ASCHAM SCHOOL

2020
YEAR 12
TRIAL

EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 10 minutes.
- Working time - 3 hours.
- Write using black non-erasable pen.
- NESA-approved calculators may be used.
- A NESA Reference Sheet is provided.
- All necessary working should be shown in every question.

Total marks - 100

- Attempt Sections A and B.
- Section A is worth 10 marks.
- Recommended time on Section A: 15 minutes
- Answer Section A on the multiple choice answer sheet.
- Detach the multiple choice answer sheet from the back of the examination paper.
- Section B contains 6 questions worth 15 marks each.
- Recommended time on Section B: 2 hours 45 minutes
- Answer each question in a new booklet.
- Label all sections clearly with your name/number and teacher.

SECTION A - 10 MULTIPLE CHOICE QUESTIONS

10 MARKS

ANSWER ON THE ANSWER SHEET

1 Consider the Argand diagram with z plotted below.

Which of the following could be the complex number z ?

A
$\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$
B $\cos \left(-\frac{2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right)$
C $-\cos \frac{2 \pi}{3}-i \sin \frac{2 \pi}{3}$
D $\cos \left(-\frac{2 \pi}{3}\right)-i \sin \left(-\frac{2 \pi}{3}\right)$

2 Two of the roots of the equation $z^{4}+B z^{3}+C z^{2}+D z+E=0$, where B, C, D, E are real are $3+i$ and $1-2 i$. The value of E is:

A $\quad-50$
B -24
C 24
D 50

Ascham School 2020 Year 12 Trial Mathematics Extension 2 Examination

3 Consider the proposition:
$P(n): \sum_{k=1}^{n}(2 k-1)=n^{2}$.
Which of the following is true for $P(k+1)$?
A $(2 k-1)+(2 k+1)=(k+1)^{2}$
B $\quad \sum_{1}^{k}(2 k-1)+2 k=(k+1)^{2}$
C $\quad \sum_{1}^{k}(2 k-1)+2(k+1)=(k+1)^{2}$
D $\quad \sum_{1}^{k}(2 k-1)+(2 k+1)=(k+1)^{2}$

4 If $f(x)=\ln x$ is the continuous, strictly increasing function on the interval $[a, b]$, as shown below, which of the following three statements must be true?

I $\int_{a}^{b} \ln x d x<(b-a) \ln b$
II $\int_{a}^{b} \ln x d x>(b-a) \ln a$
III there exists a number c where $a<c<b$, such that $\int_{a}^{b} \ln x d x=(b-a) \ln c$
A I only
B II only
C III only
D I, II and III

Ascham School 2020 Year 12 Trial Mathematics Extension 2 Examination

5 The velocity of a particle at $x=-3$ with simple harmonic motion described by $\ddot{x}=-12(x+3)$ where the amplitude is 4 , is:
A 1
B 0
C $\pm \sqrt{192}$
D Insufficient information

6 Which of the following is a counter-example to the following statement? All people who get ATARS over 99 do Extension 2 Mathematics.

A No people who get ATARS over 99 do Extension 2 Mathematics.
B Jesse did History and got an ATAR over 99.
C Sam did Extension 2 Mathematics and got an ATAR under 99.
D Polly did not do Extension 2 Mathematics and got an ATAR over 99.

7 The equation of the graph below could be:

A $y=x e^{x}$
B $y=x e^{-x}$
C $y=x \ln x$
D $y=-x \ln x$

Ascham School 2020 Year 12 Trial Mathematics Extension 2 Examination

8 What is the vector equation of the line $O A$ in the diagram below?

A $\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right)+k\left(\begin{array}{l}0 \\ -1 \\ 0\end{array}\right)$
B $\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right)+k\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
C
$\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right)+k\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
D $\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right)+k\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right)$

9 If $\frac{d Q}{d t}=k(Q-A)$ for $k, A \in \mathbb{R}$, then which of the equations below could be a solution?

A

$$
Q=k\left(\frac{Q^{2}}{2}-A Q\right) \text { where } k, A \in \mathbb{R}
$$

B $Q=A e^{k t}$ where $k, A \in \mathbb{R}$
C $Q=A+B e^{k t}$ where $k, A, B \in \mathbb{R}$
D $Q=\frac{A}{1+B e^{k t}}$ where $k, A, B \in \mathbb{R}$

Ascham School 2020 Year 12 Trial Mathematics Extension 2 Examination

10 Consider the set of points described by $|z+2|=1$ on the complex plane. What is the maximum value of $\arg z$?

A $\frac{\pi}{6}$
B $\frac{\pi}{3}$
C $\frac{2 \pi}{3}$
D $\frac{5 \pi}{6}$

SECTION 2-6 QUESTIONS EACH WORTH 15 MARKS

Question 11 - Begin a new writing booklet

a Find $\int \frac{x^{3} d x}{x^{8}+3}$.
b Find $\int \cos ^{-1} x d x$.
c Find $\int \sec ^{4} x d x$
d
The points A, B, C, D representing the complex numbers a, b, c, d form a parallelogram as shown in the diagram. $\angle A D C=\frac{2 \pi}{3}$ and $|d-c|=|b-c|$.

Copy the diagram into your booklet.
i
Show that $d-c=(b-c)\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)$.
ii Find $\arg \left(\frac{a-d}{b-d}\right)$.
iii Find the value of $\left|\frac{b-a}{d-b}\right|$.
iv
Explain why $\arg \left(\frac{a-c}{b-d}\right)=\frac{\pi}{2}$.

