Student Number

Barker College

Mathematics Extension 2

Staff Involved:

• WMD*

- JM
- VAB
- BHC

30 copies

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- Write your Barker Student Number
 on ALL pages of your answer sheets
- A table of standard integrals is provided on page 12

2007 TRIAL HIGHER SCHOOL CERTIFICATE

AM TUESDAY 31 JULY

Total marks – 120

- Attempt Questions 1 ~ 8
- All questions are of equal value
- ALL necessary working should be shown in every question
- Start each question on a NEW page
- Write on one side of each answer page
- Marks may be deducted for careless or badly arranged work

Total marks – 120 Attempt Questions 1 – 8 ALL questions are of equal value Answer each question on a SEPARATE sheet of paper

Question 1 (15 marks) [START A NEW PAGE] (a) Find $\int \frac{(\ln x)^5}{x} dx$. Marks

1

1

2

2

2

3

4

- (b) Use the table of standard integrals to help find $\int \frac{dy}{\sqrt{4y^2 + 36}}$.
- (c) Let $\frac{2x+2}{(x-1)(x^2+1)} \equiv \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$
 - (i) Find the value of A, B and C.

(ii) Hence, find
$$\int \frac{2x+2}{(x-1)(x^2+1)} dx$$

- (d) (i) Prove that $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$.
 - (ii) Hence or otherwise evaluate $\int_{0}^{1} x^2 \sqrt{1-x} \, dx$.

2

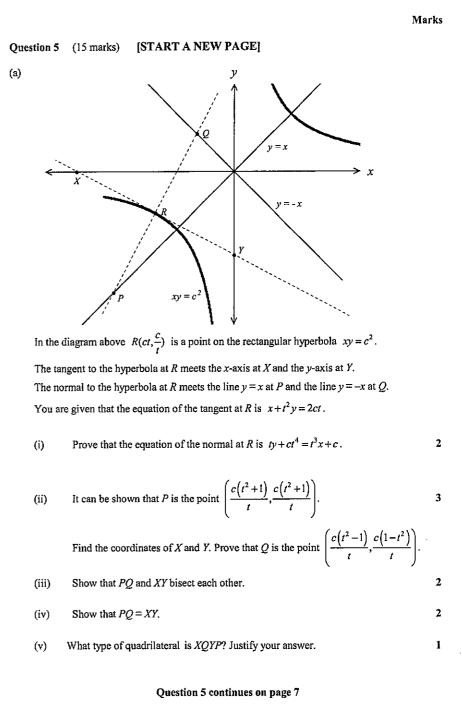
(e) Evaluate $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{1+\cos x}$

		Marks
Que	stion 2 (15 marks) [START A NEW PAGE]	
(a)	Find $\sqrt{21+20i}$ in the form $x + iy$.	3
(b)	Sketch the locus of z described by the inequality $ z-1+i \le 1$ and state the minimum value of arg z.	2
(c)	$ \begin{array}{c} Im(z) \\ Q \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
	In the Argand diagram above, intervals <i>AB</i> , <i>OP</i> and <i>OQ</i> are equal in length, <i>OP</i> is parallel to <i>AB</i> and $\angle POQ = \frac{\pi}{2}$.	
	(i) If A and B represent the complex numbers $3 + 5i$ and $9 + 8i$ respectively, find the complex number which is represented by P.	1
	(ii) Hence find the complex number which is represented by Q.	1
(d)	If $z = x + iy$ $(x, y \in R)$, find and describe in words, the locus of the points $P(x, y)$ such that $Im\left(z + \frac{1}{z}\right) = 0$.	4
(e)	Write $\sqrt{3} + i$ and $\sqrt{3} - i$ in modulus/argument form. Hence show that $(\sqrt{3} + i)^{10} + (\sqrt{3} - i)^{10}$ is a rational number.	4

