \\
& \begin{array}{l}
\left.=\sqrt{a^{3 / 3}}\left(x_{0}{ }^{3}+y_{0}{ }^{3 / 3}\right)=\sqrt{a^{4 / 3} \times a^{3 / 3}}\right)=\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin 7 \\
=a^{3} \text { index. of } P \text {. lies on curece. }\left(x_{0,} y_{0}\right)=\sin \frac{\sqrt{7}}{7}+\sin \frac{3 \pi}{7}-\sin \frac{\sqrt{7}}{2} .
\end{array} \\
& \text { iv) So roots of } x^{2}+x+2=0 \text { are } \\
& \therefore \operatorname{Im}(\alpha)=\operatorname{Im}\left(\rho+\rho^{2}+\rho^{4}\right)
\end{align*}
$$

$$
\begin{align*}
& \therefore\left(\rho+\rho^{2}+\rho^{4}\right)\left(\rho^{6}+\rho^{5}+\rho^{3}\right)=b \\
& \begin{array}{l}
\therefore(\rho+\rho \\
\rho^{7}+\rho^{6}+\rho^{4}+\rho^{8}+\rho^{7}+\rho^{5}+\rho^{10}+\rho^{9}+\rho^{7}=b
\end{array} \\
& \begin{array}{l}
\rho+\rho^{6}+\rho^{4}+\rho^{8}+\rho^{5} \\
1+\rho^{6}+\rho^{4}+\rho+1+\rho^{5}+p^{2}+\rho^{3}+1=6
\end{array} \\
& \begin{array}{l}
1+\rho+\rho^{2}+\rho^{3}+\rho^{4}+\rho^{5}+\rho^{6}+2=b \\
\therefore b=2 .
\end{array} \\
& \text { iv) So roots of } x^{2}+x+2=0 \text { are } \\
& \therefore \operatorname{Im}(\alpha)=\operatorname{Im}\left(\rho+\rho^{2}+\rho^{4}\right) \\
& \therefore \rho+\rho^{2}+\rho^{4}+\rho^{6}+\rho^{5}+\rho^{3}=-a \\
& -1=-a \tag{i}\\
& \therefore a= \tag{2}\\
& \text { Product of roots } \alpha \beta=\frac{0}{1}
\end{align*}
$$