Ascham School 2020 Year 12 Trial Mathematics Extension 2 Examination

Question 12 - Begin a new writing booklet
a Consider the statement for $n \in \mathbb{N}$:

If n is prime then n has exactly two factors.
i Write the converse.
ii Write the contrapositive.
iii Determine whether or not the statement is an equivalence. Give reasons.
iv Georg said that:

If n does not have exactly two factors then n is composite.
Determine whether or not this statement is true. If not, give a counter-example.
b Write the negation of the statement:
All meerkats eat grubs.
c
If $x, y \in \mathbb{R}$, solve for x and y :

$$
x+2 y-3 x i+4 y i=5+15 i .
$$

d If $(x+i y)^{6}=e^{2 i \pi}$, where x, y are real, find a non-zero solution for x and y.

Question 13 - Begin a new writing booklet
a The two lines $\underset{\sim}{r}=\left(\begin{array}{l}1 \\ -3 \\ 3\end{array}\right)+\lambda_{1}\left(\begin{array}{l}4 \\ -5 \\ 2\end{array}\right)$ and $\underset{\sim}{q}=\left(\begin{array}{l}-1 \\ 6 \\ 7\end{array}\right)+\lambda_{2}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ intersect at (a, b, c).
i Find (a, b, c).
ii Show that $\underset{\sim}{r}$ and $\underset{\sim}{q}$ are perpendicular.
iii Find a vector which is perpendicular to both $\underset{\sim}{r}$ and $\underset{\sim}{q}$.
b The point $P(5,7,2)$ lies on the sphere $(x-1)^{2}+(y+3)^{2}+(z-3)^{2}=k^{2}$. Find the value of k.
c Consider the quadrilateral $A B C D$ shown. The diagonals $A C$ and $B D$ bisect each other at M.

Copy the diagram.
Use vectors to prove that $\overrightarrow{A B}=\overrightarrow{D C}$.
[Hint: for convenience, let $\overrightarrow{A M}=\underset{\sim}{p}$ and $\overrightarrow{M B}=\underset{\sim}{q}$.]
d Find $\sqrt{15-8 i}$.

Question 14 - Begin a new writing booklet
a
i If a, b are real, show that $a^{2}+b^{2} \geq 2 a b$.
ii Hence show that if a, b, c are real then $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$.
iii Hence show that $3\left(a^{4}+b^{4}+c^{4}\right) \geq\left(a^{2}+b^{2}+c^{2}\right)^{2}$.
b Let $I_{n}=\frac{1}{n!} \int_{0}^{1} x^{n} e^{-x} d x, n \geq 0$.
i Prove that $\frac{1}{n!}=e\left(I_{n-1}-I_{n}\right)$.
ii Hence evaluate I_{4}.
c Find the four $4^{\text {th }}$ roots of -1 and show them on an Argand diagram.
d \quad Prove by mathematical induction that $\forall k \in \mathbb{N}$ and odd n :

$$
\sum_{k=1}^{n}(-1)^{k-1} k^{3}=\frac{(2 n-1)(n+1)^{2}}{4}
$$

[Hint: the identity below might be useful:
$\left.2 k^{3}+15 k^{2}+36 k+27=(2 k+3)(k+3)^{2}.\right]$

Ascham School 2020 Year 12 Trial Mathematics Extension 2 Examination

Question 15 - Begin a new writing booklet
a i
If $x+\frac{1}{x}=v$ find an expression for $x^{3}+\frac{1}{x^{3}}$ in terms of v.
[Hint: expand $\left.\left(x+\frac{1}{x}\right)^{3}.\right]$
ii Prove $x^{5}+\frac{1}{x^{5}}=v^{5}-5 v^{3}+5 v$.
iii If $x=\cos \theta+i \sin \theta$, using the above parts, find $\cos 10 \theta$ in terms of $\cos \theta$.
b For a certain function $f(x)$ the graph $y=f^{\prime}(x)$ is sketched below.

The graph $y=f(x)$ passes through $(0,0)$. The inverse of $f(x)$ is $g(x)$, that is $f^{-1}(x)=g(x)$.
i \quad Sketch $y=f(x)$.
ii \quad Sketch $y=\frac{d}{d x}(g(x))$.

Question 15 continues on the next page...

Question 15 continued...

c A 2 kg mass is being pulled up a slope by a string of tension 10 Newtons. The slope is at an angle θ to the horizontal and the coefficient of friction is 0.3 . As well as friction, the forces of gravity g and the normal are also acting.

Copy the diagram.
By resolving forces with components along and perpendicular to the slope, find the net force $F_{n e t}$ in Newtons up the slope.
d
Use the substitution $u=\frac{1}{x}$ to evaluate $\int_{1}^{\infty} \frac{d x}{x \sqrt{x^{2}+2 x-1}}$.

Ascham School 2020 Year 12 Trial Mathematics Extension 2 Examination

Question 16 - Begin a new writing booklet

a The Covid-19 1.5 metre rule is based on the premise that a person emits droplets from a height 1.8 m above ground at an angle θ from the horizontal so that the maximum range on the ground is 1.5 metres. Show that the maximum speed $V \mathrm{~m} / \mathrm{s}$ of the droplets launched is given by

$$
V=\sqrt{\frac{15 g}{22}} . \quad \text { (Assume there is no air resistance.) }
$$

[Hint: you can assume which angle gives the maximum range.....]
b
Solve $\tan ^{-1} 4 x-\tan ^{-1} 3 x=\tan ^{-1} \frac{1}{7}$.
c
Consider the curve $y=\frac{1}{x}$ sketched below with rectangles above the curve approximating the area under the curve between $x=1$ and $x=n$.

i Prove that $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n-1}>\ln n$.
ii
Does the series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ have a limit? Give reasons.

Let ω be a complex cube root of unity. Prove that if $n \in \mathbb{N}$ then $1+\omega^{n}+\omega^{2 n}=3$ if n is a multiple of 3 or 0 if n is not a multiple of 3 .