 Question 3 (15 marks) [START A NEW PAGE] (a) The equation x³-3x²+6x-4=0 has roots α, β and γ. Find α, β and γ, given that one root is x=1+i√3. (b) (i) Prove that if polynomial P(x) has a root of multiplicity m at x = c then P'(x) has a root of multiplicity (m - 1) at the same point. (ii) The equation 8x³+4x²=2x+1 has a double root and a single root. Find the double root. (c) If α, β, γ are the roots of x³-x-1=0, find the equation with roots 1/(1-α), 1/(1-γ). Hence state the value of 1/(1-α) + 1/(1-β) + 1/(1-γ). (d) If one of the roots of the equation x³ + ax² + bx+c=0 is the sum of the other two roots show that a³-4ab+8c=0 		Ν
 given that one root is x = 1+i√3. (b) (i) Prove that if polynomial P(x) has a root of multiplicity m at x = c then P'(x) has a root of multiplicity (m - 1) at the same point. (ii) The equation 8x³ + 4x² = 2x + 1 has a double root and a single root. Find the double root. (c) If α, β, γ are the roots of x³ - x - 1 = 0, find the equation with roots 1/(1-α), 1/(1-β), 1/(1-γ). Hence state the value of 1/(1-α) + 1/(1-β) + 1/(1-γ). (d) If one of the roots of the equation x³ + ax² + bx + c = 0 is the sum of the 	Ques	tion 3 (15 marks) [START A NEW PAGE]
 has a root of multiplicity (m - 1) at the same point. (ii) The equation 8x³ + 4x² = 2x + 1 has a double root and a single root. Find the double root. (c) If α, β, γ are the roots of x³ - x - 1 = 0, find the equation with roots 1/(1-α), 1/(1-β), 1/(1-γ). Hence state the value of 1/(1-α) + 1/(1-β) + 1/(1-γ). (d) If one of the roots of the equation x³ + ax² + bx + c = 0 is the sum of the 	(a)	
Find the double root. (c) If α, β, γ are the roots of $x^3 - x - 1 = 0$, find the equation with roots $\frac{1}{1-\alpha}, \frac{1}{1-\beta}, \frac{1}{1-\gamma}$. Hence state the value of $\frac{1}{1-\alpha} + \frac{1}{1-\beta} + \frac{1}{1-\gamma}$. (d) If one of the roots of the equation $x^3 + \alpha x^2 + bx + c = 0$ is the sum of the	(Ъ)	
(d) If one of the roots of the equation $x^3 + ax^2 + bx + c = 0$ is the sum of the		
(d) If one of the roots of the equation $x^3 + ax^2 + bx + c = 0$ is the sum of the other two roots show that $a^3 - 4ab + 8c = 0$	(c)	
	(d)	If one of the roots of the equation $x^3 + ax^2 + bx + c = 0$ is the sum of the other two roots show that $a^3 - 4ab + 8c = 0$

Questi	ion 4 (15 marks) [START A NEW PAGE]	Marks
(a)	ϕ is a complex cube root of unity, i.e. $\phi^3 = 1, \phi \neq 1$.	
	(i) Find the value of $\phi + \phi^2$	1
	(ii) Prove that $(a-b)(a-\phi b)(a-\phi^2 b) = a^3 - b^3$	2
(b)	(i) Sketch $y = \frac{x-2}{x+1}$. Show all points of intersection with the coordinate axes and any asymptotes.	2
	(ii) Use your graph in (i) to sketch:	
	$(\alpha) y = \left(\frac{x-2}{x+1}\right)^2$	2
	$(\beta) \qquad y^2 = \left(\frac{x-2}{x+1}\right)$	2
(c)	By considering the behaviour of $y = \cos^{-1} x$ and $u = e^x$, or otherwise, draw the graph of $y = \cos^{-1}(e^x)$. Calculus need not be used.	3 .
(d)	Sketch, without using calculus, $y = x x-2 $. Hence, or otherwise, state for what values of k, $x x-2 =k$ has 3 solutions.	3
	5	

.



6

Marks

5

Question 5 (continued)

A tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at $P(a \sec \theta, b \tan \theta)$ meets the nearest (b) directrix at Q. If S is the nearest focus, prove that PQ subtends a right angle at S, i.e. $\angle PSQ = 90^{\circ}$.

You may assume that the equation of the tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $(a \sec \theta, b \tan \theta)$ is $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$.

