2014

YEAR 12

TRIAL

EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time -3 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks - 100

- Attempt Sections A and B.
- Section A is worth 10 marks.
- Answer Section A on the multiple choice answer sheet.
- Detach the multiple choice answer sheet from the back of the examination paper.
- Section B contains 6 questions worth 15 marks each.
- Answer each question in a new booklet.
- Label all sections clearly with your name/number and teacher.

SECTION A - 10 MULTIPLE CHOICE QUESTIONS

ANSWER ON THE ANSWER SHEET

1 The complex number z is sketched below.

Which of the following sketches could describe $\frac{1}{z}$?
A

B

C

D

2 If z is complex, a solution to $z^{5}=-1$ is:

A $\quad z=\operatorname{cis} \frac{\pi}{5}$
B $z=\operatorname{cis} \frac{2 \pi}{5}$
C $z=\operatorname{cis} \frac{8 \pi}{5}$
D $z=\operatorname{cis} \frac{-2 \pi}{5}$

3 If a particle of mass m is projected downwards under gravity and undergoes a resistive force of magnitude $k v^{3}$ then the acceleration is given by :
A $\ddot{x}=g-k v^{3}$
B $\ddot{x}=-g-k v^{3}$
C $\ddot{x}=g-\frac{k v^{3}}{m}$
D
$\ddot{x}=-g-\frac{k v^{3}}{m}$

The volume of a kookaburra's beak is modelled by taking cross sections which are rhombuses, the longer diagonal of which is the length parallel to the y-axis between the lines shown. The smaller diagonal is half the length of the longer diagonal.

The volume would be given by:

A $\int_{0}^{10} \frac{100-20 x+x^{2}}{5} d x$
B $\int_{0}^{10} \frac{100-20 x+x^{2}}{10} d x$
C $\int_{0}^{10} 4-\frac{4 x}{5}+\frac{x^{2}}{25} d x$
D $\int_{0}^{10} 1-\frac{x}{5}+\frac{x^{2}}{100} d x$

Let $f(x)=x^{3}+x$ be an increasing function. Let $h(x)$ be the inverse function of $f(x)$. The point $(1,2)$ lies on $y=f(x)$. The value of $h^{\prime}(2)=$
A $\frac{1}{4}$
B $\frac{1}{13}$
C 4
D 13

6
Consider the conic $\frac{x^{2}}{\lambda-9}+\frac{y^{2}}{\lambda-4}=1$, where λ is a constant. If it is always an ellipse then:

A $\quad \lambda<4$
B $\quad 4<\lambda<9$
C $\quad \lambda>9$
D $\lambda \leq 4$ or $\lambda \geq 9$.
$7 \quad$ The graph of $|x-1|=|y-1|$ could be:
A

B

C

D

8
The solution to the inequality $\frac{1}{x}+\frac{1}{1-x}>0$ is:
A $x<0$
B $\quad x>1$
C $0<x<1$
D $x<0$ or $x>1$.

9 A possible factor of $15 x^{7}+10 x^{5}-2 x^{3}+14$ would be:

A $2 x-7$
B $3 x-7$
C $5 x+3$
D $3 x-5$.

10 The value of $\lim _{x \rightarrow \infty} e^{-\frac{1}{x^{2}}}=$
A $\quad \infty$
B 1
C -1
D 0 .

SECTION 2 - 6 QUESTIONS EACH WORTH 15 MARKS

Question 11 - Begin a new writing booklet
a Find $\int \cot x \operatorname{cosec}^{2} x d x$.
b
Evaluate $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{x}{\sqrt{1-x^{4}}} d x$
c
Use the substitution $u=\sqrt{e^{x}+1}$ to find $\int \frac{e^{2 x} d x}{\sqrt{e^{x}+1}}$.
d
(i) Find constants A and B such that $\frac{\cos x}{1-\sin ^{2} x}=\frac{A \cos x}{1+\sin x}+\frac{B \cos x}{1-\sin x}$.
(ii) Hence or otherwise find $\int \sec x d x$.
e
Use the t - results to find $\int_{0}^{\frac{\pi}{3}} \frac{d \theta}{1+\cos \theta}$.

Question 12 - Begin a new writing booklet

a Find a square root of $15+8 i$.
b Let $\alpha=1-i$ and $\beta=\sqrt{3}+i$.
i Find $\alpha \beta$ in Cartesian form.
ii Express $\beta=\sqrt{3}+i$ in mod-arg form.
iii $\alpha=\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)$, find $\alpha \beta$ in mod-arg form.
iv Hence find the exact value of $\cos \left(-\frac{\pi}{12}\right)$.
c
Sketch the locus of z if $\arg (z+2)=\arg (z-2 i)$.
d Consider the quadrilateral $A B C D$ representing the complex numbers α, β, γ and δ, respectively.

Given that $\beta=\frac{1}{2} i \alpha, \alpha=-\gamma,|\beta|=|\delta|$ and $\arg \left(\frac{\beta}{\delta}\right)=\pi$,
(i) sketch the information on an Argand diagram,
(ii) determine which type of quadrilateral is $A B C D$, giving reasons.
e i Sketch $y=e^{2 x}+1$.
ii Hence sketch $y=\frac{e^{2 x}+1}{x}$.