ASCHAM SCHOOL

YEAR 12 Trial Mathematics Extension 2 Exam

MULTIPLE-CHOICE ANSWER SHEET
1.
A \bigcirc
B

C \bigcirc
D \bigcirc
2.
A
B

C \bigcirc
D \bigcirc
3.
$A \bigcirc$
B
C \bigcirc
D \bigcirc
4.

A O
B
C
D \bigcirc
5.

A O
B
C 0
D \bigcirc
6.

A O
B
C 0
D O
7.

A O
B
C 0
D O
8.

A O
B
C
D \bigcirc
9.

A O
B
C \bigcirc
D \bigcirc
10.
A O
B
C 0
D \bigcirc

ORIGINALS
Solutions to
Title: 2020 Ascham Math Ext 2 TRIAL Year 12

Q II
a)

$$
\int \frac{x^{3} d x}{x^{8}+3}=\frac{1}{4} \int \frac{4 x^{3} d x}{\left(x^{4}\right)^{2}+(\sqrt{3})^{2}}
$$

$$
\begin{aligned}
& =\frac{1}{4} \times \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x^{4}}{\sqrt{3}}\right) \\
& \frac{1}{4 \sqrt{3}} \tan ^{-1}\left(\frac{x^{4}}{\sqrt{3}}\right)+c
\end{aligned}
$$

$=\frac{1}{4 \sqrt{3}}$
$\cos ^{-1} x d x$
b) $\int \cos ^{-1} x d x \quad \begin{aligned} & \text { Let } u=\cos ^{-1} x \\ & d u=\frac{-1}{\sqrt{1-x^{2}}} d x\end{aligned}$

$$
\begin{align*}
& \int u d v=u v-\int v d u \sqrt{1-x^{2}} d x \\
& \therefore \int 1 \cos ^{-1} x d x=x \cos ^{-1} x-\int \frac{-x d x}{\sqrt{1-x^{2}}} \\
& =x \cos ^{-1} x+\frac{1}{2} \int-2 x\left(1-x^{2}\right)^{-\frac{1}{2}} d x \\
& =x \cos ^{-1} x-\frac{1}{2}\left(1-x^{2}\right)^{\frac{1}{2}} \times 2+c \tag{2}\\
& =x \cos ^{-1} x-\sqrt{1-x^{2}}+c
\end{align*}
$$

c) $\int \sec ^{4} x d x=\int \sec ^{2} x \sec ^{2} x d x$

$$
\begin{aligned}
& \therefore \arg (d-c)=\arg (b-c)+\frac{\pi}{3}=\pi
\end{aligned} \quad \begin{aligned}
& \therefore \text { sum of } \\
& \therefore d-c=(b-c) \times\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\
& \text { (rotate } \frac{\pi}{3}, \text { same modulus) } \\
& \therefore(d-c)=(b-c)\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) . \text { QED. }
\end{aligned}
$$

ii) $\left.\begin{array}{rl}\arg \left(\frac{a-d}{b-d}\right) & =\arg (a-d)-\arg (b-d) \\ & =\frac{\pi}{3}\left(\begin{array}{l}A B C D \text { is } \\ a\end{array}\right. \\ \text { rhombus }\end{array}\right)$
a rhombus)
since parim with adjacent sides equal
\therefore <s bisected by dragoials)
iii) $\left|\frac{b-a}{d-b}\right|=1$ since $\triangle A D B$ equilateral.
iv) $\arg \left(\frac{a-c}{b-d}\right)=\frac{\pi}{2}$ since $A B C D$ is a rhombus. Deajonels (2) bisect at right angles.

Q12. a) $n \in \mathbb{N}$.
i) If n has exactly 2 factors then n is prime. (2)
$i i)$ If n does not lave exactly. 2 factors then is is not prime.

$$
\begin{equation*}
(\neg Q \Rightarrow \neg P) \tag{2}
\end{equation*}
$$

iii) Since $P \Rightarrow Q$ is true and $Q \Rightarrow P$ is time then $P \Leftrightarrow Q$ A solution could be is true. It is an equivalence. $1\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\frac{1}{2}+\frac{i \sqrt{ } 3}{2}$
iv) Statement not true.

Connter-example is $n=1$ has 2 1 factor but is not composite.
b) At lust one meerkat does not eat grabs.
C) $x, y \in \mathbb{R}$:

$$
x+2 y-3 x i+4 y i=5+15 i
$$

Equate reals 1 imatimanies:

$$
\begin{align*}
x+2 y & =5 \tag{1}\\
-3 x+4 y & =15 \tag{2}
\end{align*}
$$

$$
\begin{array}{r}
(1) \times 2 \quad 2 x+4 y=10 \\
-(-3 x+4 y=15) \\
\hline 5 x=-5 \\
x=-1 \\
\Rightarrow(1) \quad-1+2 y=5 \\
2 y=6 \tag{3}\\
y=3
\end{array}
$$ $\left.\begin{array}{c}\arg \pm \frac{\pi}{3}+\frac{2 \pi}{3}\end{array}\right)\left(\begin{array}{l}\text { roots equally } \\ \text { spaced around } \\ \text { (2) } \\ \text { (or } 1)\end{array}\right.$ $\left.\arg \pm \frac{\pi}{3}, \pm \frac{2 \pi}{3}\right)$

(2) $\begin{aligned} & \text { roots equally } \\ & \text { spaced around } \\ & (\text { or }-1)\end{aligned}$
(any thing with mod 1 and

