2019 YEAR 12
 MATHEMATICS EXTENSION 2 TRIAL EXAM

GENERAL INSTRUCTIONS

Reading time - 5 minutes
Working time - 180 minutes
Use black pen, non-erasable
NESA-approved calculators may be used
Reference Sheet is provided

Total Marks - 40

Section A - Multiple Choice (1 mark each)
Attempt Questions 1 to 10.
Select answers on the separate multiple choice sheet provided.
Write your NESA number on the multiple choice sheet.

Section B - Questions 11 - 16 (15 marks each)
Start each question in a new booklet.
If you use a second booklet for a question, place it inside the first.
Label extra booklets for the same question as, for example, Q11-2 etc.
Write your NESA number and question number on each booklet.

Blank page

Section A - Multiple choice (10 marks)

(Mark the correct answer on the sheet provided.)

1. Which is a possible equation of the following hyperbola?

A) $9 x^{2}-16 y^{2}=144$
B) $16 x^{2}-9 y^{2}=144$
C) $9 x^{2}-16 y^{2}=-144$
D) $16 x^{2}-9 y^{2}=-144$
2. $\frac{2-i}{-2-i}=?$
A) $-\frac{3}{5}+\frac{4}{5} i$
B) -1
C) $-1+\frac{4}{3} i$
D) $-\frac{5}{3}$
3. The diagram shows the graph of the function $y=f(x)$.

Which of the following is the graph of $y=f(|x|)$?
A)

B)

C)

D)

4. The polynomial equation $x^{3}+A x^{2}+B=0$ has roots α, β and γ. What are the roots of the polynomial equation $(3 x+2)^{3}+A(3 x+2)^{2}+B=0$?
A) $\frac{\alpha}{3}-2, \frac{\beta}{3}-2, \frac{\gamma}{3}-2$
B) $\frac{\alpha-2}{3}, \frac{\beta-2}{3}, \frac{\gamma-2}{3}$
C) $3 \alpha+2,3 \beta+2,3 \gamma+2$
D) $\alpha+\frac{2}{3}, \beta+\frac{2}{3}, \gamma+\frac{2}{3}$

Ascham School Mathematics Extension 2 Trial Exam 2019 ©
5. Given the rectangular hyperbola $x y=25$, which is the correct equation of its directrices?
A) $x+y= \pm \frac{5}{\sqrt{2}}$
B) $x+y= \pm 5$
C) $x+y= \pm 5 \sqrt{2}$
D) $x+y= \pm 10$
6. Let α, β and γ be the zeroes of the polynomial $x^{3}+5 x-3$. Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
A) -125
B) 0
C) 9
D) 34
7. The equation $|z-3|+|z+3|=10$ defines an ellipse. What is the length of the semi-minor axis?
A) 4
B) 5
C) 8
D) 10
8. The complex number z satisfies the equation $|z-2|=1$. What is the maximum value of $\arg (z)$?
A) $\tan ^{-1}\left(\frac{1}{2}\right)$
B) $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C) $\tan ^{-1} 1$
D) $\tan ^{-1} \sqrt{3}$
9. The following diagram shows the graph $y=P^{\prime}(x)$, the derivative of a polynomial $P(x)$.

Which of the following expressions could be $y=P(x)$?
A) $x(x-2)^{2}$
B) $x(x-2)^{3}$
C) $(2 x-1)(x-2)^{2}$
D) $(2 x-1)(x-2)^{3}$
10. After differentiating a relation implicitly, we find that $\frac{d y}{d x}=\frac{-\sqrt[3]{y}}{\sqrt[3]{x}}$. Which of the following could be a graph of this relation?
A)

B)

C)

D)

(End of Section A. Question 11 begins on the next page.)

Section B (35 marks)

Question 11 (Begin and label a new booklet.)
a) Evaluate $\int_{1}^{e} \log _{e} x d x$.
b) Evaluate $\int_{0}^{\pi} \sin ^{3} x d x$.
c) i) Find values A, B and C so that $\frac{x^{2}+x+1}{x^{3}+3 x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+3}$.
ii) Hence find $\int \frac{x^{2}+x+1}{x^{3}+3 x^{2}} d x$.
d) Find $\int \frac{d x}{2+\sin 2 x}$ using the substitution $t=\tan x$. Leave your answer in terms of t.
e) The polynomial $P(x)=x^{5}+2 x^{4}+a x^{3}+b x^{2}$ has $(x-1)^{2}$ as a factor.

Show that $a=-7$ and $b=4$.
(End of Question 11.)