Question 13 - Begin a new writing booklet

a Given that $A L C K$ is a cyclic quadrilateral and H is a point on $A K$ such that $A H=A L . L H$ produced meets the circle again at B and meets $A C$ at $E . B C$ meets $A K$ at D.

i Prove that $\angle A H L=\angle A C B$.
ii Hence state why that $H E C D$ is a cyclic quadrilateral.
iii Given $\operatorname{arc} K C=\operatorname{arc} C L$, prove that $H C$ is a diameter of $H E C D$.
b i Show $\sqrt{\left(e^{x}+e^{-x}\right)^{2}-4}=e^{x}-e^{-x} \quad$ (Assume $x>0$.)
Consider the rectangular hyperbola $x^{2}-y^{2}=1$ and the line segment $O P$.

ii Show that the point $P\left(\frac{e^{x}+e^{-x}}{2}, \frac{e^{x}-e^{-x}}{2}\right)$ lies on the hyperbola.
iii Using integration by parts (and then the table of standard integrals), show that
$\int \sqrt{x^{2}-1} d x=\frac{x \sqrt{x^{2}-1}}{2}-\frac{\ln \left(x+\sqrt{x^{2}-1}\right)}{2}+C$
iv Show that the area bounded by the hyperbola, $O P$ and the x-axis is $\frac{x}{2}$ units ${ }^{2}$.

Question 14 - Begin a new writing booklet

a
The ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is rotated about the line $x=5$.

(i) Show that the area of one annular type slice taken perpendicular to the axis of rotation is given by $A \approx \frac{80 \pi}{3} \sqrt{9-y^{2}}$.
(ii) Hence, by summing slices or otherwise, show that the volume of the resulting solid is $120 \pi^{2}$ cubic units.
b A particle of mass M is projected vertically upwards from O with initial speed $I \mathrm{~m} / \mathrm{s}$. The particle is subjected to a constant gravitational force $g \mathrm{~m} / \mathrm{s}^{2}$ downwards and a resistance of $M k v^{2}, k>0$, where v is the speed at time t. Let $x \mathrm{~m}$ be the displacement above O at time t seconds.
i
Show that the greatest height reached, H metres is given by $H=\frac{1}{2 k} \ln \left(\frac{g+k I^{2}}{g}\right)$.
ii The particle then begins to fall. Write down an equation for the acceleration \ddot{x} on its downward journey and find the maximum speed the particle reaches on the downward journey, giving reasons.
iii The particle returns to its point of projection with speed $V \mathrm{~m} / \mathrm{s}$. Derive the equation for the distance travelled downwards and hence show that $\left(g+k I^{2}\right)\left(g-k V^{2}\right)=g^{2}$.
c
We know that $A^{2}>0, B^{2}>0,(A \pm B)^{2}>0$ for $A, B \neq 0$. Prove for $x, y \neq 0$:
i $\quad 4 x^{2}+6 x y+4 y^{2}>0$,
ii $\quad 3 x^{2}+5 x y+3 y^{2}>0$.

Question 15 - Begin a new writing booklet

a
Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Tangents to the ellipse are drawn at $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$.

i Derive the equation of the tangent at P and state a similar result for the tangent at Q.
ii State the equation of the chord of contact from an external point $T\left(x_{0}, y_{0}\right)$.
The tangents meet at the point $T\left(\frac{a}{e}, 0\right)$.
iii Prove that the chord $P Q$ passes through the focus S.
b It is given that $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$.
i Hence solve the equation $16 x^{5}-20 x^{3}+5 x-1=0$.
ii Show that $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$ and $\cos ^{2} \frac{2 \pi}{5} \cos ^{2} \frac{4 \pi}{5}=\frac{1}{16}$.
iii Hence deduce that the exact values are $\cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{4}$ and $\cos \frac{4 \pi}{5}=\frac{-1-\sqrt{5}}{4}$.

Question 15 continues on the next page.

Question 15 continued

c
i
Prove the identity $\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}+\cos (n+1) x=\frac{\sin \left(n+\frac{3}{2}\right) x}{2 \sin \frac{x}{2}}$.
[Hint: $\cos (n+1) x=\cos \left(\left(n+\frac{1}{2}\right) x+\frac{1}{2} x\right)$]
ii Hence prove by Mathematical Induction (if $\sin \frac{x}{2} \neq 0$) that for $n=1,2,3, \ldots$

$$
\frac{1}{2}+\cos x+\cos 2 x+\cos 3 x+\ldots+\cos n x=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}
$$

Question 16 - Begin a new writing booklet

a Solve $\cos 5 x=\sin 9 x$.
b The black-winged petrel from Lord Howe Island produces chicks of mass 30 grams.
The approximate growth pattern of the chick then follows the equation
$M=4 t+30+8 \sin \frac{\pi t}{2}$, where M is the mass of the chick in grams after t days,
$0 \leq t \leq 70$. After 70 days the parents stop feeding the chick and it must then fend for itself.
i Between which two lines does this function lie?
ii What is the approximate maximum mass the chick can reach in this range? Give reasons.
iii Sketch the function and determine approximately how often the chicks get food.
c Consider the function $G_{n}=\int_{0}^{\infty} e^{-t} t^{n-1} d t$, where $n=1,2,3, \ldots$
i State an expression for G_{n+1}.
1
ii Use integration by parts to show that $G_{n+1}=n G_{n}$.
iii Show $G_{1}=1$.
iv Show $G_{n}=(n-1)$! for all $n=1,2,3, \ldots$
$M C: 1 . z=r \operatorname{cis} \theta \therefore \frac{1}{z}=\frac{1}{r} \operatorname{cis}(-\theta)$
reflect angle \therefore C
2. $z^{5}=-1 \therefore z_{1}=\operatorname{cis} \frac{\pi}{5}$ then equally $=\cos \pi$

Spaced, $\frac{2 \pi}{5}$

$$
\begin{align*}
& R=m a=-k v^{3} \\
& \therefore \ddot{x}=g \frac{-k v^{3}}{k m} \cdot C
\end{align*}
$$

$$
\frac{10}{A_{\text {slice }}}
$$

$$
V=\int_{0}^{10} y^{2} d x
$$

$$
\begin{align*}
& y^{2}=\left(\frac{10-x}{5}\right)^{2} \\
& =\frac{100-20 x+x^{2}}{25}
\end{align*}
$$