Q13. a) $\underset{\sim}{r}=\left(\begin{array}{c}1 \\ -3 \\ 3\end{array}\right)+\lambda_{1}\left(\begin{array}{c}4 \\ -5 \\ 2\end{array}\right)$

$$
\underline{q}=\left(\begin{array}{c}
-1 \\
6 \\
7
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

$$
\text { i) } \begin{aligned}
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) & =\left(\begin{array}{c}
1 \\
-3 \\
3
\end{array}\right)+\lambda_{1}\left(\begin{array}{c}
4 \\
-5 \\
2
\end{array}\right) \text { AND } \\
\left(\begin{array}{c}
a \\
b \\
b
\end{array}\right) & =\left(\begin{array}{c}
-1 \\
6 \\
7
\end{array}\right)+\lambda_{2}\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right) \\
\therefore \quad a & =1+\lambda_{1} 4 \quad 4 \quad a=-1+\lambda_{2} \\
b & =-3+\lambda_{1}(-5) \quad b=6+2 \lambda_{2} \\
c & =3+\lambda_{1}(2) \quad c j=7+3 \lambda_{2}
\end{aligned}
$$

$$
\therefore 1+4 \lambda_{1}=-1+\lambda_{2} \Rightarrow \lambda_{2}=2+4 \lambda_{1}
$$

$$
\Rightarrow b=-3-5 \lambda_{1}=6+2\left(2+4 \lambda_{1}\right)
$$

$$
-3-5 \lambda_{1}=6+4+8 \lambda_{1}
$$

(2)

$$
\begin{aligned}
&-13=13 \lambda_{1} \\
& \therefore \lambda_{1}=-1, \lambda_{2}=2+4(-1)=-2
\end{aligned}
$$

$$
\begin{aligned}
\therefore a & =1+4(-1)=-3 \\
b & =-3-5(-1)=2 \\
& =3+2(-1)=1
\end{aligned} \quad \therefore\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right)
$$

$$
c=3+2(-1)=1
$$

ii) $R T P: \underset{\sim}{r} \cdot \underline{\sim}=0$ or directionsed

$$
\begin{align*}
\therefore & 4 \times 1-5 \times 2+2 \times 3 \\
= & 4-10+6 \\
= & 0 \tag{2}
\end{align*}
$$

\therefore Perpenducular.
iii) let $\left(\begin{array}{c}l \\ m \\ n\end{array}\right)$ be perp. to $r \& q \quad R T P: \quad \overrightarrow{A B}=\overrightarrow{D C}$

$$
\begin{align*}
\therefore \quad & 4 l-5 m+2 n=0 \\
& 1 l+2 m+3 n=0 . \text { and } \tag{2}
\end{align*}
$$

Solve simin/taneonsly:
(1) $\times 2$

$$
\begin{equation*}
8 l-10 m+4 n=0 \tag{3}
\end{equation*}
$$

(2) $\times 5$

$$
\begin{equation*}
5 l+10 m+15 n=0 \tag{4}
\end{equation*}
$$

(3) $+(4)$

$$
\begin{aligned}
& 13 l+19 n=0 \\
& \therefore l=\frac{-19 n}{13}
\end{aligned}
$$

Let $n=78$, then $l=-19 \times 6=-114$ and $l+2 m+3 n=0$

$$
\begin{gather*}
-114+2 m+3 \times 78=0 \\
2 m=-120 \tag{3}\\
m=-60
\end{gather*}
$$

\therefore A vector $\perp r+q$ is
$\left(\begin{array}{c}-114 \\ -60 \\ 78\end{array}\right)$ or $\left(\begin{array}{c}19 \\ 10 \\ -13\end{array}\right)$
b) $P(5,7,2)(x-1)^{2}+(y+3)^{2}+(z-3)^{2}=k^{2}$.

$$
\begin{gather*}
\Rightarrow(5-1)^{2}+(7+3)^{2}+(2-3)^{2}=k^{2} \\
4^{2}+10^{2}+(-1)^{2}=k^{2} \tag{2}\\
k^{2}=117 \\
k=\sqrt{117} \quad(k>0)
\end{gather*}
$$

c)

RTP: $\quad \overrightarrow{A B}=\overrightarrow{D C}$
Prorf: \rightarrow over page:
Let $\overrightarrow{A M}=p+M B=q$

Solutions to
Title: 2020 Ascham Math Ext 2 TRIAL Y 12 pl
$\therefore \overrightarrow{M C}=f$ and $\overrightarrow{D M}=q$
(given $A C+B D$ bisected ar M)
Now in $\triangle A M B: P+\underset{\sim}{q}=\overrightarrow{A B}$

$$
\begin{equation*}
\text { In } \triangle D M C, \quad \underline{q}+\boldsymbol{p}=\overrightarrow{D C} \tag{3}
\end{equation*}
$$

$$
\therefore \overrightarrow{A B}=\overrightarrow{D C}\left(=\begin{array}{c}
b 0 t h \\
R+q
\end{array}\right) Q E D .
$$

$$
\begin{aligned}
& \text { d) Let } \sqrt{15-8 i}=a+i b, a, b \in \mathbb{R} \text {. } \\
& \therefore 15-8 i=(a+i b)^{2} \\
& \therefore 15-8 i=a^{2}+2 a i b-b^{2} \\
& \therefore \quad 15-8 i=a^{2}-b^{2}+2 a i b
\end{aligned}
$$

Equating: $15=a^{2}-b^{2}$
$-8=2 a b$ or $-4=a b$.
By inspection, $a=4, b=-1$

$$
\text { or } \quad a=-4, b=1
$$

by convention, $a>0$ so $4-i$ is the root. (3)

