Student Number

Barker College

2006 TRIAL HIGHER SCHOOL CERTIFICATE

AM FRIDAY 4 AUGUST

Mathematics Extension 2

Staff Involved:

- BHC*
- BTP
- MRB
- JM

50 copies

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- Write your Barker Student Number on ALL pages of your answer sheets
- A table of standard integrals is provided on page 12

Total marks – 120

- Attempt Questions 1 8
- All questions are of equal value
- ALL necessary working should be shown in every question
- Start each question on a NEW page
- Write on one side of each answer page
- Marks may be deducted for careless or badly arranged work

Marks

Question 1 (15 marks) [START A NEW PAGE]

(a) Find

(i)
$$\int \frac{2x-6}{\sqrt{x^2-6x}} dx$$
 1

(ii)
$$\int \frac{dx}{\sqrt{x^2 - 6x}}$$

(iii)
$$\int \frac{dx}{\sqrt{6x - x^2}}$$

(b) Show that
$$\int_{-1}^{0} \frac{4 \, dx}{(1 - x)(x - 3)} = \ln\left(\frac{4}{9}\right)$$
 3

(c) Using the substitution
$$x = 3\sec\theta + 3$$
, find $\int \frac{dx}{(x-3)\sqrt{x^2-6x}}$ 3

(d) Let
$$I_n = \int_0^2 x^n e^{-2x} dx$$
, where *n* is a non-negative integer.

(i) Show that
$$I_n = \frac{n}{2} I_{n-1} - \frac{2^{n-1}}{e^4}$$
 2

(ii) Evaluate
$$I_2$$
 2

Marks

3

3

2

Question 2 (15 marks) [START A NEW PAGE]

(a) (i) Find the square root of
$$45 - 28i$$
 3

(ii) Given that
$$Z = \frac{-3 - 2i + \sqrt{45 - 28i}}{5 + 5i}$$
 and that Z is purely imaginary, find Z^6

(b) (i) Find the modulus and argument of the complex numbers
$$(-1 + i)$$
 and $(1 + \sqrt{3}i)$, and hence express $z = \frac{-1 + i}{1 + \sqrt{3}i}$ in modulus/argument form.

(ii) Hence, express
$$\cos\left(\frac{5\pi}{12}\right)$$
 in surd form. 2

(c) The locus of w is described by the equation |w - 4| = |w + 2 + 6i|

- (i) Sketch on an Argand diagram the locus of *w*. 2
- (ii) Find the Cartesian equation of the locus of *w*.

Question 3 (15 marks) [START A NEW PAGE]

(a) The graph of y = f(x) is sketched below.

Draw separate sketches of:

(i)
$$y = f(|x|)$$
 2

(ii)
$$y = |f(x)|$$
 2

(iii)
$$y = \sqrt{f(x)}$$
 2

(iv)
$$y = \log_e(f(x))$$
 2

(v)
$$y = e^{f(x)}$$
 2

Question 3 continues on page 5

1

2

Question 3 (continued)

(b) (i) Sketch the curve
$$y = \frac{x}{2 + x^2}$$

(Do **not** use calculus. Do **not** attempt to find the coordinates of any turning points).

(ii) Show that the equation $kx^3 + (2k - 1)x = 0$ can be written in the form $\frac{x}{2 + x^2} = kx$

(iii) Using a graphical approach based on the curve $y = \frac{x}{2 + x^2}$, or otherwise, find the values of k for which the equation $kx^3 + (2k - 1)x = 0$ has **exactly** one real root.

End of Question 3

4

Question 4 (15 marks) [START A NEW PAGE]

(a) The region between the positive x-axis, the y-axis and the curve $y = \cos^{-1} x$ is rotated about the y-axis.

By taking slices perpendicular to the *y*-axis, find the volume of this solid.

- (b) The base of a particular solid is the circle $x^2 + y^2 = 1$. All cross-sections of the solid perpendicular to the *x*-axis are equilateral triangles. Find the volume of this solid.
- (c) Use the method of cylindrical shells to calculate the volume of the solid generated when that part of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $x \ge 0$ and $y \ge 0$, is rotated about the line x = a.

7

3

2

2

Question 5 (15 marks) [START A NEW PAGE]

- (a) Show that 2 + i is a root of $P(x) = x^3 + x^2 15x + 25$ and hence completely factorise P(x) over the field of complex numbers.
- (b) Prove that if the polynomial H(x) has a root α of multiplicity m, then H'(x) has a root α of multiplicity m 1
- (c) Consider any equation of the form $px^3 + qx^2 + r = 0$ where p, q and r are not equal to zero.
 - (i) Explain why such an equation cannot have a triple root.
 - (ii) Assuming that the equation has a double root, find an expression for r in terms of p and q.
- (d) If α , β and γ are the roots of $x^3 2x^2 + 3x 2 = 0$, find:
 - (i) $\alpha^3 + \beta^3 + \gamma^3$ 3

(ii) the equation whose roots are
$$\frac{\alpha\beta}{\gamma}$$
, $\frac{\beta\gamma}{\alpha}$, $\frac{\alpha\gamma}{\beta}$ 2

3

3

4

2

Question 6 (15 marks) **[START A NEW PAGE]**

(a) The hyperbola *H* has equation
$$x^2 - 2y^2 = 4$$

(i) Find the foci, asymptotes and vertices of *H*.