5. $f(x)=x^{3}+x \quad \therefore$ let $y=x^{3}+x$
\therefore Inverse of.

$$
y=x^{3}+x \text { is }
$$

$$
x=y^{3}+y
$$

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2}+1 \\
\therefore \frac{d x}{d y} & =\frac{1}{3 x^{2}+1}
\end{aligned}
$$

$\because y=h(x)$ so $h^{\prime}(2)$ means when $x=2$ is inverse

So in original $D \& R$ swap 50

$$
x=1 \quad \therefore \frac{d x}{d y}=\frac{1}{3(1)^{2}+1}=\frac{1}{4} .
$$

6. $\frac{x^{2}}{\lambda-9}+\frac{y^{2}}{\lambda-4}=1$ ellipse then

$$
\lambda-9>0 \text { and } \lambda-4>0
$$

$$
\therefore \lambda>9 \text { and } \lambda>4
$$

7. $|x-1|=|y-1|$

Move centre to $(1,1)$.

8. $\frac{1}{x}+\frac{1}{1-x}>0, x \neq 0, x \neq 1$

$$
\begin{align*}
& \frac{1-x+x}{x(1-x)}>0 \tag{1}\\
& \frac{1}{x(1-x)}>0 \tag{C}
\end{align*}
$$

$\therefore 0<x<1$

MC contd:
9. Factor $a x-b$, "a" factor of $15 x^{7}$, 6 factor
of $14 \therefore 3 x-7$
10. $\lim e^{-\frac{1}{x^{2}}}$

$$
\lim _{x \rightarrow \infty} e^{\pi}
$$

$$
\therefore e^{x^{2}}=e^{0}=1
$$

Q 11 a) $\int \cot x \operatorname{cosec}^{2} x d x$

$$
\begin{align*}
& \left.=-\int-\cot x^{\prime} \operatorname{cosec}^{2}\right)^{2} x d x \tag{2}\\
& =-\frac{\cot ^{2} x}{2}+C
\end{align*}
$$

b)

$$
\begin{aligned}
& \begin{aligned}
\int_{0}^{\frac{1}{\sqrt{2}}} \frac{x}{\sqrt{1-x^{4}}} d x & =\frac{1}{2} \int_{0}^{\frac{1}{v^{2}} \cdot \frac{2 x}{\sqrt{1-\left(x^{2}\right)^{2}}} d x} \\
& =\frac{1}{2}\left[\sin ^{-1}\left(x^{2}\right)\right]_{0}^{\sqrt{2}} \\
& =\frac{1}{2}\left[\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)^{2}-\sin ^{-1}\left(0^{2}\right)\right] \\
& =\frac{1}{2}\left[\sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}(0)\right] \\
& =\frac{1}{2}\left[\frac{\pi}{6}-0\right] \\
& =\frac{\pi}{12}
\end{aligned}
\end{aligned}
$$

c) $\int \frac{e^{2 x} d x}{\sqrt{e^{x}+1}}=\int \frac{e^{x} \cdot e^{x} d x}{\sqrt{e^{x}+1}}$
let $u=\sqrt{e^{x}+1}$
$=\int\left(u^{2}-1\right) \cdot 2 d u$

$$
=\frac{2 u^{3}}{3}-2 u+C
$$

$$
\begin{equation*}
u^{2}=e^{x}+1 \tag{3}
\end{equation*}
$$

$$
e^{x}=u^{2}-1
$$

$$
\begin{equation*}
=\frac{2 \sqrt{\left(e^{x}+1\right)^{3}}}{3}-2 \sqrt{e^{x}+1}+c \quad 2 d u=\frac{e^{x} d x}{\sqrt{e^{x}+1}} \tag{2}
\end{equation*}
$$

d) i) Find $A \Delta B$:

$$
\begin{aligned}
& \frac{\cos x}{1-\sin ^{2} x}=\frac{A \cos x}{1+\sin x}+\frac{B \cos x}{1-\sin x} \\
& \frac{\cos x}{1-\sin ^{2} x}=\frac{A(1-\sin x) \cos x+B(1+\sin x) \cos x}{(1+\sin x)(1-\sin x)} \\
& \therefore \cos x \equiv \cos x(A-A \sin x+B+B \sin x) \\
& \therefore \quad A+B=1, \quad B-A=0 \quad \therefore A=B=\frac{1}{2}
\end{aligned}
$$

Solutions to
Title: Ascham 2014 Y 12 Tn al Math Ex +2 Exam

QII contd:

$$
\text { di) } \therefore \frac{\cos x}{1-\sin ^{2} x}=\frac{1}{2}\left(\frac{\cos x}{1+\sin x}+\frac{\cos x}{1-\sin x}\right)
$$

$$
\therefore \text { ii) } \int \sec x d x=\int \frac{\cos x}{\cos ^{2} x} d x
$$

$$
\begin{equation*}
=\int \frac{\cos x}{1-\sin ^{2} x} d x \tag{2}
\end{equation*}
$$

$=\frac{1}{2}[\ln (1+\sin x)-\ln (1-\sin x)]+c$

$$
=\ln \sqrt{\frac{1+\sin x}{1-\sin x}}+c
$$

e) let $t=\tan \frac{\theta}{2}$

$$
\therefore \int_{0}^{\frac{\pi}{3}} \frac{d \theta}{1+\cos \theta}
$$

$$
=\int_{0}^{\frac{1}{\sqrt{3}}} \frac{\frac{2 d t}{t^{2}+1}}{1+\frac{1-t^{2}}{1+t^{2}}}
$$

$$
=\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2 d t}{\frac{1+t}{1}+1} \div\left(\frac{1+t^{2}+1-t^{2}}{1+t^{2}}\right)
$$

$$
=\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2 d t}{2}
$$

$$
=\int_{0}^{\frac{1}{\sqrt{3}}} 1 d t
$$

$$
=[t]_{0}^{\frac{1}{\sqrt{3}}}
$$

$$
=\frac{1}{\sqrt{3}}
$$

Q12
a) If $\sqrt{15+8 i}=a+i b$ where $a, b \in \mathbb{R}$ then $15+8 i=(a+i b)^{2}=a^{2}-b^{2}+2 a b i$ Equating real $\&$ imaguany parts:

$$
a^{2}-b^{2}=15,8=2 a b \Rightarrow 4=a b
$$

By inspection, $a=4, b=1$ or $a=-4, b=-1$
\therefore A root is $4+i$ (or $-4-i$).

