\qquad

Barker College

2006
 TRIAL
 HIGHER SCHOOL CERTIFICATE

Mathematics Extension 2

Staff Involved:

AM FRIDAY 4 AUGUST

- BHC*
- BTP
- MRB
- JM

50 copies

General Instructions

- Reading time - 5 minutes
- Working time - $\mathbf{3}$ hours
- Write using blue or black pen
- Board-approved calculators may be used
- Write your Barker Student Number on ALL pages of your answer sheets
- A table of standard integrals is provided on page 12

Total marks - 120

- Attempt Questions 1 - 8
- All questions are of equal value
- ALL necessary working should be shown in every question
- Start each question on a NEW page
- Write on one side of each answer page
- Marks may be deducted for careless or badly arranged work

ALL questions are of equal value

Answer each question on a SEPARATE sheet of paper

Question 1 (15 marks) [START A NEW PAGE]

(a) Find
(i) $\int \frac{2 x-6}{\sqrt{x^{2}-6 x}} d x$
(ii) $\int \frac{d x}{\sqrt{x^{2}-6 x}}$
(iii) $\int \frac{d x}{\sqrt{6 x-x^{2}}}$
(b) Show that $\int_{-1}^{0} \frac{4 d x}{(1-x)(x-3)}=\ln \left(\frac{4}{9}\right)$
(c) Using the substitution $x=3 \sec \theta+3$, find $\int \frac{d x}{(x-3) \sqrt{x^{2}-6 x}}$
(d) Let $\mathrm{I}_{\mathrm{n}}=\int_{0}^{2} x^{n} e^{-2 x} d x$, where n is a non-negative integer.
(i) Show that $\mathrm{I}_{\mathrm{n}}=\frac{n}{2} \mathrm{I}_{\mathrm{n}-1}-\frac{2^{n-1}}{e^{4}}$
(ii) Evaluate I_{2}

Question 2 (15 marks) [START A NEW PAGE]

(a) (i) Find the square root of $45-28 i$
(ii) Given that $Z=\frac{-3-2 i+\sqrt{45-28 i}}{5+5 i}$ and that Z is purely imaginary, find Z^{6}
(b) (i) Find the modulus and argument of the complex numbers $(-1+i)$ and $(1+\sqrt{3} i)$, and hence express $z=\frac{-1+i}{1+\sqrt{3} i}$ in modulus/argument form.
(ii) Hence, express $\cos \left(\frac{5 \pi}{12}\right)$ in surd form.
(c) The locus of w is described by the equation $|w-4|=|w+2+6 i|$
(i) Sketch on an Argand diagram the locus of w.
(ii) Find the Cartesian equation of the locus of w.

Question 3 (15 marks) [START A NEW PAGE]
(a) The graph of $y=f(x)$ is sketched below.

Draw separate sketches of:
(i) $\quad y=f(|x|)$
(ii) $\quad y=|f(x)|$
(iii) $y=\sqrt{f(x)}$
(iv) $\quad y=\log _{e}(f(x))$
(v) $y=e^{f(x)}$

Question 3 (continued)
(b) (i) Sketch the curve $y=\frac{x}{2+x^{2}}$
(Do not use calculus. Do not attempt to find the coordinates of any turning points).
(ii) Show that the equation $k x^{3}+(2 k-1) x=0$ can be written in the form $\frac{x}{2+x^{2}}=k x$
(iii) Using a graphical approach based on the curve $y=\frac{x}{2+x^{2}}$, or otherwise, find the values of k for which the equation $k x^{3}+(2 k-1) x=0$ has exactly one real root.

End of Question 3

Question 4 (15 marks) [START A NEW PAGE]

(a) The region between the positive x-axis, the y-axis and the curve $y=\cos ^{-1} x$ is rotated about the y-axis.

By taking slices perpendicular to the y-axis, find the volume of this solid.
(b) The base of a particular solid is the circle $x^{2}+y^{2}=1$.

All cross-sections of the solid perpendicular to the x-axis are equilateral triangles.
Find the volume of this solid.
(c) Use the method of cylindrical shells to calculate the volume of the solid generated when that part of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $x \geq 0$ and $y \geq 0$, is rotated about the line $x=a$.

Question 5 (15 marks) [START A NEW PAGE]
(a) Show that $2+i$ is a root of $P(x)=x^{3}+x^{2}-15 x+25$ and hence completely factorise $P(x)$ over the field of complex numbers.
(b) Prove that if the polynomial $H(x)$ has a root α of multiplicity m, then $H^{\prime}(x)$ has a root α of multiplicity $m-1$
(c) Consider any equation of the form $p x^{3}+q x^{2}+r=0$ where p, q and r are not equal to zero.
(i) Explain why such an equation cannot have a triple root.
(ii) Assuming that the equation has a double root, find an expression for r in terms of p and q.
(d) If α, β and γ are the roots of $x^{3}-2 x^{2}+3 x-2=0$, find:
(i) $\quad \alpha^{3}+\beta^{3}+\gamma^{3}$
(ii) the equation whose roots are $\frac{\alpha \beta}{\gamma}, \frac{\beta \gamma}{\alpha}, \frac{\alpha \gamma}{\beta}$