(ii) Show that the equation of the normal to *H* at
$$P(2\sqrt{2}, \sqrt{2})$$
 is
 $x + y = 3\sqrt{2}$

- (iii) Find the equation of the circle that is tangent to *H* at *P* and $Q(-2\sqrt{2}, \sqrt{2})$
- (b) The points $R(a\cos\theta, b\sin\theta)$ and $S(-a\sin\theta, b\cos\theta)$ lie on the ellipse *E* with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

(i) The equation of the tangent at *R* is given by $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$

Find the equation of the tangent at *S* and hence show that the coordinates of *T*, their point of intersection, are given by $T(a(\cos\theta - \sin\theta), b(\sin\theta + \cos\theta))$

(ii) Show that the locus of *T* is the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$$

6

Question 7 (15 marks) **[START A NEW PAGE]**

Mr Mock's mathematics class bought him a ride in a hot air balloon. When Mr Mock's hands were h metres above the Earth's surface, he dropped overboard a bag of prawn crackers of mass m kg. The bag encounters air resistance proportional to its velocity, i.e. the resistive force is equal to mkv.

Taking Mr Mock's hands as the origin and downwards displacement as positive:

- (i) Show that the equation of motion of the bag of prawn crackers is $x^{\text{gg}} = k(V v)$, where V m/sec is the terminal velocity of the bag.
- (ii) Show that the displacement, x metres, of the bag from Mr Mock's hands is

,

given by
$$x = \frac{-v}{k} - \frac{g}{k^2} \ln\left(\frac{g-kv}{g}\right)$$
 4

(iii) If the bag reaches the Earth's surface with a velocity of *u* m/sec, show that

$$\ln\left(1-\frac{uk}{g}\right)+\frac{uk}{g}+\frac{k^2h}{g}=0$$

(iv) Find the time *T* seconds for the bag of prawn crackers to attain 50% of its terminal velocity, and the distance fallen in this time.

Consider the infinitely nested radical α , where $\alpha = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$ (a) I claim that α has a limiting value of $\frac{1}{2}(1 + \sqrt{5})$.

This claim can be proved as follows:

Now
$$\alpha = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$$

so $\alpha = \sqrt{1 + \alpha}$
so $\alpha^2 = 1 + \alpha$
so $\alpha^2 - \alpha - 1 = 0$
so $\alpha = \frac{1 \pm \sqrt{5}}{2}$
But $\alpha > 0$ so $\alpha = \frac{1}{2}(1 + \sqrt{5})$

Use this technique to express in surd form the limiting value of β , where

$$\beta = \frac{2}{2 + \frac{2}{2 + \frac{2}{2 + \dots}}}$$

(b) Let
$$t = \tan^{-1}\left(\frac{1}{5}\right)$$

Use trigonometric identities to show that (i)

$$\tan 2t = \frac{5}{12}$$

$$\tan 4t = \frac{120}{119}$$

$$\tan\left(4t - \frac{\pi}{4}\right) = \frac{1}{239}$$
3

(ii) Hence show that
$$\frac{\pi}{4} = 4 \tan^{-1} \left(\frac{1}{5} \right) - \tan^{-1} \left(\frac{1}{239} \right)$$
 2

Question 8 continues on page 11

1

Question 8 (continued)

(c) Let
$$f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

(i) Show that
$$f'(x) = \frac{1}{1+x}$$
, assuming that $-1 < x < 1$ 2

(ii) Show that
$$f(x) = \ln(1 + x)$$
, assuming that $-1 < x < 1$

(iii) Hence, derive the formula
$$\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$$
 3

(iv) By an appropriate substitution into the formula in (iii) above,

show that
$$\ln\left(\frac{3}{2}\right) \stackrel{g}{=} 0.405$$
, correct to 3 decimal places.

End of Paper

LIST OF STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ \text{if } n < 0.$$

$$\int \frac{1}{x} dx = \log_{e} x, \ x > 0.$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0.$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0.$$

$$\int \sin ax dx = \frac{-1}{a} \cos ax, \ a \neq 0.$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \ a \neq 0.$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \ a \neq 0.$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0.$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0.$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a.$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \log_{e} \left\{ x + \sqrt{x^{2} - a^{2}} \right\} |x| > |a|.$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \log_{e} \left\{ x + \sqrt{x^{2} + a^{2}} \right\}$$