Question 12 (Begin and label a new booklet.)
(15 marks)
a) Solve $z^{2}=5-12 i$, giving your answer/s in the form $x+i y$.
b) i) Express $-1-i$ in modulus argument form.
ii) Hence find the real part of $(-1-i)^{10}$.
c) As shown, the points O, C, A and B on the Argand diagram represent the complex numbers $0,1, z$ and $z+1$ respectively, where $z=\cos \theta+i \sin \theta$, $0<\theta<\pi$. Copy the diagram.

i) Explain why $O C B A$ is a rhombus.
ii) Draw the vector $z-1$ on the diagram and hence explain why $\frac{z-1}{z+1}$ is purely imaginary.
iii) Find, in terms of θ, the modulus and argument of $z+1$.
d) Let ω be a non-real root of $z^{7}-1=0$.
i) Show that $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=0$.
ii) Simplify $\left(\omega+\omega^{2}+\omega^{4}\right)\left(\omega^{6}+\omega^{5}+\omega^{3}\right)$.
iii) Sketch and label on the Argand diagram all seven roots of $z^{7}-1=0$. (You are not required to derive them.)

Question 13 (Begin and label a new booklet.)
(15 marks)
a) Drawn below is the graph of $y=\frac{2 x}{1+x^{2}}$. Stationary points at A and A^{\prime} are labeled as shown.

Sketch on separate axes, labeling any important features:
i) $y=\frac{|2 x|}{1+x^{2}}$
ii) $y=\frac{1+x^{2}}{2 x}$
iii) $y^{2}=\frac{2 x}{1+x^{2}}$
iv) $y=\log _{e}\left(\frac{2 x}{1+x^{2}}\right)$
b) Sketch the region on the Argand diagram that satisfies:

$$
\begin{equation*}
-\frac{2 \pi}{3} \leq \arg (z-2) \leq 0 \text { and } \operatorname{Im}(z) \leq-2 \sqrt{3} \tag{2}
\end{equation*}
$$

(Question 13 continues on the next page...)
c) The shaded semicircle in the diagram below is rotated about the line $x=2$.

i) Using the method of cylindrical shells, show that the volume V of the resulting solid is given by:

$$
V=\int_{0}^{1} 4 \pi(2-x) \sqrt{1-x^{2}} d x .
$$

ii) Hence find the volume of the solid.

Question 14 (Begin and label a new booklet.)
a) Suppose that x and y are positive. Prove that $\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$.
b) An object of mass 5 kg is dropped in a medium where the resistance at speed $v \mathrm{~m} / \mathrm{s}$ has a magnitude of v Newtons. The acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$.
i) Taking downwards as the positive direction, draw a force diagram and show that the equation of motion is $\ddot{x}=\frac{50-v}{5}$.
ii) Find an expression for the velocity v at time t seconds after the object is dropped.
iii) Find the terminal velocity of the object.
iv) Show that the distance x metered travelled when the speed is $v \mathrm{~m} / \mathrm{s}$ is given by:

$$
\begin{equation*}
x=250 \log _{e}\left(\frac{50}{50-v}\right)-5 v \tag{2}
\end{equation*}
$$

(Question 14 continues on the next page...)
c) The diagram above shows two circles intersecting at K and M. From points A and B on the outer arc of one circle, lines are drawn through M to meet the other circle at P and Q respectively. The lines $A B$ and $Q P$ meet at O.

i) Let $\theta=\angle K A B$, and give a reason why $\angle K M Q=\theta$.
[1]
ii) Prove $A K P O$ is a cyclic quadrilateral.
iii) Let $\phi=\angle A K M$. Show that if $O B M P$ is a cyclic quadrilateral, then the points A, K and Q are collinear.
(End of Question 14.)

Question 15 (Begin and label a new booklet.)
(15 marks)
a) Suppose that a, b and c are the side lengths of a triangle.
i) Explain why $(b-c)^{2}<a^{2}$.
ii) Deduce that $(a+b+c)^{2}<4(a b+b c+c a)$
b) The point $P(\sec \theta, \tan \theta)$ lie on the hyperbola with equation $x^{2}-y^{2}=1$. A vertical line through P intersects with an asymptote at S and with the x-axis at T as shown. The normal to the hyperbola at P intersects the x-axis at R. The point F is a focus of the hyperbola.

i) Show that the equation of the normal to H at the point P is $y=-x \sin \theta+2 \tan \theta$.
ii) Show that $R S=\sqrt{2} \times R T$.
iii) Find the coordinates of the point W which lies on $S R$ such that $T W$ is parallel to the asymptote on which S lies.
iv) For what values of θ will $F W$ be the perpendicular bisector of $S R$?
(Question 15 continues on the next page...)
c) i) A sector is normally made up of a triangle and a minor segment of a circle. The shape below is made by subtracting the area of the minor segment from the triangle.