7

Question 6 (15 marks) [START A NEW PAGE]

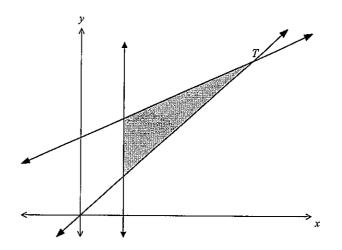
Find the Cartesian equation of the ellipse $x = 1 + 3\cos\theta$, $y = 2\sin\theta - 2$. (a)

Marks

2

4

The area bounded by the lines 2x - y = 0, x - y + 4 = 0 and x = 1, shown below, (b) is to be rotated about the y-axis.



Show that the x-coordinate of T is 4. Then, using the method of cylindrical shells, show that the volume of the solid of revolution generated is 18π cubic units.

Question 6 continues on page 9

8

Marks

5

.

Question 6 (continued)

.

(c) (i) Explain why
$$\int_{0}^{a} \sqrt{a^2 - x^2} \, dx = \frac{\pi a^2}{4}$$
. It is not necessary to use formal 1 integration.

- (ii) Using (i) and symmetry, or otherwise, show that the area enclosed by the 3 ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab units².
- (iii) The base of a particular solid is the circle $x^2 + y^2 = r^2$. Every cross-section perpendicular to the x-axis is a semi-ellipse. The base length of each semi-elliptical cross-section is 4 times its height.

Use part (ii) to find an expression for the volume of a cross-sectional slice and hence find the volume of the solid.

		Marks			
Ques	stion 7 (15 marks) [START A NEW PAGE]				
(a)	How many positive integers n are there such that $n + 3$ divides $n^2 + 7$ without a remainder?	3			
(b)	Four families each have four children. What is the probability that exactly two of the families have two boys and two girls?				
(c)	From the letters of the word $RENEGADE$, three are taken at random and placed in a line.				
	(i) How many different 3 letter sequences are there with exactly one E in the sequence?	1			
	(ii) How many different 3 letter sequences are there altogether?	3			
(d)	The depth of the water in a harbour is 7.2 m at low water and 13.6 m at high water. On Monday, low water is at 2:05 pm and high water is at 8:20 pm. A particular ship requires water to a depth of at least 12.3 m to leave harbour. The ship's captain wan to leave harbour between noon and midnight. Find between what times the ship can leave, assuming that the motion of the tide is simple harmonic.	ts			
	High tide = 13.6 m at 8:20 pm				
	Clearance level for ship = 12.3 m				
	• Centre of oscillation = 10.4 m				
	• Low tide = 7.2 m at 2:05 pm				

.

Questi	on 8	(15 marks) [START A NEW PAGE]	Marks
(a)	(i)	Use De Moivre's theorem to express $\cos 3\theta$ in terms of $\cos \theta$.	2
	(ii)	Use the result to solve $8x^3 - 6x + 1 = 0$.	3
	(iii)	Hence deduce that $\sec \frac{\pi}{9} \sec \frac{2\pi}{9} \sec \frac{4\pi}{9} = 8$.	2
(b)	(i)	If $I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$ then show that $I_n = \frac{n-1}{n} I_{n-2}$.	4
	(ii)	By first finding I_{s_1} I_7 and I_9 in unsimplified form, and noting a pattern in your answers, show that $I_n = \frac{\left\{\left[\frac{1}{2}(n-1)\right]!\right\}^2}{n!} 2^{n-1}$ if <i>n</i> is odd.	4

End of Paper

STANDARD INTEGRALS $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ \text{if } n < 0$

 $\int \frac{1}{x} dx$ $= \ln x, x > 0$

 $\int e^{\alpha x} dx \qquad \qquad = \frac{1}{\alpha} e^{\alpha x}, \quad \alpha \neq 0$

 $=\frac{1}{a}\sin ax, a \neq 0$ $\int \cos ax \, dx$

 $=-\frac{1}{a}\cos ax, a\neq 0$ ∫sin *ax dx*

 $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$

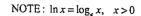
 $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$

 $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$

 $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$

 $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$

 $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$



Eatension, 2 Mathematics Trial HSC Earn Solutions 2007

Question 1

$$\begin{pmatrix} n \\ n \end{pmatrix} \int \frac{(\ln n)^{5}}{n^{2}} = \int (\ln n)^{5} d(\ln n)$$

$$= \frac{(\ln n)^{5}}{6} + c$$

(b)
$$\int \frac{dy}{\sqrt{4y^2 + 36}} = \frac{1}{2} \int \frac{dy}{\sqrt{y^2 + 3^2}}$$