Q12 contd
b) $\alpha=1-i, \beta=\sqrt{3}+i$
i) $\alpha \beta=(1-i)(\sqrt{3}+i)=\sqrt{3}+1+i(1-\sqrt{3})$
ii) $\beta=\sqrt{3}+i=2 \operatorname{cis} \frac{\pi}{6}$
iii) $\alpha=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$

$\alpha \beta=2 \operatorname{cis} \frac{\pi}{6} \times \sqrt{2} \operatorname{cis}\left(\frac{-\pi}{4}\right)$
$=2 \sqrt{2} \operatorname{cis}\left(\frac{\pi}{6}-\frac{\pi}{4}\right)$
$=2 \sqrt{2}$ is $\left(\frac{-\pi}{12}\right)=2 \sqrt{2}\left(\cos \left(\frac{-\pi}{12}\right)+i \sin \left(\frac{-\pi}{12}\right)\right)$
iv $)=\sqrt{3}+1+i(1-\sqrt{3})$ Equating reals:

$$
\begin{align*}
2 \sqrt{2} \cos \left(\frac{-\pi}{12}\right) & =\sqrt{3}+1 \tag{1}\\
\therefore \cos \left(\frac{-\pi}{12}\right) & =\frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{align*}
$$

d) $\beta=\frac{1}{2} i \alpha, \alpha=-\gamma,|\beta|=|\delta|, \arg \left(\frac{\beta}{\gamma}\right)=\pi$

$A B C D$ is a chambers since diagonals bisect at b and that's it! (2) e) i) $y=e^{2 x}+1$ $\frac{12\left(1, e^{2}+1\right)}{01}$

Title: Ascham 2014 Y/2 Trial Math Ext 2 Exam

$$
\begin{equation*}
=x \sqrt{x^{2}-1}-\int \frac{x^{2}}{\sqrt{x^{2}-1}} d x \tag{3}
\end{equation*}
$$

i) $\angle A L H=\alpha$ (base $\angle s$ of isosceles $\triangle A H L$ are equal)

$$
=x \sqrt{x^{2}-1}-\int \frac{x^{2}-1}{\sqrt{x^{2}-1}}+\frac{1}{\sqrt{x^{2}-1}} d x
$$

$A / s o \angle A C B=\alpha(\angle 5$ standing at

$$
=x \sqrt{x^{2}-1}-\int \sqrt{x^{2}-1} d x+\int \frac{1}{\sqrt{x^{2}-1}} d x
$$

(2) Circumference on arc $A B$
$\therefore \angle A H L=\angle A C B$ equal) (both equal $\angle A \angle A$)
ii) $\therefore H E C D$ is a cyclic quad
(1) $(\angle A H L=\angle A C B$, exterior \angle of quad $H E C D=$ interned opprositic 4$)$

$$
y^{2}=x^{2}-1
$$

$$
y= \pm \sqrt{x^{2}-1}
$$

iii) In $\triangle A H E$ and $\triangle A L E$,

1. AE Common
2. $\angle H A E=\angle L A E\left(\begin{array}{l}\text { equal ares } \\ \text { subtend equal }\end{array}\right.$
(3) $\angle s$ at civcomfarance)
3. $A H=A L$ (given),
$\therefore \triangle A H E \equiv \triangle A L E$ (SAL),
$\therefore \angle A E H=\angle A E L$ (snatching $\angle 5$ but $\angle A E H+\angle A E L=180^{\circ}$ (straight

$$
\begin{aligned}
2 x & \left.=180 \quad(x=\angle A E H)^{\text {in }}\right) \\
x & =90
\end{aligned}
$$

$\therefore \angle A E H=90^{\circ}$ then $\angle H E C=90^{\circ}$
(vertically opposite $<A E H$)
$\therefore H C$ is diameter (\angle in semicide
b) i)

ii) Sub: $\left(\frac{e^{x}+e^{-x}}{2 x^{2}}\right)_{-2 x}^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{e^{2 x}+2+e^{2 x}}{4}-\frac{e^{2 x}-2+e^{-2 x}}{4} \\
& =\frac{4}{4}=1 . \therefore \text { Lis or } x^{2}-y^{2}=1 .
\end{aligned}
$$

Q13 contd: $\int \sqrt{x^{2}-1} d x$
let $u=\sqrt{x^{2}-1}$
iiii)uv- $\int v d u$

$$
=x \sqrt{x^{2}-1}-\int \frac{x \cdot x d x}{\sqrt{x^{2}-1}}
$$

$\therefore 2 \int \sqrt{x^{2}-1} d x=x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)+C$
) $\int \sqrt{x^{2}-1} d x=\frac{x \sqrt{x^{2}-1}}{2}-\frac{\ln \left(x+\sqrt{x^{2}-1}\right)}{2}+C$
iv)

$$
x^{2}-y^{2}=1
$$

$10\left(\frac{e^{2}+e, 0}{2}\right)$

$$
\begin{aligned}
\text { Area } & =\text { Triangle }-\int_{1}^{\frac{e^{x}+e^{-x}}{2}} \sqrt{x^{2}-1} d x \\
& =\frac{1}{2} b h-\int_{1}^{\frac{e^{x}+e^{-x}}{2}} \sqrt{x^{2}-1} d x
\end{aligned}
$$

