ASCHAM SCHOOL

2012
YEAR 12
TRIAL

EXAMINATION

Mathematics

Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time - 3 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks - 100

- Attempt Sections A and B.
- Section A is worth 10 marks.
- Recommended time on Section A: 15 minutes
- Answer Section A on the multiple choice answer sheet.
- Detach the multiple choice answer sheet from the back of the examination paper.
- Section B contains 6 questions worth 15 marks each.
- Recommended time on Section B: 2 hours 45 minutes
- Answer each question in a new booklet.
- Label all sections clearly with your name/number and teacher.

SECTION A - 10 MULTIPLE CHOICE QUESTIONS 10 MARKS
 ANSWER ON THE ANSWER SHEET

1 Which of the following equations describes the graph below?

A $\operatorname{Re} z \geq \operatorname{Im} z$
B $\operatorname{Re} z \leq \operatorname{Im} z$
C $\quad \operatorname{Re} z^{2} \geq 0$
D $\quad \operatorname{Im} z^{2} \leq 0$

2 Two of the roots of the equation $z^{5}+B z^{4}+C z^{3}+D z^{2}+E z+15=0$, where B, C, D, E are real could be:

A $\quad 2-i, 2$
B $2+i, 3$
C $3+i, 2$
D $3-i,-2$

3
The asymptote(s) of $y=\frac{x^{3}+4 x^{2}-6}{x^{2}+4}$ is/are:
A $y=x^{2}+4$
B $y=x+4$
C $x= \pm 2$
D $y=x-4$

4 If f is the continuous, strictly increasing function on the interval $a \leq x \leq b$, as shown below, which of the following three statements must be true?

$I \int_{a}^{b} f \quad x \quad d x<f \quad b \quad b-a$
II $\int_{a}^{b} f \quad x d x>f a \quad b-a$
III there exists a number c where $a<c<b$, such that $\int_{a}^{b} f \quad x d x=f \quad c \quad b-a$
A I only
B II only
C III only
D I, II and III

5 The terminal velocity of a particle with displacement given by
$x=\frac{V_{o}^{2} 1-e^{-2 t}}{1+e^{-2 t}}$, where V_{o} is initial velocity, is:
A 1
B 0
C $V_{o}{ }^{2}$
D ∞

6
The conic $\frac{x^{2}}{a^{2}-k}+\frac{y^{2}}{b^{2}-k}=1$, where k is a constant and $a>b$, is always an ellipse for:

A $\quad a^{2} \leq k \leq b^{2}$
B $\quad b^{2} \leq k \leq a^{2}$
C $k<a^{2}$ if $a>b$
D $k<b^{2}$ if $a>b$

7 The equation of the graph below could be:

A $y=e^{\sin x}$
B $y=x \sin x$
C $y=x \cos x$
D $y=e^{\cos x}$
$8 \quad$ The circle shown is rotated about the y-axis. The volume is found by summing cylindrical shells with volume:

A $2 \pi x 2 y \delta x$
B $2 \pi x 2 y \delta y$
C $2 \pi y x_{2}-x_{1} \delta y$
D $2 \pi y x_{2}-x_{1} \delta x$

9

$$
\text { If } x^{3}+y^{3} x=y^{2} \text { then } \frac{d y}{d x}=
$$

A $\frac{3 x^{2}+y^{3}}{2 y-3 y^{2} x}$
B $\frac{3 x^{2}+y^{3}}{3 y^{2} x-2 y}$
C $\frac{3 x^{2}+3 y^{2} x+y^{3}}{2 y}$
D $\frac{3 x^{2}+3 y^{2}}{2 y}$

10 A torus can be generated by rotating a circle around an axis. Using Pappus's Theorem or otherwise, the volume of a torus with outer radius 10 cm and inner radius 6 cm is:

A $\quad 2 \pi \times 8 \times \pi \times 2^{2}$
B $2 \pi \times 10 \times \pi \times 2^{2}$
C $2 \pi \times 6 \times \pi \times 2^{2}$
D $2 \pi \times 8 \times \pi \times 4^{2}$

SECTION 2-6 QUESTIONS EACH WORTH 15 MARKS

Question 11 - Begin a new writing booklet

a Find $\int \frac{d x}{x \ln x}$.
b Find $\int \sin ^{-1} x d x$
c
Find $\int \tan ^{4} x d x$
d
The points A, B, C representing the complex numbers $\tilde{a}, \tilde{b}, \tilde{c}$ form an isosceles triangle as shown in the diagram. $\angle A C B=\frac{\pi}{2}$ and $A C=C B$.

i Express the vector $\overrightarrow{C A}$ in terms of \tilde{a} and $\tilde{c} . \quad \mathbf{1}$
ii Hence express the vector $\overrightarrow{C B}$ in terms of \tilde{a} and \tilde{c}. $\quad \mathbf{1}$
iii Find an expression for \tilde{b} in terms of \tilde{a} and \tilde{c}.
e
Find the locus of z if $\arg \left(\frac{z-2}{z}\right)=\frac{\pi}{2}$. Draw a sketch.
f Find the maximum value of $\arg z$ if $|z-2|=1$.

Question 12 - Begin a new writing booklet

a

$$
y=g \quad x
$$

Consider the function as shown in the diagram.

Sketch, showing essential features:
i
$y=\left[\begin{array}{ll}g & x\end{array}\right]^{3}$,
ii $\quad y=\ln g \quad x$
iii $y=e^{g x}$
iv $y=x g \quad x$

Write a possible equation for the graph above in the form $y=\frac{N x}{D x}$, where $N x$ and $D x$ are polynomials.
c Solve for $x: \cos 3 x=\sin 5 x$.

Question 13 - Begin a new writing booklet

a A solid model emulating the exterior shape of the Eiffel tower is generated by cutting cross-sectional slices perpendicular to the axis of symmetry of the curve $y=\frac{1}{x^{2}}-\frac{1}{64}$. The cross-sections are in the shape of a square with opposite vertices on the curve as shown. Taking the x-axis as ground level, the tower model is 300 cm high. Find the volume enclosed by the model.

Diagram not to scale

i Show that the volume of one slice is given by $\delta V=\frac{128}{64 y+1} \delta y$.
ii Hence find the total volume of the model.

Question 13 continues on the next page.

Ascham School 2012 Year 12 Trial Mathematics Extension 2 Examination

b The lines $R T$ and $A C$ intersect at $S . R A$ is produced and $C T$ is produced to meet at B. $R D$ is perpendicular to $R A . \angle D S C=90^{\circ}$ and $\angle D T B=90^{\circ}$.

i Prove $\angle D S T=180^{\circ}-\angle D C T$
ii Prove $\angle D C B=\angle D A R$.
iii Prove $D A B C$ forms a cyclic quadrilateral.
c

The normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at a point $P a \cos \theta, b \sin \theta$ meets the x and $y-$ axes in R and S respectively. You may assume that the equation of the normal is $\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2}$.
i If O is the centre, find the area of triangle $O R S$ in terms of a, b and θ.
ii Hence, find the values of θ for which triangle $O R S$ has the largest area. [Note: $0 \leq \theta \leq 2 \pi$.]

Ascham School 2012 Year 12 Trial Mathematics Extension 2 Examination

Question 14 - Begin a new writing booklet

a i If a, b are real and unequal, show that $a^{2}+b^{2}>2 a b$.
ii Hence show that if a, b, c are real and unequal $a^{2}+b^{2}+c^{2}>a b+b c+c a$.
iii If $a+b+c=6$, show that $a b+b c+c a<12$.
b Let $I_{n}=\int_{1}^{2} \ln x^{n} d x$ for $n \in \mathbb{Z}^{+}$.
i Prove that $I_{n}=2 \ln 2^{n}-n I_{n-1}$.
ii Hence evaluate $\int_{1}^{2} \ln x^{4} d x$ as a polynomial in $\ln 2$.