= $\frac{1}{2} \ln \left\{ y + \sqrt{y^2 + 9} \right\} + c$

$$(2)$$
 (2) $2x + 2 = A(x^{2} + 1) + (Bx + c)(x - 1)$

when
$$x=1$$
, $4 = 2A \Rightarrow A = 2$
comparing coefficients of x^2 : $0 = A+B$
 $0 = 2+B$
 $= 3 B = -2$
when $x=0$, $2 = 2 + (x-1) \Rightarrow c = 0$
 $\therefore A = 2, B = -2, C = 0$
(ii) $\int \frac{2\pi + 2}{(\pi - 1)(\pi^2 + 1)} dx = \int \left\{ \frac{2}{2^{n-1}} - \frac{2\pi}{2^{n}} \right\} dx$
 $= 2(n|x-1| - (n(x^2+1) + C))$
 $x=0$
 $n = a$
 $i = du$
 $i = du$

$$(i) \int_{0}^{1} u^{2} (i - \pi)^{\frac{1}{2}} dx$$

$$= \int_{0}^{1} (i - \pi)^{2} u^{\frac{1}{2}} dx$$

$$= \int_{0}^{1} (x^{\frac{1}{2}} - 2x + x^{\frac{1}{2}}) dx$$

$$= \int_{0}^{1} (x^{\frac{1}{2}} - 2x + x^{\frac{1}{2}}) dx$$

$$= \left[\frac{x}{3} x^{\frac{3}{2}} - 2x \frac{x}{5} x^{\frac{5}{2}} + \frac{x}{7} x^{\frac{7}{2}} \right]_{0}^{1}$$

$$= \frac{x}{3} - \frac{4}{5} + \frac{x}{7}$$

$$= \frac{16}{125}$$
(b) $\cos x = \cos \left(\frac{x}{2} + \frac{x}{2}\right)$

$$= 2 \cos^{2} \frac{x}{2} - 1$$

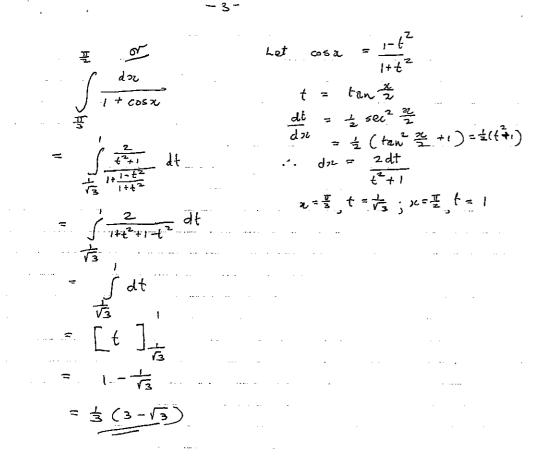
$$\therefore \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{dx}{2 \cos^{2} \frac{x}{2}} = \frac{1}{2} \int_{0}^{\frac{1}{2}} \sec^{2} \frac{x}{2} dx$$

$$= \frac{1}{2} \left[2 \tan \frac{x}{2} \right]_{\frac{1}{3}}^{\frac{1}{3}}$$

$$= 4 \tan \frac{\pi}{5}$$

$$= 1 - \frac{1}{\sqrt{3}}$$

$$= \frac{1}{3} (3 - \sqrt{3})$$



(a) $21 + 20i = (22^2 - 5^2) + 22 gi$ $x^2 - y^2 = 21$... (1) $2\pi y = x^{0} \Rightarrow y = \frac{10}{32} \cdots (2y)$ sub(2) in (1): $2^2 - \frac{100}{32} = 21$ st - 21 12 - 100 = 0 $(3)^2 - 25 \chi 32^2 + 4) = 0$.'. ~ = ± 5 ル=5ゴム=2 ル=-5 -> ら=-2 $\sqrt{21+20i} = \pm (s+2i)$ (1)