$$
=\sqrt{e^{2 x}-2+e^{-2 x}}=\frac{e^{2 x}-e^{-2 x}}{8}-\left(\frac{e^{x}+e^{-x}}{4} \sqrt{\frac{e^{2 x}+2+e^{-2 x}-4}{4}}\right.
$$

$$
=\sqrt{\left(e^{x}-e^{-x}\right)^{2}}
$$

$$
\begin{aligned}
& =e^{x}-e^{-x} \quad y x>0=\frac{e^{2 x}-e^{-2 x}}{8}-\left(\frac{e^{x}+e^{-x}}{4} \times \frac{e^{x}-e^{-x}}{2}-\ln \left(\frac{e^{x}+e^{2 x}+e}{2}\right.\right. \\
& \left(\frac{\left.e^{x}-e^{-x}\right)^{2}}{2}\right) \\
& \frac{e^{2 x}-2+e^{-2 x}}{2} e^{2 x}-e^{-2 x} \\
& \text { is ar } x^{2}-y^{2}=1 .
\end{aligned}=0+\frac{e^{2 x}-e^{-2 x}}{x 8}+\frac{\ln \frac{2 e^{x}}{2}}{2}=\frac{x \ln e}{2}=\frac{x}{2} \text { unit }^{2} .
$$

$$
\begin{align*}
& =\frac{1}{2}\left(\frac{e^{x}+e^{-x}}{2}\right)\left(\frac{e^{x}-e^{-x}}{2}\right)- \\
& \begin{array}{l}
{\left[\frac{x \sqrt{x^{2}-1}}{2}-\frac{\ln \left(x+\sqrt{x^{2}-1}\right)}{2}\right]^{\frac{e^{x}+e^{-x}}{2}}} \\
\frac{1}{2}\left(\frac{e^{2 x}-e^{-2 x}}{4}\right)-\left(\left[\frac{e^{x}+e^{-x}}{4} \sqrt{\left(\frac{\left.e^{x}+e^{-x}\right)^{2}-1}{2}\right.}\right)\right. \\
\left.-\ln \left(\frac{e^{x}+e^{-x}}{2}+\sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-1}\right)\right] \\
\left.-\left[\frac{\sqrt{1^{2}-1}}{2}-\ln \left(1+\sqrt{1^{2}-1}\right)\right]\right)
\end{array} \tag{3}\\
& \begin{aligned}
& {\left[\frac{x \sqrt{x^{2}-1}}{2}-\ln \left(x+\sqrt{x^{2}-1}\right)\right.} \\
= & \frac{1}{2}\left(\frac{e^{2 x}-e^{-2 x}}{4}\right)-\left(\left[\frac{e^{x}+e^{-x}}{4} \sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-1}\right.\right. \\
& \left.-\ln \left(\frac{e^{x}+e^{-x}}{2}+\sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-1}\right)\right] \\
& \left.-\left[\frac{1 \sqrt{11^{2}-1}}{2}-\frac{\ln \left(1+\sqrt{1^{2}-1}\right)}{2}\right]\right)
\end{aligned} \\
& \begin{array}{l}
{\left[\frac{x \sqrt{x^{2}-1}}{2}-\ln \left(x+\sqrt{x^{2}-1}\right)\right]^{\frac{e^{x}+e^{-x}}{2}}} \\
\frac{1}{2}\left(\frac{e^{2 x}-e^{-2 x}}{4}\right)-\left(\left[\frac{e^{x}+e^{-x}}{4} \sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-1}\right.\right. \\
\left.-\ln \left(\frac{e^{x}+e^{-x}}{2}+\sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-1}\right)\right] \\
\left.-\left[\frac{1 \sqrt{11^{2}-1}}{2}-\frac{\ln \left(1+\sqrt{1^{2}-1}\right)}{2}\right]\right)
\end{array} \\
& \begin{array}{l}
{\left[\frac{x \sqrt{x^{2}-1}}{2}-\ln \left(\frac{\left.x+\sqrt{x^{2}-1}\right)}{2}\right]^{\frac{e^{x}+e^{-x}}{2}}\right.} \\
\frac{1}{2}\left(\frac{e^{2 x}-e^{-2 x}}{4}\right)-\left(\left[\frac{e^{x}+e^{-x}}{4} \sqrt{\left(\frac{\left.e^{x}+e^{-x}\right)^{2}-1}{2}\right.}\right.\right. \\
\left.-\ln \left(\frac{e^{x}+e^{-x}}{2}+\sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-1}\right)\right] \\
\left.-\left[\frac{1\left(1+\sqrt{1^{2}-1}\right.}{2}-\frac{\ln \left(1+\sqrt{1^{2}-1}\right)}{2}\right]\right) 3
\end{array} \\
& \text { using (i) }-\ln \left(\frac{e^{x}+e^{-x}}{2}+\sqrt{\frac{e^{2 x}+2+e^{-2 x}}{4}}\right)=0
\end{align*}
$$

Solutions to
Title: Ascham 2014 Y 12 Trial Math Ext 2 Exam

Q14 a)

$$
\text { i) Area of } \begin{aligned}
& \text { I s/icic } \div \pi R^{2}-\pi r^{2} \\
&=\pi(R+r)(R-r) \\
&\left.=\pi\left(\left(5-x_{1}\right)+\left(5-x_{2}\right)\right)\left(5-x_{1}\right)-\left(5-x_{2}\right)\right) \\
&=\pi\left(10-\left(x_{1}+x_{2}\right)\right)\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Now make x subject to find x_{1}, x_{2} :

$$
\begin{aligned}
\frac{x^{2}}{15}=1-\frac{y^{2}}{9} \Rightarrow x & = \pm \sqrt{16\left(\frac{9-y^{2}}{9}\right)} \\
& = \pm \frac{4}{3} \sqrt{9-y^{2}}
\end{aligned}
$$