Diagram not to scale.
Prove $\frac{\sqrt{2}}{A D}=\frac{1}{A B}+\frac{1}{A C}$.
d i If $f x$ is a continuous function, show with the aid of a diagram the meaning of

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+f\left(\frac{3}{n}\right)+\ldots+f\left(\frac{n}{n}\right)\right)=\int_{0}^{1} f x d x
$$

ii Hence evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin \left(\frac{\pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right)+\sin \left(\frac{3 \pi}{n}\right)+\ldots+\sin \left(\frac{n \pi}{n}\right)\right) .
$$

Ascham School 2012 Year 12 Trial Mathematics Extension 2 Examination

Question 15 - Begin a new writing booklet

a Given that $P \quad x=x^{4}+x^{3}-3 x^{2}-5 x-2$ has a triple root, find all roots of $P x=0$.
b i Find the seventh roots of unity in $\cos \theta+i \sin \theta$ form and represent them on an Argand diagram.
ii If one of the complex roots is ψ, show that the quadratic equation whose roots are $\psi+\psi^{2}+\psi^{4}$ and $\psi^{3}+\psi^{5}+\psi^{6}$ is $x^{2}+x+2=0$.
c A chicken, P_{1}, of mass M falls vertically from rest from O, in a resisted medium with resistance $M k v, k>0$, where v is velocity in m / s at time t seconds. Let acceleration due to gravity be $g \mathrm{~m} / \mathrm{s}^{2}$.
i Explain why $\ddot{x}_{1}=g-k v$.
ii Obtain an expression for v after t seconds.
2

A second chicken, P_{2}, of mass M is projected vertically up from O with initial velocity U in the same medium, simultaneously as P_{l}.
iii Show that for $P_{2}, t=-\frac{1}{k} \ln \left(\frac{k v+g}{k U+g}\right)$.
iv Show that when P_{2} is momentarily at rest, the velocity of P_{l} is given by $\frac{V U}{V+U}$ where V is the terminal velocity of P_{l}.

Chicken chickened out of sitting the Extension 2 trial. Preferred to go sky-diving instead....

Question 16 - Begin a new writing booklet

a

Diagram not to scale.
The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ lie on the hyperbola $x y=c^{2}$. Tangents are drawn from P and Q to meet at $R \quad x_{0}, y_{0}$. The equation of the tangent at P is $x+p^{2} y=2 c p$. Let the distance $P Q$ be d units.
i Prove that $p q=\frac{x_{0}}{y_{0}}$ and $p+q=\frac{2 c}{y_{0}}$.
ii Find an expression for d^{2} in terms of c, p and q. Give your answer in factorised form.
iii If d is fixed, deduce the locus of R is $4 c^{2} x^{2}+y^{2} \quad c^{2}-x y=x^{2} y^{2} d^{2}$.
b Given $2 \cos A \sin B=\sin A+B-\sin A-B$, prove by induction for integers
$n \geq 1$, that
$\cos \theta+\cos 3 \theta+\cos 5 \theta+\ldots+\cos 2 n-1 \quad \theta=\frac{\sin 2 n \theta}{2 \sin \theta}$.

Question 16 continues on the next page.

c

Diagram not to scale.
Consider the secant drawn on $y=\ln x$ between $x=1$ and $x=1+\frac{1}{n}$.
i Find an expression for the gradient of the secant.
ii Using part (i) and the fact that $\frac{d}{d x} \ln x=\frac{1}{x}$, show that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
iii Also using the method in part (i) show that
$\left(1+\frac{1}{n+1}\right)^{n+1}>\left(1+\frac{1}{n}\right)^{n}$.
Explain with the aid of a sketch.
iv What implication does this have for compound interest?