Show that its area is given by $A=r^{2}\left(\sin \theta-\frac{\theta}{2}\right)$.
ii) A dome tent is built with a base made up of six congruent copies of the shape from (i), each with radius 2 metres. The tent is supported by flexible exterior poles extended between opposite corners in semi-circular arcs.

iii) By taking slices parallel to the base of the tent, show that the volume enclosed by the tent is $\left(16 \sqrt{3}-\frac{16 \pi}{3}\right)$ cubic metres.

Question 16 (Begin and label a new booklet.)
a) Consider the integral $I_{n}=\int_{0}^{1} x^{2 n+1} e^{-x^{2}} d x$.
i) Use integration by parts to show that $I_{n}=-\frac{1}{2 e}+n I_{n-1}$, for $n \geq 1$.
ii) Show that $I_{0}=\frac{1}{2}-\frac{1}{2 e}$.
iii) Prove by mathematical induction that for all $n \geq 1$:

$$
\begin{equation*}
1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}=e-\frac{2 e I_{n}}{n!} \tag{4}
\end{equation*}
$$

iv) By considering the value of $x^{2 n+1} e^{-x^{2}}$ in the domain $0 \leq x \leq 1$, explain why:

$$
\begin{equation*}
1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots=e \tag{1}
\end{equation*}
$$

b) The numbers x, y and z satisfy:

$$
\begin{aligned}
& x+y+z=5 \\
& x^{2}+y^{2}+z^{2}=8 \\
& x^{3}+y^{3}+z^{3}=13
\end{aligned}
$$

i) Show that $x y+x z+y z=\frac{17}{2}$.
ii) Show that $x^{2} y+x^{2} z+x y^{2}+x z^{2}+y^{2} z+y z^{2}=27$.
iii) Hence show that $x y z=\frac{31}{6}$.
iv) Use the previous parts to evaluate $x^{4}+y^{4}+z^{4}$.
(End of Question 16.)

End of exam.

Extension22019 Trial Solutions.
Section A
Q1.

$$
\begin{align*}
& x=0, y= \pm 4 \\
& 16 x^{2}-9 y^{2}=-144 \\
& \frac{y^{2}}{16}-\frac{x^{2}}{9}=1 \tag{B}
\end{align*}
$$

Q2. $\frac{2-i}{-2-i}=\frac{(2-i)(-2+i)}{4+1}$

$$
\begin{align*}
& =\frac{-4+2 i+2 i+1}{5} \\
& =\frac{-3}{5}+\frac{4 i}{5} \tag{A}
\end{align*}
$$

Q3 C $\quad y=f(x)$
(c)

Q4. $\quad \alpha^{3}+A \alpha^{2}+B=0$
\therefore it $x=\frac{\alpha-2}{\frac{\alpha}{3} \cdot 3} \cdot 3 x+2=\alpha \ldots$
(B)

Q9. $\mathrm{BC}-\mathrm{D}$ since
root of mult. 3 at $x=2$.

Try. $y=x(x-2)^{3}$

$$
\begin{align*}
y^{\prime} & =(x-2)^{3}+x \cdot 3(x-2)^{2} \\
& =(x-2)^{2}(x-2+3 x) \\
& =(x-2)^{2}(4 x-2) \tag{B}
\end{align*}
$$

(The cther will not give suituble y^{\prime})
Q5.

$$
\begin{align*}
& y-\frac{5}{\sqrt{2}}=-\left(x-\frac{5}{2}\right) \\
& x+y=\frac{5}{\sqrt{2}} \times 2 \\
& x+y=\sqrt{2} \times 5 \tag{c}
\end{align*}
$$

Q10. at $x \geqslant 0, y>0$,
$\frac{d y}{d x}<0, \quad$ NoTA, B
$C+D$. at $x=0, y \neq 0$. $\frac{d y}{d x} \rightarrow-\infty$ (in ist arad)

Q7.

$$
\begin{aligned}
a e=3 & =25\left(1-\frac{9}{25}\right) \\
e=\frac{3}{5} & =16 \\
b & =4
\end{aligned}
$$

Section B.