Q14 a) i) RTP: $a^{2}+b^{2} \geqslant 2 a b$
Proof: Consider the difference:

$$
a^{2}+b^{2}-2 a b=(a-b)^{2}
$$

(1) $\geqslant 0$ (Amice square,
$\therefore a^{2}+b^{2} \geqslant 2 a b$. equality wham
ii) $R T P$: $\left.a^{2}+b^{2}+c^{2} \quad a=b\right)$

Proof: We know that
$a^{2}+b^{2} \geqslant 2 a b$
(2)
$b^{2}+c^{2} \geqslant 2 b c$ sumblerly,
$c^{2}+a^{2} \geqslant 2 c a \quad \forall a, b, c \in \mathbb{R}$
Add: $2 a^{2}+2 b^{2}+2 c^{2} \geqslant 2 a b+2 b c+2 c a$

$$
\therefore \quad 2\left(a^{2}+b^{2}+c^{2}\right) \geqslant 2(a b+b c+c a)
$$

$$
\text { iii) }{ }^{R \pi p:} 3\left(a^{4}+b^{4}+c^{4}\right) \geqslant\left(a^{2}+b^{2}+c^{2}\right)^{2} \text {. }
$$

Proof: Consider the difference:

$$
3\left(a^{4}+b^{4}+c^{4}\right)-\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

from (ii)

$$
\begin{aligned}
& \geqslant 3 a^{2} b^{2}+3 b^{2} c^{2}+3 c^{2} a^{2} \\
& -\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2}+b^{2}+c^{2}\right) \\
& \geqslant 3 a^{2} b^{2}+3 b^{2} c^{2}+3 c^{2} a^{2} \\
& -\left(a^{4}+a^{2} b^{2}+a^{2} c^{2}+b^{2} a^{2}+b^{4}+b^{2} c^{2}\right. \\
& +\left(c^{2} a^{2}+c^{2} b^{2}+c^{4}\right) \\
& \geqslant 3 a^{2} b^{2}+3 b^{2} c^{2}+3 c^{2} a^{2} \\
& -\left(a^{4}+b^{4}+c^{4}+2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}\right) \\
& =3 a^{4}+3 b^{4}+3 c^{4}-\left(a^{4}+b^{4}+c^{4}\right. \\
& \left.+2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 14 a) iii) contd } \\
& =2 a^{4}+2 b^{4}+2 c^{4}-\left(2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}\right) \\
& \geqslant 2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)-2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)
\end{aligned}
$$

$\geqslant 0$ using (ii)
$\geqslant 0$ as refined
$\therefore 3\left(a^{4}+b^{4}+c^{4}\right) \geqslant\left(a^{2}+b^{2}+c^{2}\right)^{2}$ QED!
b) $I_{n}=\frac{1}{n!} \int_{0}^{1} x^{n} e^{-x} d x, n \geqslant 0$
i) $R T P: \frac{1}{n!}=e\left(I_{n-1}-I_{n}\right)$

Proof: $\int u d v=u v-\int v d u$.
Let $u=x^{n} \quad d v=e^{-x} d x$
$d u=n x^{n-1} d x$ $v=-e^{-x}$
$\therefore \frac{1}{n!} \int_{0}^{1} x^{n} e^{-x} d x=\frac{1}{5}\left(4 v-\int v d u\right)$
$=\frac{1}{n!}\left[\left[x^{n} \cdot-e^{-x}\right]_{0}^{1}-\int_{0}^{1}-e^{-x} \cdot n x^{n-1} d x\right]$
$=\frac{1}{n}!\left[\left(1^{n} \cdot-e^{-1}-0\right)+n \int_{0}^{1} x^{n-1} e^{-x} d x\right]$
$=\frac{1}{n}!\left[\frac{-1}{e}+n \int_{0}^{1} x^{n-1} e^{-x} d x\right]$

$$
\begin{aligned}
& \therefore I_{n}=-\frac{1}{e n!}+\frac{1}{(n-1)!} \int_{0}^{1} x^{n-1} e^{-x} d x \\
& \therefore+\frac{1}{e n!}=I_{n-1}-I_{n} \\
& \therefore \frac{1}{n!}=e\left(I_{n-1}-I_{n}\right) \text { QED }
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& I_{0}=\frac{1}{0!} \int_{0}^{1} x^{0} e^{-x} d x \\
&=\left[-e^{-x}\right]_{0}^{1} \\
&=-\frac{1}{e}+1 \\
& I_{1}=I_{0}-\frac{1}{e x!}=1-\frac{1}{e}-\frac{1}{e}=1-\frac{2}{e} \\
& I_{2}=I_{1}-\frac{1}{x} \frac{1}{e \times 2!}=1-\frac{2}{e}-\frac{1}{2 e}=1-\frac{5}{2 e} \\
& I_{3}=I_{2}-\frac{1}{e \times 3!}=1-\frac{5}{2 e}-\frac{1}{6 e}=1-1-\frac{1}{2 e} 16 \\
& I_{4}=I_{3}-\frac{1}{e \times 4!}=1-\frac{9}{3 e}-\frac{1}{24 e}=1-\frac{65}{24 e}
\end{aligned}
$$

Title: 2020 Ascham Math Trial Ext 2 Year 12 pb

Q 14 contd
c) Solve $z^{4}=-1$.
ie. $(\cos \theta+i \sin \theta)^{4}=-1$
\therefore First $\theta=\frac{\pi}{4}$ then
equally spaced $\frac{\pi}{2}$ from $\frac{\pi}{4}$.