So $x_{1}=-\frac{4}{3} \sqrt{9-y^{2}} \quad x_{2}=+\frac{4}{3} \sqrt{9-y^{2}}$

$$
\text { (} \begin{align*}
\therefore A & \doteqdot \pi(10-(0))\left(2 \times \frac{4}{3} \sqrt{9-y^{2}}\right) \\
& \doteqdot \pi \times \frac{80}{3} \sqrt{9-y^{2}} \# \\
V & \doteqdot \sum_{y=-3}^{3} \frac{80 \pi}{3} \sqrt{9-y^{2}} \Delta y \\
& =2 \int_{0}^{3} \frac{80 \pi}{3} \sqrt{9-y^{2}} d y \\
& =2 \times \frac{20 \pi \pi}{33} \times \frac{1}{4} \pi 3^{2} \tag{3}\\
& =120 \pi^{2} \text { unit }^{3}
\end{align*}
$$

$\frac{1}{4} \pi r^{2}$

OR Using Tapas' Theorem:
$V=$ Area of Cross-section \times Avenge Rating

$$
\begin{aligned}
& =\pi \times 3 \times 4 \times 2 \pi \times 5 \\
& =120 \pi^{2} u^{3}
\end{aligned}
$$

b) $\int_{0}^{x} \quad$ i)

$$
F=m a=-M g-M k v^{2}
$$

$$
\therefore \ddot{x}=-g-k v^{2}
$$

$$
\begin{aligned}
& \text { ff } \frac{d v}{d x}=\frac{-g-k v^{2}}{v} \\
& \therefore \int_{v i}^{2 k} \frac{d x}{d v} \frac{d v}{d v} \int_{I}^{0}-\frac{2 k v}{g+k v^{2}} d v \\
& \therefore 2 k x=-\left[\ln \left(g+k v^{2}\right)\right]_{I I}^{0}
\end{aligned}
$$

Distance up $=\operatorname{dis} \operatorname{tance}$ down

$$
\begin{aligned}
& \text { Distance up }=\text { distance } \\
& \therefore \frac{1}{2 k} \ln \left(\frac{g+k I^{2}}{g}\right)=\frac{1}{2 k} \ln \left(\frac{g}{g-k V^{2}}\right) \\
& \quad\left(g+k I^{2}\right)\left(g-k V^{2}\right)=g^{2} \quad \mathbb{Z} .
\end{aligned}
$$

iii) $v=V$ when $x=H$ down.

$$
\begin{aligned}
\therefore \quad \ddot{x} & =g-k v^{2} \\
v & \frac{d v}{d x}
\end{aligned}=g-k v^{2} .
$$

$$
\text { c) i) } 4 x^{2}+6 x y+4 y^{2}=3 x^{2}+3 y^{2}+6 x y+x^{2}+y^{2}
$$

$$
=3\left(x^{2}+2 x y+y^{2}\right)+x^{2}+y^{2}
$$

$$
=3(x+y)^{2}+x^{2}+y^{2}
$$

$$
\begin{aligned}
& 3(x+y)+x+y \\
& >0 \text { if } x, y \neq 0 \text { since }(x+y)^{2}>0 \\
& \text { and } x^{2}, y^{2}>
\end{aligned}
$$ and $x^{2}, y^{2}>0$

$$
\text { ii) } \begin{align*}
& 3 x^{2}+5 x y+3 y^{2}=2 x^{2}+4 x y+2 y^{2}+x^{2}+x y+y^{2} \\
= & 2(x+y)^{2}+\frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{x^{2}+2 x y+y^{2}}{2} \\
= & 2(x+y)^{2}+\frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{(x+y)^{2}}{2} \tag{2}
\end{align*}
$$

>0 since all terns >0 for $x, y \neq 0$甲 $=0$.

Solutions to
Title: Ascham 2014 Y/z Trial Math Ext 2 Exam

Q15 a)
a)
i) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0$
$\therefore \frac{d y}{d x}=\frac{-b^{2} x}{a^{2} y}$ at $x=x_{1} \quad m=\frac{-b^{2} x_{1}}{a^{2} y_{1}}$.
\therefore Eqúr of tangent is:

$$
\begin{align*}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-y_{1} & =\frac{-b^{2} x_{1}}{a^{2} y_{1}}\left(x-x_{1}\right) \tag{2}\\
& \frac{y y_{1}}{b^{2}}-\frac{y_{1}^{2}}{b^{2}}=-\frac{x x_{1}}{a^{2}}+\frac{x_{1}^{2}}{a^{2}} \\
\therefore & \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}=1
\end{align*}
$$

since (x, y) lies on
\therefore Eq $y_{\text {at } p}^{\prime}$ tangent is $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$.
Similarly tangutt at Q is

$$
\frac{x x_{2}}{a^{2}}+\frac{y y_{2}}{b^{2}}=1
$$

ii) Eqin of chord of contact is

$$
\begin{equation*}
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

iii) chord of contact from $T\left(\frac{a}{e}, 0\right)$ is chord $P Q-\operatorname{sub}\left(\frac{a}{e}, 0\right) \Rightarrow$

$$
\begin{align*}
& \frac{x\left(\frac{a}{e}\right)}{a^{2}}+\frac{y(0)}{b^{2}}=1 \tag{1}\\
& \therefore \frac{x}{a e}=1 \Rightarrow x=a e \text { ie, PQ } \\
& \therefore \text { spae. o) he }
\end{align*}
$$