$$
\begin{aligned}
& \text { QII a) } \int_{i}^{e} \ln x d x \\
& =[x \ln x]_{1}^{e}-\int_{i}^{e} x \cdot \frac{1}{x} d x \\
& =(e \ln e-1 \cdot \ln 1)-\int_{i}^{e} 1 d x \\
& = \\
& e-[x]_{i}^{e} \\
& =e-(e-1) \\
& =1
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
& \int \frac{d x}{2+\sin 2 x} \quad t=\tan x \rightarrow x=\tan ^{-1} t \\
= & \int \frac{1}{\left(2+\frac{2 t}{1+t^{2}}\right)} \cdot \frac{d t}{1+t^{2}} \quad d x=\frac{d t}{1+t^{2}} \\
= & \int \frac{d t}{2+2 t^{2}+2 t} \\
= & \frac{1}{2} \int \frac{d t}{t^{2}+t+1} \\
= & \frac{1}{2} \int \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+\frac{3}{4}}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \int_{0}^{\pi} \sin ^{3} x d x \\
= & \int_{0}^{\pi}-\sin x\left(1-\cos ^{2} x\right) d x \quad u= \\
= & -\int_{1}^{-1} 1-u^{2} \cdot d u \quad x= \\
= & \int_{-1}^{1} 1-u^{2} d u \\
= & {\left[u-\frac{1}{3} u^{3}\right]_{-1}^{1} } \\
= & \left(1-\frac{1}{3}(1)\right)-\left(-1-\frac{1}{3}(-1)\right. \\
= & \frac{2}{3}-\frac{2}{3}
\end{aligned}
$$

$$
=\frac{1}{2 \cdot \frac{1}{2}} \tan ^{-1}\left(\frac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)+c
$$

$$
d u=-\sin x d x
$$

$$
=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 t+1}{\sqrt{3}}\right)+C
$$

$$
x=0, u=1
$$

$$
\text { e) } \quad P(i)=0 \text { : }
$$

$$
x=\pi, u=-1
$$

$$
1+2+a+b=0
$$

$$
a+b=-3
$$

$$
p^{\prime}(1)=0
$$

$$
f^{\prime}(x)=5 x^{4}+8 x^{3}+3 a x^{2}+2 b x
$$

$$
\therefore 5+8+3 a+2 b=0
$$

$$
\begin{equation*}
3 a+2 b=-13 \tag{2}
\end{equation*}
$$

(2) $-2 \times(1)$
c) i)

$$
A(x+3) x+B(x+3)+C x^{2}=x^{2}+x+1
$$

$$
x=-3: \quad 9 c=9-3+1
$$

$$
\begin{aligned}
9 c & =7 \\
c & =\frac{7}{9}
\end{aligned}
$$

$x=0 . \quad 3 B=1$

$$
B=\frac{1}{3} r
$$

$$
\begin{aligned}
A+C & =1 \\
A & =1-C=\frac{2}{9 V}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \therefore \int \frac{2}{9} \cdot \frac{1}{x}+\frac{1}{3} \cdot \frac{1}{x^{2}}+\frac{7}{9} \cdot \frac{1}{x+3} d x \\
& =\frac{2}{9} \ln x-\frac{1}{3} \cdot \frac{1}{x}+\frac{7}{9} \ln (x+3)+c
\end{aligned}
$$

a) $z^{2}=5-12 i$

$$
\begin{aligned}
& (x+i y)^{2}=5-12 i ;, x, y \in \mathbb{R} \\
& x^{2}-y^{2}=5 \\
& 2 x y=-12 \\
& \therefore y=\frac{-6}{x} \\
& x^{2}-\frac{36}{x^{2}}=5 \\
& x^{4}-5 x^{2}-36=0 \\
& \left(x^{2}-9\right)\left(x^{2}+4\right)=0 \\
& \therefore x= \pm 3 \\
& x=3, y=-2 \\
& x=-3, y=2 \\
& \therefore z=3-2 i,-3+2 i
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { i) } \frac{-1}{\sqrt{1-1}} \\
& |z|=\sqrt{1^{2}+1^{2}} \\
& =\sqrt{2} \\
& \arg z=-\frac{3 \pi}{4} \\
& \therefore \quad-1-i=\sqrt{2} \operatorname{cis}\left(-\frac{3 \pi}{4}\right)
\end{aligned}
$$

ii)

$$
\begin{aligned}
&(\sqrt{2})^{10} \operatorname{cis}\left(\frac{-30 \pi}{4}\right)^{\frac{132}{4}} \\
&= 32 \operatorname{cis}\left(\frac{2 \pi}{4}\right) \\
&= 32\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) \\
& \therefore \text { real part }=0 .
\end{aligned}
$$

i) $|z|=1$, \therefore all sides of parallelogram are equal to!
\therefore Rhombus
iii) see diagram.