d) RTTP: $\sum_{k=1}^{n}(-1)^{k-1} k^{3}=\frac{(2 n-1)(n+1)^{2}}{4}=$
OD n.
Proof: Let $P(n)$ be the proposition
that
that
$1^{3}-2^{3}+3^{3}-4^{3}+\ldots+n^{3}=\frac{(2 n-1)(n+1)^{2}}{4}=$
Prove $P(1)$ $1^{3}-2^{3}+3^{3}-4^{3}+\ldots+k^{3}=\frac{\left.(2(k)-1)(k+1)^{2}\right)}{4}$
RIP: $P(k+2)$
RIP: $P(k+2)$ tine ie:

$$
\begin{align*}
&\left.1^{3}-2^{3}+3^{3}-4^{3}+\ldots+k^{3}-(k+1)^{3}+(k+2)^{3}\right) \tag{3}\\
&=(2(k+2)+1)^{3}
\end{align*}
$$

Proof: Consider the LHS of

$$
\begin{aligned}
& P(k+2): \\
& L^{3}-2^{3}+3^{3}-4^{3}+\ldots+k^{3}-(k+1)^{3}+(k+2)^{3} \\
& =\frac{\left.(2 k-1)(k+1)^{2}\right)}{4}-(k+1)^{3}+(k+2)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(2 k-1)(k+1)^{2}}{4}-\frac{4(k+1)^{3}}{4}+\frac{4(k+2)^{3}}{4} \\
& =(k+1)^{2}\left[\frac{2 k-1-4(k+1)}{4}\right] \\
& \left.\quad+\frac{4\left[k^{3}+2.3 k^{2}+2.3 k+8\right]}{4}\right] \\
& =\frac{(k+1)^{2}[-2 k-5]+\frac{4\left(k^{3}+6 k^{2}+12 k+8\right)}{4}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(k+1)^{2}[-2 k-5]}{4}+\frac{4\left(k^{3}+6 k^{2}+12 k+8\right]}{4} \\
& =-\left(k^{2}+2 k+1\right)(2 k+5)+4\left(k^{3}+6 k^{2}+12 k+8\right)
\end{aligned}
$$

$$
=\frac{-\left(2 k^{3}+5 k^{2}+4 k^{2}+10 k+2 k+5\right)}{4}
$$

$\therefore P(n)$ tine by Math Induction.

$$
=\frac{(2(k+2)-1)(k+2+1)}{4}
$$

$$
=\frac{(2 k+3)(k+3)^{2}}{4}
$$

$$
\begin{aligned}
& \text { Prove } P(1) \text { the: } \\
& \begin{aligned}
\text { HS } & =(-1)^{1-1} 1^{3} \quad \operatorname{RHS}=\left(\frac{\left.(2(1)-1)(1+1)^{2}\right)}{4}\right) \\
& =1
\end{aligned} \\
& =1 \quad \frac{\operatorname{RHS}\left(\frac{(2(1)-1)(1+1)}{4}\right)}{}=\frac{(1)(2)^{2}}{4} \quad=\frac{2 k^{3}+15 k^{2}+36 k+27}{4} . \\
& \therefore P(1) \text { true. } \\
& \text { Assume } P(k) \text { the for some } \\
& \text { add } k \in \mathbb{N} \text { : } \\
& +4 k^{3}+24 k^{2}+48 k+32 \\
& =\frac{(2 k+3)(k+3)^{2}}{4}\left[\begin{array}{c}
\text { Yes, 't'! } \\
\text { the! }
\end{array}\right] \\
& =\text { RHS of } P(k+2) \text {. }
\end{aligned}
$$

Title: 2020 Ascham Math EXt 2 TRIAL Year /2 pF

Q/5 a) i) $x+\frac{1}{x}=v$.

$$
\begin{aligned}
\left(x+\frac{1}{x}\right)^{3} & =x^{3}+3 x^{2} \cdot \frac{1}{x}+3 x \cdot \frac{1}{x^{2}}+\frac{1}{x^{3}} \\
& =x^{3}+\frac{1}{x^{3}}+3 x+\frac{3}{x} .
\end{aligned}
$$

$$
\therefore x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3 x-\frac{3}{x}
$$

$$
\begin{align*}
& =\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right) \tag{2}\\
& =v^{3}-3 v .
\end{align*}
$$

$$
\text { ii) } \begin{aligned}
& x^{5}+\frac{1}{x^{5}} ? \text { Consider }\left(x+\frac{1}{x}\right)^{5} \\
= & x^{5}+5 x^{4} \cdot \frac{1}{x}+10 x^{3} \cdot \frac{1}{x^{2}}+10 x^{2} \cdot \frac{1}{x^{3}}+5 x \\
= & x^{5}+5 x^{3}+5 x^{3}+10 x+\frac{10}{x}+\frac{1}{x^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& =x^{5}+\frac{1}{x^{5}}+5\left(x^{3}+\frac{1}{x^{3}}\right)+10\left(x+\frac{1}{x}\right) \\
& \therefore x^{5}+1 \\
& 5=(x+1)^{5}
\end{aligned}
$$

$$
\begin{align*}
& \therefore x^{5}+\frac{1}{x^{5}}=\left(x+\frac{1}{x}\right)^{5}-5\left(x^{3}+\frac{1}{x^{3}}\right)-1 \tag{2}\\
& \quad=v^{5}-5(x)
\end{align*}
$$

$$
=v^{5}-5\left(v^{3}-3 v\right)-10 v
$$

$$
=v^{5}-5 v^{3}+15 v-10 v
$$

$$
=v^{5}-5 v^{3}+5 v
$$

iii) If $x=\cos \theta+i \sin \theta$ then

$$
\begin{aligned}
x+\frac{1}{x} & =\cos \theta+i \sin \theta+\frac{1}{\cos \theta+i \sin \theta} \\
& =\cos \theta+i \sin \theta+\cos \theta-i \sin \theta \\
\therefore x & =2 \cos \theta .
\end{aligned} \quad \begin{aligned}
\frac{d x}{d y}=g^{\prime}(y) \\
\therefore \frac{d y}{d x}=\frac{1}{T_{00}}
\end{aligned}
$$