i line $x=a e \therefore S(a e, 0)$ his on ventical $P Q$. QED.
b) $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$.
i) $16 x^{5}-20 x^{3}+5 x-1=0$ if $x=\cos \theta$ then equivalent to $\cos 5 \theta=1$
$\therefore 5 \theta=0+2 k \overline{11}$ where $k \in \mathbb{Z}$

$$
\theta=\frac{2 k \pi}{5} \text { ie. } \theta=0 \frac{ \pm 2 \pi}{5}, \frac{ \pm 45}{5} \ldots
$$

etc. So $x=\cos \left(\frac{2 k \pi}{5}\right)$ where values are $5($ distinct $)$ roots of equation $\therefore \cos 0, \cos \frac{2 \pi}{5}, \cos \left(\frac{-2 \pi}{5}\right), \cos \left(\frac{4 \pi}{5}\right), \cos \left(\frac{-4 \pi}{5}\right)$, $\cos \frac{6 \pi}{5}, \cos \frac{-6 \pi}{5}, \cos \frac{8 \pi}{5}, \cos \left(-\frac{8 \pi}{5}\right) \ldots$
(Distinct)roots are $\left.0, \cos \frac{2 \pi}{5}, \cos \frac{4 \pi}{5}, 2\right)$

$$
\begin{equation*}
\cos \frac{6 \pi}{5}\left(\cos \left(-\frac{4 \pi}{5}\right)\right), \cos \frac{8 \pi}{5}\left(\cos \left(-\frac{2 \pi}{5}\right)\right) \tag{2}
\end{equation*}
$$

bur (ii) $\cos \left(\frac{-4 \pi}{5}\right)=\cos \left(\frac{4 \pi}{5}\right), \cos \frac{2 \pi}{5}=\cos \left(\frac{-2 \pi}{5}\right)$
\therefore Sum of roots $=\frac{-b}{a}=\frac{0}{16}=0$

$$
\begin{aligned}
& \therefore \cos 0+\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}+\cos \left(\frac{-2 \pi}{5}\right)+\cos \left(-\frac{4 \pi}{5}\right)=0 \\
& \therefore 1+2 \cos \frac{2 \pi}{5}+2 \cos \frac{4 \pi}{5}=0
\end{aligned}
$$

$$
\begin{equation*}
\therefore \cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2} \tag{2}
\end{equation*}
$$

and product $=\frac{-f}{a}=\frac{1}{16}$

$$
\begin{aligned}
& \therefore \quad 1 \times \cos \frac{2 \pi}{5} \times \cos \frac{4 \pi}{5} \times \cos \frac{-2 \pi}{5} \times \cos \left(\frac{-4 \pi}{5}\right)=\frac{41}{16} \\
& \therefore \cos ^{2} \frac{2 \pi}{5} \cos ^{2} 4 \pi=\frac{1}{1}
\end{aligned}
$$

iii) Let $\cos \frac{2 \pi}{5}=a, \cos \frac{4 \pi}{5}=b$

$$
\begin{align*}
\therefore \quad a+b=-\frac{1}{2} \quad a^{2} b^{2} & =\frac{1}{16} \tag{2}\\
a b & = \pm \frac{1}{4}
\end{align*}
$$

but $\cos \frac{4 \pi}{5}<0$ so $a b=-\frac{1}{4}$ only

$$
\therefore a=\frac{-1}{4 b} \quad \therefore \frac{-1}{4 b}+b=\frac{-1}{2}
$$

$\therefore \quad 1-4 b^{2}=2 b \Rightarrow 4 b^{2}+2 b-1=0$
$\Rightarrow b=\frac{-2 \pm \sqrt{20}}{8}=\frac{-1 \pm \sqrt{5}}{4}$ but $b<0 \therefore b=\frac{-1-\sqrt{5}}{4}$

Solutions to
Title: Ascham 2014Y/2 Trial Math Ext 2 Exam
Q15 contd:
b iii) contd $\therefore a=\frac{-1}{2}-\left(\frac{-1-\sqrt{5}}{4}\right) \quad \therefore P(1)$ the Assume $P(k)$ the ie $k \in \mathbb{N}, k \geqslant 1$
$\therefore \cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{4},=\frac{-1+\sqrt{5}}{4} \cos \frac{4 \pi}{5}=\frac{-1-\sqrt{5}}{4}$

$$
\begin{aligned}
& \text { ci) } \left.R T p: \frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}+\cos (n+1) x=\frac{\sin \left(n+\frac{3}{2}\right) x}{2 \sin \frac{x}{2}}\right) \\
& \text { Proof: } \sin \left(n+\frac{1}{2}\right) x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos k x=\frac{\sin \left(k+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} \\
& \text { RIP: } P(k+1) \text { the ie. }
\end{aligned}
$$

$$
\begin{equation*}
\text { Proof: } \frac{\sin \left(n+\frac{1}{2}\right) x^{\frac{1}{2}}}{2 \sin \frac{x}{2}}+\cos (n+1) x \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos k x+\cos (k+1) x \\
&=\frac{\sin \left(k+1+\frac{1}{2}\right) x}{3 \sin \frac{x}{2}} .
\end{aligned}
$$

$$
\begin{equation*}
=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}+\cos \left(\left(n+\frac{1}{2}\right) x+\frac{1}{2} x\right) \tag{2}
\end{equation*}
$$