$$
\begin{aligned}
\arg \left(\frac{z-1}{z+1}\right) & =\arg (z-1)-\arg (z+1) \\
& =90^{\circ}\left(\frac{\pi}{2}\right) \text { since }
\end{aligned}
$$

diagonal of rhomberare 1.
$\therefore \frac{z-1}{z+1}=k i \quad k \in \mathbb{R}$ ie purely imaginary.
iii)

$\arg \left(z^{\prime}+1\right)=\frac{\theta}{2} \quad$ (diagonals of ihombies bisect L itpasses)

$$
\begin{aligned}
& \frac{x}{1}=\cos \frac{\theta}{2} \\
& \therefore|z+1|=2 \cos \frac{\theta}{2} .
\end{aligned}
$$

d)

$$
\begin{aligned}
& \text { i) } z^{7}-1=0 \\
& (z-1)\left(z^{6}+z^{5}+z^{4}+z^{3}+z^{2}+z+1\right)=0
\end{aligned}
$$

soche ω is non read, $\omega \neq 1$

$$
\therefore \omega^{6}+\omega^{5}+\omega^{14}+w^{3}+w^{2}+\omega+1=0 .
$$

$$
\text { ii) } \begin{aligned}
& w^{7}+w^{6}+w^{4}+w^{8}+w^{7}+w^{5}+w^{10}+w^{9}+w^{7} \\
= & 1+w^{6}+w^{4}+w+1+w^{5}+w^{3}+w^{2}+1 \\
= & 3+\left(w^{6}+w^{5}+w^{4}+w^{3}+w^{2}+w\right) \\
= & 3-1 \quad \text { since } \\
= & 2 . \quad w^{7}=1
\end{aligned}
$$

iii)

Q iB
a) i)

c) i)

$$
\begin{aligned}
\delta v=2 \pi r h \delta x \quad & r=2-x \\
& h=2 y \\
& =2 \sqrt{1-x^{2}}
\end{aligned}
$$

$\delta V=2 \pi(2-x) \cdot \frac{2 \sqrt{1-x^{2}}}{\delta x}$ from $x^{2}+y^{2}=1$
$=4 \pi(2-x) \sqrt{1-x^{2}} \delta x$

$$
V=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{1} \delta V
$$

ii)
iii)

$$
\text { ii) } \begin{aligned}
& V=8 \pi \int_{0}^{1} \sqrt{1-x^{2}} d x-4 \pi \int_{0}^{1} x \sqrt{1-x^{2}} d x \\
&=8 \pi \cdot \frac{\pi x 1^{2}}{4}+2 \pi \int_{0}^{1}-2 x \sqrt{1-x^{2}} d x \\
& u=1-x^{2} \\
&=2 \pi^{2}+2 \pi \int_{1}^{0} \sqrt{u} d u \quad \begin{array}{l}
\quad u=-2 x d x \\
x=0, u=1 \\
x=1, u=0
\end{array} \\
&=2 \pi^{2}+2 \pi\left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{0} \quad \begin{array}{l}
x \\
= \\
=2 \pi^{2}+2 \pi\left(0-\frac{2}{3}\right)
\end{array} \\
&=2 \pi^{2}-\frac{4 \pi}{3} \quad \text { units. }
\end{aligned}
$$

b)

a) RTP $\frac{1}{x}+\frac{1}{y} \geqslant \frac{4}{x+y}$

$$
\begin{aligned}
& \frac{y+x}{x y} \geqslant \frac{4}{x+y} \\
& (x+y)^{2} \geqslant 4 x y \\
& x^{2}+2 x y+y^{2} \geqslant 4 x y
\end{aligned}
$$

b) iii)
$a \rightarrow a$.

$$
0=\frac{50-v}{5}
$$

$\therefore V \rightarrow 50 \mathrm{~m} / \mathrm{s}$ is terminal veloety.

$$
\text { iv) } \begin{aligned}
& v \frac{d v}{d x}=\frac{50-v}{5} \\
& \frac{d v}{d x}=\frac{50-v}{5 v} \\
& \frac{d x}{d v}=\frac{5 v}{50-v} \\
& x=\int \frac{5 v}{50-v} d v \\
&=-5 \int \frac{-v+50-50}{50-v} d v \\
&=-5 \int i d v-250 \int \frac{-1}{50 v v} d v \\
& x=-5 v-250 \ln (50-v)+c \\
& x=0 ; v=0: \quad c=250 \ln 50 \\
& x=-5 v-250 \ln (50-v)+250 \ln 50 \\
&=-5 v+250\left(\frac{50}{50-v}\right) \cdot \text { as } \mathrm{req} .
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& F_{n e t}=m g-v \\
& m a=m g-v \\
& 5 a=50-v \\
& a=\frac{50-v}{5}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{50-v}{s} \\
& \frac{d t}{d t}=\frac{5}{50-v} \\
& t=5 \int \frac{-1}{50-v} d v \\
& t=-5 \ln (50-v)+c
\end{aligned}
$$