Now $x^{5}+\frac{1}{x^{5}}=\cos 5 \theta+i \sin 5 \theta+\cos 5 \theta-1 \sin 5 \theta$
b)

i) $y=f(x)$

ii) $g(x)=f^{-1}(x)$.

$$
y=\frac{d}{d x}(g(x))
$$

Now $\quad \frac{d y}{d x}=1 / \frac{d x}{d y}$
$\left.10\left(x+\frac{1}{x}\right)\right)$
$x=g$
$x=f$
proof unless. use dummy variables.
(2) Derivative $\frac{d y}{d x}$ is same as reciprocal function of inverse.
but $\therefore 2 \cos 10 \theta=\left(v^{2}-5 v^{3}+5 v\right)^{2}-2$

$$
\therefore \quad \cos 10 \theta=\frac{\left((2 \cos \theta)^{5}-5(2 \cos \theta)^{3}+5(2 \cos \theta)\right)^{2}-2}{2}+1
$$

Solutions to
Solutions to
Title: 2020 Ascham Math Ext 2 TRIAC Year 12 ps
QI
c)

Resolving forces:

$m=2 \mathrm{~kg}$
d) contd:

$$
\begin{aligned}
& F=m a \\
& T=10 \mathrm{~N} \\
& \mu=0.3
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{1}^{0} \frac{u}{\frac{1}{u} \sqrt{1+2 u-u^{2}}} d x \\
& =\int_{1}^{0} \frac{u^{2}}{\sqrt{1-\left(u^{2}-2 u\right)}} d x \\
& =\int_{1}^{0} \frac{u^{2}}{\sqrt{1-\left(u^{2}-2 u+1-1\right)}} \times \frac{-1}{u^{2}} d u \\
& =\int_{1}^{0} \frac{-d u}{\sqrt{2-(u-1)^{2}}} \\
& =\operatorname{F}^{1}\left[\sin ^{-1}\left(\frac{u-1}{\sqrt{2}}\right)\right]_{1}^{0} \\
& =\left[\sin ^{-1}\left(\frac{u-1}{\sqrt{2}}\right)\right]_{0}^{1} \\
& =\sin ^{-1}\left(\frac{1-1}{\sqrt{2}}\right)-\sin ^{-1}\left(\frac{0-1}{\sqrt{2}}\right) \\
& =0-\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& 2=\int_{1}^{0} \frac{-d u}{\sqrt{2-(u-1)^{2}}} \\
& =-\left[\sin ^{-1}\left(\frac{u-1}{\sqrt{2}}\right)\right]_{1}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Along the slope: } \\
& \begin{aligned}
& F_{N E T}=T-F-m g \sin \theta \\
&=10-\mu N-2 g \sin \theta \\
&=10-0.3 N-2 g \sin \theta \\
&\left.=\left[\sin ^{-1}\left(\frac{u-1}{\sqrt{2}}\right)\right]_{1}^{0}\left(\frac{u-1}{\sqrt{2}}\right)\right]_{0}^{1} \\
& \text { Perpendicular to slope : } \\
& N=m g \cos \theta=2 g \cos \theta \\
& \sin ^{-1}\left(\frac{1-1}{\sqrt{2}}\right)-\sin ^{-1}\left(\frac{0-1}{\sqrt{2}}\right) \\
& \therefore F_{N E T}=10-0.3(2 g \cos \theta)-2 g \sin \theta
\end{aligned}=0-\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore F_{N E T}=10-0.3(2 g \cos \theta)-2 g \sin \theta \\
& \begin{array}{l}
=10-0.3(2 g \cos \theta)-2 g(0.3 \cos \theta+\sin \theta)=\frac{\pi}{4}
\end{array} \\
& N=m g \cos \theta=2 g \cos \theta \\
& \text { d) } \begin{aligned}
u & =\frac{1}{x}=x^{-1} \\
d u & =-1 x^{-2}=\frac{-1}{x^{2}} d x
\end{aligned} \\
& x=\infty \\
& u=0 \\
& x=1 \\
& u=1 \\
& \int_{1}^{\infty} \frac{1}{1} \frac{d x}{x} \sqrt{x^{2}+2 x-1} \\
& \begin{aligned}
d x & =-x^{2} d u \\
& =-\frac{1}{u^{2}} d u
\end{aligned} \\
& \begin{aligned}
d x & =-x^{2} d u \\
& =-\frac{1}{u^{2}} d u
\end{aligned} \\
& =\int_{1}^{0} \frac{u}{\sqrt{\frac{1}{u^{2}}+\frac{2}{u}-1}} d x \\
& =\int_{1}^{0} \frac{u}{\sqrt{\frac{1+2 u-u^{2}}{u^{2}}}} d x
\end{aligned}
$$

Solutions to
Title: 2020 Ascham Math Ext 2 TRIAL Year 12

Q16
a)

$$
\begin{gather*}
\ddot{x}=0 \\
\dot{x}=\int 0 d t \tag{4}\\
=C_{1}
\end{gather*}
$$

$$
=-g t+C_{2}
$$

When $t=0, \dot{x}=V \cos \theta, \dot{y}=V \sin \theta$
so $\dot{x}=V \cos \theta=c_{1} \quad V \sin \theta=0+c_{2}$

$$
\begin{aligned}
& \therefore \quad \dot{x}=V \cos \theta \quad \dot{y}=-g t+V \sin \theta \\
& x=\int v \cos \theta d t \quad y=\int-g t+V \sin \theta d t \\
& =V t \cos \theta+C_{3} \quad y=-\frac{g t^{2}}{2}+V t \sin \theta+C_{4}
\end{aligned}
$$