Question 6 (15 marks) [START A NEW PAGE]
(a) The hyperbola H has equation $x^{2}-2 y^{2}=4$
(i) Find the foci, asymptotes and vertices of H.
(b) The points $R(a \cos \theta, b \sin \theta)$ and $S(-a \sin \theta, b \cos \theta)$ lie on the ellipse E with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(i) The equation of the tangent at R is given by $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$

Find the equation of the tangent at S and hence show that the coordinates of T, their point of intersection, are given by $T(a(\cos \theta-\sin \theta), \quad b(\sin \theta+\cos \theta))$
(ii) Show that the locus of T is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$

Question 7 (15 marks) [START A NEW PAGE]

Mr Mock's mathematics class bought him a ride in a hot air balloon. When Mr Mock's hands were h metres above the Earth's surface, he dropped overboard a bag of prawn crackers of mass $m \mathrm{~kg}$. The bag encounters air resistance proportional to its velocity, i.e. the resistive force is equal to $m k v$.

Taking Mr Mock's hands as the origin and downwards displacement as positive:
(i) Show that the equation of motion of the bag of prawn crackers is $\underset{\sim}{\dot{x}}=k(V-v)$, where $V \mathrm{~m} / \mathrm{sec}$ is the terminal velocity of the bag.
(ii) Show that the displacement, x metres, of the bag from Mr Mock's hands is

$$
\begin{equation*}
\text { given by } x=\frac{-v}{k}-\frac{g}{k^{2}} \ln \left(\frac{g-k v}{g}\right) \tag{4}
\end{equation*}
$$

(iii) If the bag reaches the Earth's surface with a velocity of $u \mathrm{~m} / \mathrm{sec}$, show that

$$
\begin{equation*}
\ln \left(1-\frac{u k}{g}\right)+\frac{u k}{g}+\frac{k^{2} h}{g}=0 \tag{2}
\end{equation*}
$$

(iv) Find the time T seconds for the bag of prawn crackers to attain 50% of its terminal velocity, and the distance fallen in this time.

Question 8 (15 marks) [START A NEW PAGE]
(a) Consider the infinitely nested radical α, where $\alpha=\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}$ I claim that α has a limiting value of $\frac{1}{2}(1+\sqrt{5})$.

This claim can be proved as follows:
Now $\quad \alpha=\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}$
so $\quad \alpha=\sqrt{1+\alpha}$
so $\quad \alpha^{2}=1+\alpha$
so $\quad \alpha^{2}-\alpha-1=0$
so $\quad \alpha=\frac{1 \pm \sqrt{5}}{2}$
But $\alpha>0$ so $\alpha=\frac{1}{2}(1+\sqrt{5})$

Use this technique to express in surd form the limiting value of β, where

$$
\beta=\frac{2}{2+\frac{2}{2+\frac{2}{2+\ldots}}}
$$

(b) Let $t=\tan ^{-1}\left(\frac{1}{5}\right)$
(i) Use trigonometric identities to show that

$$
\begin{aligned}
& \tan 2 t=\frac{5}{12} \\
& \tan 4 t=\frac{120}{119} \\
& \tan \left(4 t-\frac{\pi}{4}\right)=\frac{1}{239}
\end{aligned}
$$

(ii) Hence show that $\frac{\pi}{4}=4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right)$

Question 8 (continued)
(c) Let $f(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$
(i) Show that $f^{\prime}(x)=\frac{1}{1+x}$, assuming that $-1<x<1$
(ii) Show that $f(x)=\ln (1+x)$, assuming that $-1<x<1$
(iii) Hence, derive the formula $\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots$
(iv) By an appropriate substitution into the formula in (iii) above, show that $\ln \left(\frac{3}{2}\right) \frac{9}{9} 0 \cdot 405$, correct to 3 decimal places.

End of Paper

LIST OF STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \\
& =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \text {. } \\
& =\log _{e} x, x>0 . \\
& =\frac{1}{a} e^{a x}, a \neq 0 \text {. } \\
& \int \cos a x d x \\
& =\frac{1}{a} \sin a x, a \neq 0 \text {. } \\
& =\frac{-1}{a} \cos a x, a \neq 0 \text {. } \\
& \int \sec ^{2} a x d x \\
& =\frac{1}{a} \tan a x, a \neq 0 \text {. } \\
& \int \sec a x \tan a x d x \\
& =\frac{1}{a} \sec a x, a \neq 0 \text {. } \\
& \int \frac{1}{a^{2}+x^{2}} d x \\
& =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 . \\
& \int \frac{1}{\sqrt{\left(a^{2}-x^{2}\right)}} d x \\
& =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \text {. } \\
& \int \frac{1}{\sqrt{\left(x^{2}-a^{2}\right)}} d x \quad=\log _{e}\left\{x+\sqrt{\left(x^{2}-a^{2}\right)}\right\}|x|>|a| \text {. } \\
& \int \frac{1}{\sqrt{\left(x^{2}+a^{2}\right)}} d x \quad=\log _{e}\left\{x+\sqrt{\left(x^{2}+a^{2}\right)}\right\}
\end{aligned}
$$