$t=0, v=0$.

$$
\begin{aligned}
& 0=-5 \ln 50+c \\
& c=5 \ln 50 \\
& t=-5 \ln (50-v)+5 \ln 50 \\
& t=-5 \ln \left(\frac{50-v}{50}\right) \\
& \frac{50-v}{50}=e^{-\frac{t}{5}} \\
& 50-v=50 e^{-\frac{t}{5}} \\
& v=50-50 e^{-\frac{t}{5}}
\end{aligned}
$$

C) i) $\angle K M Q=\angle K A B=\theta$ (exterior \angle of cyclic quad is equal to interior possible opposite L)
ii) $\angle K P Q=\angle K M Q=\theta \quad$ ($\angle S$ standing on same are are equal) $\therefore \angle K P O=180-\theta$ ($\angle 50.1$ a straight line)
\therefore AKPO is cyclic (opposite $\angle S$ add to 180°)
iii) $\angle A B M=180-\phi$ (opposite $\angle s$ of cock arad $\begin{gathered}\left.\text { add to } 180^{\circ}\right)\end{gathered}$
$\angle M P O=180-\phi$ (extensor \angle of cyclic quad is equal al to interior opposite \langle) (BMPO)

$$
\begin{aligned}
& \therefore \angle Q K M=180-\phi(\ldots)(K M P Q) \\
& \left.\therefore \angle Q K A=180^{\circ} \quad \text { (from } \angle A K M+\angle Q K M\right)
\end{aligned}
$$

AKQ is collinear if BMPO is cyclic.
a) 1) The triangle inequality.

$$
a+b>c \Rightarrow a>c-b
$$

(coly if $c \geq b: a^{2}>(c-b)^{2}$

$$
a+c>b \Rightarrow a>b-c
$$

(only if $b \geq c$:) $a^{2}>(b-i)^{2}$
In either case $a^{2}>(b-c)^{2}$
(Arguments using $|b-c|$ accepted) (if diagram or cases shewn)
ii)

$$
\left.\begin{array}{l}
a^{2}>(b-c)^{2} \\
a^{2}>b^{2}-2 b c+c^{2} \\
b^{2}>a^{2}-2 a c+c^{2} \\
c^{2}>b^{2}-2 a b+a^{2}
\end{array}\right\}
$$

Similarly $b^{2}>a^{2}-2 a c+c^{2}$

$$
a^{2}+b^{2}+c^{2}>2 a^{2}+2 b^{2}+2 c^{2}-2(a b+a c+b c)
$$

$$
2 a b+2 a c+2 b c>a^{2}+b^{2}+c^{2}
$$

$$
(+2 a b+2 a c+2 b c) \quad(+2 a b+2 a c+2 b c)
$$

$4(a b+b c+c a)>(a+b+c)^{2}$ as req.
b)i) $x^{2}-y^{2}=1, \quad a=1, b=1$

$$
\begin{aligned}
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& e^{2}=2 \\
& e=\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \quad P(\sec \theta, \tan \theta) \\
& =\frac{\sec ^{2} \theta}{\sec \theta \tan \theta} \\
& =\frac{\sec \theta}{\tan \theta} \\
& =\frac{1}{\sin \theta} \\
m_{\perp} & =-\sin \theta
\end{aligned}
$$

eqn normal: $y-\tan \theta=-\sin \theta(x-\sec \theta)$

$$
\begin{gathered}
y-\tan \theta=-x \sin \theta+\tan \theta \\
y=-x \sin \theta+2 \tan \theta
\end{gathered}
$$

as req.
b) ii) Engin os: $y=x$
\therefore at S, x-cord is $\sec \theta$

Now:

$$
\begin{aligned}
R: y=0: \quad 0 & =-x \sin \theta+2 \tan \theta \\
x \sin \theta & =2 \tan \theta \\
x & =\frac{2}{\cos \theta}=2 \sec \theta
\end{aligned}
$$