When $t=0, x=0, y=1.8$

$$
\begin{aligned}
& \therefore 0=0+c_{3}, \quad 1.8=0+0+c_{4} \\
& \therefore x=v t \cos \theta, \quad y=\frac{-g t^{2}}{2}+v t \sin \theta+1.8 \\
& \therefore x=v t \times \frac{1}{\sqrt{2}}, \quad y=\frac{-g t^{2}}{2}+v t \times \frac{1}{\sqrt{2}}+1.8
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad 7 x=1+12 x^{2} \\
& 12 x^{2}-7 x+1=0 \\
& (4 x-1)(3 x-1)=0
\end{aligned}
$$

$$
\begin{align*}
& \text { So } \tan \left(\tan ^{-1} 4 x-\tan ^{-13 x}\right) \\
&=\tan ^{\left(\tan ^{-4} \frac{1}{7}\right)} \\
& \therefore \frac{4 x-3 x}{1+4 x \cdot 3 x}=\frac{1}{7} \quad\binom{\text { one -to- }}{\text { one }} \\
& \frac{x}{1+12 x^{2}}=\frac{1}{7} \tag{2}
\end{align*}
$$

let $A=4$ then $B=B x$
$\operatorname{vin} \theta)-\tan A=4 x, \tan B=3 x$

$$
x=\frac{1}{4} \text { or } \frac{1}{3}
$$

RIP:

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n-1}>\ln n .
$$

so $t=\frac{1.5 \sqrt{2}}{v} \Rightarrow 0=-\frac{9}{Z}\left(\frac{1.5^{2} \sqrt{2}}{V^{2}}\right)+V(1.5, ~ 久)+1.8$ Proof: Sum of rectangle

$$
\begin{aligned}
& 0=-g \times \frac{9}{4 v^{2}}+3.3 \\
& \frac{9 g}{4 v^{2}}=\frac{33}{15} \Rightarrow \frac{4 v^{2}}{9 g}=\frac{10}{33} \\
& \begin{array}{l}
\frac{9 v^{2}}{}=\frac{33}{15} \Rightarrow \frac{4 v}{9 q}=\frac{10}{33} \\
\therefore \quad v^{2}=\frac{99 g}{113 \times x_{2}}
\end{array} \therefore|V|=\sqrt{\frac{15 g}{22}} .\left\{\begin{array}{l}
\quad 1 \times 1+1 \times \frac{1}{2}+1 \times \frac{1}{3}+\ldots+\left|\times \frac{1}{n-1}>\ln n-\ln \right| \\
\therefore 1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1}>\ln n
\end{array}\right. \\
& \therefore A_{1}+A_{2}+A_{3}+\ldots+A_{n-1}>[\ln x]_{1}^{n}
\end{aligned}
$$

Q/6 cont /d
c) ii) Now $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1}>\ln n$

So since $\ln n \rightarrow \infty$ as $n \rightarrow \infty$ and $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1}>\ln n$ then $1+\frac{1}{2}+\frac{1}{3}+\ldots \rightarrow \infty$ as $n \rightarrow \infty$
So No limit.
d) w satisfies $z^{3}=1 . w \notin R$.

If $n \in \mathbb{N}$, then $R T P$:

$$
1+w^{n}+w^{2 n}=3 \text { if } n=3 X \text { for }
$$

Some $x \in \mathbb{N}$
or $1+w^{n}+w^{2 n}=0$ if $n \neq 3 x$
ie. $n=3 x+1$ or $n=3 x+2$
in form.
Proof: Consider $n=3 X$ so

$$
\begin{aligned}
1+w^{n}+w^{2 n} & =1+w^{3 x}+w^{2(3 x)} \\
& =1+\left(w^{3}\right)^{x}+\left(w^{3}\right)^{2 x}
\end{aligned}
$$

Since $\omega^{3}=1$ then

$$
\begin{aligned}
& =1+1^{x}+1^{2 x} \\
& =1+1+1 \\
& =3 \text { Q } \\
& =3
\end{aligned}
$$

Now consider $n=3 x+1$ or $n=3 x+2$

$$
\begin{aligned}
& \text { So } \begin{aligned}
\left.1+\omega^{n}+\omega^{2 n}=1+w^{3 x+1}+w^{2(3 x+1}\right) \quad 24 & =e\left(I_{0}-I_{4}\right) \\
& =1+w^{3 x} \cdot \omega^{1}+w^{6 x} \cdot \omega^{2} I_{0}-\frac{41}{24 e}=I_{4} \\
& =1+1 \omega+1 \omega^{2} \\
& =0 \text { since } \omega^{3}=1 \\
I_{0} & =\frac{1}{0!} \int_{0}^{1} x^{0} e^{-x} d x \\
& =\left[-I_{4}=1-\frac{1}{e}-\frac{41}{24 e}\right]_{0}^{1} \\
=1-\frac{65}{24 e} & =-e^{-1}+e^{0} \\
& =1-\frac{1}{e}
\end{aligned}
\end{aligned}
$$

Student Number SOLT ONS
 ASCHAM SCHOOL

YEAR 12 Trial Mathematics Extension 2 Exam

1.

A O
B
C O
D 0
2.

A
B
C 0
D
3.

A O
B
C \bigcirc
D
4.

A O
B
C 0
D
5.
A 0
B 0

C
D 0
6.

A
B \bigcirc
C 0
D
7.
A
B
C \bigcirc
D 0
8.

A 0
B \bigcirc
C 0
D
9.

A O
B \bigcirc
C
D 0

A O
B 0
C 0
D