Proof: Consider the LHS of $P(k+1)$:

$$
=\frac{\sin \left(n+\frac{1}{2}\right)^{2} x}{2 \sin \frac{x}{2}}+\cos \left(n+\frac{1}{2}\right) x \cos \frac{1}{2} x-\sin \left(n+\frac{1}{2}\right) x \sin \frac{1}{2} x
$$ $\frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos k x+\cos (k+1) x$

$$
\begin{align*}
& =\frac{\sin \left(n+\frac{1}{2}\right)^{2} x+2 \sin \frac{x}{2} \cos \left(n+\frac{1}{2}\right) x \cos \frac{1}{2} x-2 \sin \left(n+\frac{1}{2}\right) x \sin }{2 \sin \frac{x}{2}} \tag{k}\\
& =\frac{\sin \left(n+\frac{1}{2}\right) x+\cos \left(n+\frac{1}{2}\right) x \sin x-2 \sin \left(n+\frac{1}{2}\right) x \sin ^{2} \frac{1}{2}}{2 \sin \frac{x}{2}} \\
& =\frac{\sin \left(n+\frac{1}{2}\right) x\left[1-2 \sin ^{2} \frac{1}{2} x\right]+\cos \left(n+\frac{1}{2}\right) x \sin x}{2 \sin \frac{x}{2}}
\end{align*}
$$ $=\frac{\sin \left(k+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}+\cos (k+1) x$ using

$\frac{\sin \left(k+\frac{3}{2}\right) x}{2 \sin \frac{x}{2}}$ from (i)
$=$ RHS of $P(k+1) \therefore P(k+1)$ the .
$\therefore P(n)$ is true for all $n \in \mathbb{N}, n \geqslant 1$

$$
=\frac{\sin \left(n+\frac{1}{2}\right) \times \cos x+\cos \left(n+\frac{1}{2}\right) x \sin x}{2 \sin \frac{x}{2}}
$$ by Math Induction.

$$
=\frac{\sin \left(n+\frac{1}{2}+1\right) x}{2 \sin \frac{x}{2}}=\frac{\sin \left(n+\frac{3}{2}\right) x^{2}}{2 \sin \frac{x}{2}} \text {. }
$$

Q16

$$
\begin{aligned}
& \text { a) } \cos 5 x=\frac{\sin 9 x}{} \quad \therefore \cos 5 x=\cos \left(\frac{\pi}{2}-9 x\right) \\
& \therefore 5 x=2 k \pi \pm\left(\frac{\pi}{2}-9 x\right) \quad k \in \mathbb{Z} \\
& \therefore 5 x=2 k \pi+\frac{\pi}{2}-9 x \text { or } 5 x=2 k \pi-\left(\frac{\pi}{2}-9 x\right) \\
& \therefore 14 x=2 k \pi+\frac{\pi}{2} \quad \text { OR } 4 x=-\left(2 k \pi-\frac{\pi}{2}\right) \\
& \therefore x=2 k \pi+\pi
\end{aligned}
$$

$$
\left.\therefore x=\frac{2 k \pi+\frac{\pi}{2}}{14} \text { or } x=-\frac{(4 k \pi-\pi}{4}\right)
$$

$$
\therefore x=\frac{\pi(4 k+1)}{28} \text { or } x=\frac{-\pi(4 k-1)}{4}
$$

b) $M=4 t+30+8 \sin \frac{\pi t}{2}, 0 \leq t \leq 70$
i) $\left.\quad-1 \leq \frac{\sin (\pi t)}{2}\right) \leq 1$

$$
\begin{equation*}
\therefore \quad-8 \leqslant 8 \sin \frac{\pi t}{2} \leq 8 \tag{2}
\end{equation*}
$$

$\therefore \quad 4 t+30-8 \leqslant 4 t+30+8 \sin \frac{\pi t}{2} \leqslant 4 t+30+8$
$\therefore 4 t+22 \leqslant y \leqslant 4 t+38$
\therefore Lines are $\begin{aligned} y & =4 t+22 \\ y & =4 t+38\end{aligned}$
and $y=4 t+38$

16 b) ii) If $t=70 \quad \begin{aligned} y & =4(70)+30+8 \sin (35 \pi) \\ & =310+0=310\end{aligned} \quad 16$ contd

But if $t=69 \quad y=310+0=310$
$\left.=306+8 \times 1 \frac{(68+\pi}{2}\right)$

$$
=314
$$

\therefore Max mass is on Day $69-314 \mathrm{~g}$.
iii)

"Pernod" is 4 days so chick probably gets fed about every 4 days.
c) $G_{n}=\int_{0}^{\infty} e^{-t} t^{n-1} d t \quad n=1,2,3, \ldots$
i) $G_{n+1}=\int_{0}^{\infty} e^{-t} t^{n} d t$
ii)

$$
\begin{equation*}
G_{n}=\int_{0}^{\infty} e^{-t} t^{n-1} d t \tag{1}
\end{equation*}
$$

$=u v-\int v d u$ where

$$
u=e^{-t}-t
$$

$$
\begin{aligned}
& u=e \\
& d u=-e^{-t} d t
\end{aligned} d t
$$

$$
\begin{aligned}
& =\left[e^{-t} \frac{1}{n} t^{n}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{n} t^{n} \cdot-e^{-t} d t \quad d v=t^{n-1} d t \\
& =0 \cdot \frac{1}{n} t^{\infty}-e^{0} \cdot \frac{1}{n} \theta^{-n}+\frac{1}{n} t_{0}^{n} t^{n} \cdot e^{-t} d t \\
& =0+\frac{1}{n} \int_{0}^{\infty} e^{-t} t^{n} d t
\end{aligned}
$$

$$
\begin{equation*}
\therefore G_{n}=\frac{1}{n} G_{n+1} \tag{2}
\end{equation*}
$$

$$
\therefore G_{n+1}=n G_{n}^{n+1} \text { QED }
$$

iii)

$$
\begin{align*}
G_{1} & =\int_{0}^{\infty} e^{-t} t^{1-1} d t \\
& =\int_{0}^{\infty} e^{-t} \cdot 1 d t \\
& =\left[-e^{-t}\right]_{0}^{\infty} \tag{2}\\
& =-0--e^{-0} \\
& =e^{0}=1 \text { QED }
\end{align*}
$$

$\therefore G_{n}=(n-1)!\quad n=1,2,3, \ldots Q E_{D}$