\therefore On diagram above $\triangle S T R$ is right
isosceles: $\therefore \angle S R T=45^{\circ}$

$$
\begin{aligned}
& \therefore \frac{F R}{S R}=\sin 45^{\circ} \\
& \therefore \sqrt{2} \cdot T R=R S
\end{aligned}
$$

iii) on diagram: $O T=T R \Rightarrow S W=W R$
(intercepts_on transvertals cut by parallel lines in same ratio)
$\therefore W=M_{s R}:\left(\frac{\sec \theta+2 \sec \theta}{2}, \frac{\sec \theta}{2}\right)$
$\omega=\left(\frac{3}{2} \sec \theta \cdot \frac{1}{2} \sec \theta\right)$
iv) Twi is already perp. bisector of $S R$.
$\therefore F$ must be T :

$$
\begin{aligned}
\therefore \quad a e & =\sec \theta \\
\sqrt{2} & =\sec \theta \\
\theta & =45^{\circ} \text { or } 315^{\circ}
\end{aligned}
$$

ie

$$
\frac{\pi}{4} \text { or } \frac{7 \pi}{4}
$$

c)i)

$$
\begin{aligned}
& \text { Area segmat }=\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& \text { Area triangle }=\frac{1}{2} r^{2} \sin \theta \\
& \begin{aligned}
& A=\frac{1}{2} r^{2} \sin \theta-\frac{1}{2} r^{2}(\theta-\sin \theta) \\
&=r^{2} \sin \theta-\frac{1}{2} r^{2} \theta \\
&=r^{2}\left(\sin \theta-\frac{\theta}{2}\right)
\end{aligned}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\theta & =60 \frac{\pi}{3} \\
\therefore A & =r^{2}\left(\sin \frac{\pi}{3}-\frac{\pi}{6}\right) \times 6 \\
& =r^{2}\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) \times 6
\end{aligned}
$$

$$
\begin{aligned}
&\left.\therefore \quad A=(\sqrt{4-h})^{2}\right)\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) \times 6 \\
&=\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\left(4-h^{2}\right) \times 6 \\
& V=\lim _{h \rightarrow 0} \sum_{h=0}^{2} A \delta h \\
&=6 \int_{0}^{2}\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\left(4-h^{2}\right) d h \\
&= 6\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\left[4 h-\frac{h^{3}}{3}\right]_{0}^{2} \\
&=6\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\left(8-\frac{8}{3}\right) \\
&=\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)(32) \\
&= 16 \sqrt{3}-\frac{16 \pi}{3} \text { units }^{3} .
\end{aligned}
$$

a) $I_{n}=\int_{0}^{1} x^{2 n} x e^{-x^{2}} d x$

$$
\begin{aligned}
u=x^{2 n} \quad \therefore v & \therefore \frac{-1}{2} e^{-x^{2}} \\
u^{\prime}=2 n x^{2 n-1} \quad v^{\prime} & =x e^{-x^{2}} \\
& v^{2}=\int-2 x e^{-x^{2}} d x \\
& =-\frac{1}{2} e^{-x^{2}} x
\end{aligned}
$$

$$
\begin{aligned}
I_{n} & =\left[x^{2 n} \times \frac{-1}{2} e^{-x^{2}}\right]_{0}^{1}-\int_{0}^{1} \frac{-1}{2} e^{-x^{2}} \cdot 2 n x^{2 n-1} d x \\
& =\frac{-1}{2 e}+n \int_{0}^{1} e^{-x^{2}} \cdot x^{2 n-1} d x \\
& =\frac{-1}{2 e}+n \int_{0}^{1} e^{-x^{2}} x^{2(n-1)+1} d x \\
& =\frac{-1}{2 e}+n I_{n-1} \quad \text { aseq. }
\end{aligned}
$$

ii)

$$
\begin{aligned}
I_{0} & =\int_{0}^{1} x e^{-x^{2}} d x \\
& =\left[-\frac{1}{2} e^{-x^{2}}\right]_{0}^{1} \\
& =-\frac{1}{2} e^{-1}-\left(-\frac{1}{2} e^{0}\right) \\
& =\frac{-1}{2 e}+\frac{1}{2} \text { as ree } .
\end{aligned}
$$

iii) Let $n=1$

$$
\begin{aligned}
& \text { LHS }=1+\frac{1}{1!} \\
&=2
\end{aligned} \quad \begin{aligned}
\text { RHS } & =e-\frac{2 e I_{1}}{1!} \\
{\left[\begin{array}{l}
I_{1}
\end{array}\right.} & =e-2 e I_{1} \\
& =\frac{-1}{2 e}+1 I_{0} \\
& =\frac{1}{2 e}+\frac{-1}{2 e}+\frac{1}{2} \\
& =\frac{1}{2}-\frac{1}{e} \\
\text { RHS } & =e-2 e\left(\frac{1}{2}-\frac{1}{e}\right) \\
& =e-e+2 \\
& =2 .
\end{aligned}
$$

(ba) iii) out
Assume for $n=k$:

$$
1+\frac{1}{1!}+\ldots+\frac{1}{k!}=e-\frac{2 e I_{k}}{k!}
$$

RTP: for $n=k+1$

$$
\begin{aligned}
& 1+\frac{1}{1!}+\ldots+\frac{1}{k!}+\frac{1}{(k+1)!}=e-\frac{2 I_{k+1}}{(k+1)!} \\
& \begin{aligned}
L H S & =e-\frac{2 e I_{k}}{k!}+\frac{1}{(k+1)!} \\
& =e-\frac{2 e I_{k}(k+1)-1}{(k+1)!}
\end{aligned}
\end{aligned}
$$

Now from i): $I_{k+1}=-\frac{1}{2 e}+(k+1) I_{k}$

$$
2 e I_{k+1}=-1+2 e(k+1) I_{k}
$$

$=e-\frac{2 e I_{k+1}}{(k+1)!}$ as required.
tare for $n \geqslant 1$ by mathematical induction.
iv) For $0 \leq x \leq 1,0 \leq x^{2 n+1} \leq 1$ and $0 \leq e^{-x^{2}} \leq 1$

$$
I_{n}=\int_{0}^{1} x^{2 n+1} e^{-x^{2}} d x \leqslant \int_{0}^{1} 1 d x
$$

(upper bound)
$0-\xi Z_{n} \leq 1$ for $n \geq 0$
\therefore As $n \rightarrow \infty$

$$
\frac{2 e I_{n}}{n!} \text { vanishes. }
$$

$$
\therefore \quad e-\frac{2 e I_{n}}{n!} \rightarrow e \text { as } n \rightarrow \infty
$$

(bb) i)

$$
\begin{aligned}
x y+x z+z y & =\frac{(x+y+z)^{2}-\left(x^{2}+y^{2}+z^{2}\right)}{2} \\
& =\frac{5^{2}-8}{2} \\
& =\frac{17}{2}
\end{aligned}
$$

ii) consider:

$$
\begin{aligned}
&(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)=5 \times 8 \\
& x^{3}+x y^{2}+x z^{2}+y^{3}+x^{2} y+z^{2} y+z^{3}+x^{2} z+y^{2} z=40 \\
& \therefore x y^{2}+x z^{2}+y z^{2}+y x^{2}+2 x^{2}+z y^{2}=40-\left(x^{3}+y^{3}+z^{3}\right) \\
&=40-13 \\
&=27
\end{aligned}
$$

Q16b cont)
iii) Consider:

$$
\begin{align*}
& (x+y+z)(x y+x z+y z) \\
= & x y^{2}+x^{2} z+x y z+x y^{2}+x y z+y^{2} z+x y z+x z^{2}+y z^{2} \\
= & 27+3 x y z \quad \text { (ii) } \tag{ii}\\
\therefore \quad & 5\left(\frac{17}{2}\right)=27+3 x y z
\end{align*}
$$

(i)

$$
\begin{aligned}
\therefore & \frac{85}{2}-27=3 x y z \\
\frac{3 i}{2} & =3 x y z \\
x y z & =\frac{3 i}{6}
\end{aligned}
$$

iv) To find $x^{4}+y^{4}+z^{4}$. first consider:

$$
\begin{align*}
(x+y+z)\left(x^{3}+y^{3}+z^{3}\right) & =\frac{x^{4}+y^{4}+z^{4}+x y^{3}+x z^{3}+y x^{3}+y z^{3}+z x^{3}+z y^{3}}{X} \tag{1}\\
5 \times 13 & =\frac{1}{Y}
\end{align*}
$$

To find (1): consider:

$$
\begin{aligned}
& (x y+x z+y z)\left(x^{2}+y^{2}+z^{2}\right)=x^{3} y+x y^{3}+x y z^{2}+x^{3} z+x z y^{3}+x z^{3} \\
& \frac{17}{2} \times 8+y z x^{2}+y^{3} z+y z^{3} \\
& =x^{3} y+x y^{3}+x^{3} z+x z^{3}+y^{3} z+y z^{3} \\
& \text { (1) } Y+x y z(z+x+y) \\
& \therefore \frac{17}{2} \times 8=y+\frac{31}{6} \times 5 \\
& \frac{31}{6} \times 5 \\
& Y=68-\frac{155}{6} \\
& =\frac{253}{6} \\
& \therefore x=65-\frac{253}{6} \\
& =\frac{137}{6}
\end{aligned}
$$