Question 2

(z)(i) f = (9+8i) - (3+5i)= 6+3i (i) Q = i(6+3i) = -3+6i (d) $z + \frac{1}{z} = 2z+iy + \frac{1}{z+iy} \times \frac{z-iy}{z-iy}$ = $z+iy + \frac{z-iy}{z^2+y^2}$ = $2z(z^2+y^2) + iy(z^2+y^2) + z - iy$ z^2+y^2 = $2z(z^2+y^2+i) + iy(z^2+y^2-i)$ z^2+y^2

$$Inv \left(\overline{z} + \frac{1}{\overline{z}} \right) = \frac{1}{2} \left(\frac{x^2 + 5^2 - 1}{x^2 + 5^2} \right) = 0$$

$$Inv \left(\overline{z} + \frac{1}{\overline{z}} \right) = \frac{1}{x^2 + 5^2} = 1$$

$$x^2 + 5^2 = 0$$

$$The (ocus of P is the unit circle and the x-axis except for the origin.$$

$$Ia) \quad \sqrt{3} + i = 2 \operatorname{cis} \frac{\pi}{6} , \quad \sqrt{3} - i = 2 \operatorname{cis} \left(-\frac{\pi}{6} \right)$$

$$Ia) \quad \sqrt{3} + i = 2 \operatorname{cis} \frac{\pi}{6} , \quad \sqrt{3} - i = 2 \operatorname{cis} \left(-\frac{\pi}{6} \right)$$

$$Ia) \quad (\sqrt{3} + i)^{10} + (\sqrt{3} - i)^{10}$$

$$Ib) \quad = \left(2 \operatorname{cis} \frac{\pi}{6} \right)^{10} + \left(2 \operatorname{cis} \left(-\frac{\pi}{6} \right) \right)^{10}$$

$$Ib) \quad = 2^{10} \operatorname{cis} \frac{10\pi}{6} + 2^{10} \operatorname{cis} \left(-\frac{10\pi}{6} \right)$$

$$Ib) \quad = 1024 \left\{ \operatorname{cos} \left(-\frac{\pi}{3} \right) + \operatorname{cis} \left(\frac{\pi}{3} \right) \right\} + \operatorname{cos} \frac{\pi}{3} + i \operatorname{sin} \frac{\pi}{3} \right\}$$

$$Ib) \quad = 1024 \left\{ \operatorname{cos} \frac{\pi}{3} - i \operatorname{cis} \left(-\frac{\pi}{3} \right) + \operatorname{cos} \frac{\pi}{3} + i \operatorname{sin} \frac{\pi}{3} \right\}$$

$$Ib) \quad = 1024 \left\{ \operatorname{cos} \frac{\pi}{3} - i \operatorname{cis} \left(-\frac{\pi}{3} \right) + \operatorname{cos} \frac{\pi}{3} + i \operatorname{sin} \frac{\pi}{3} \right\}$$

= 1024 which is a rational number.

$$\frac{1-6-}{2}$$

$$\frac{1}{2}\left(\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}}\right) = 0$$

$$\frac{1}{2}\left(\frac{x^{2}+y^{2}+y^{2}-1}{x^{2}+y^{2}}\right) = 0$$

$$\frac{1}{2}\left(\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}}\right) = 0$$

$$\frac{1}$$

$$-7 - \frac{1}{3} - \frac{3}{3} + \frac{3}{3} - \frac{1}{5} - \frac{5}{3} + \frac{5}{3} - \frac{5}{3} = 0$$

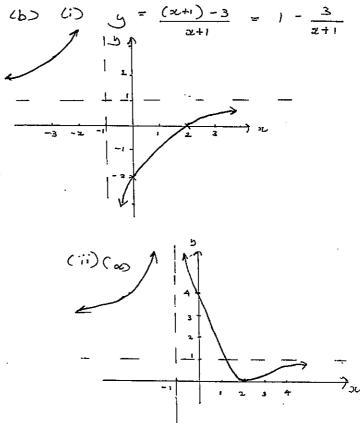
$$-5 - \frac{3}{5} - \frac{2}{5} + \frac{3}{5} - \frac{1}{5} = 0$$

$$3 - \frac{5}{5} - \frac{2}{5} + \frac{3}{5} - \frac{1}{5} = 0$$

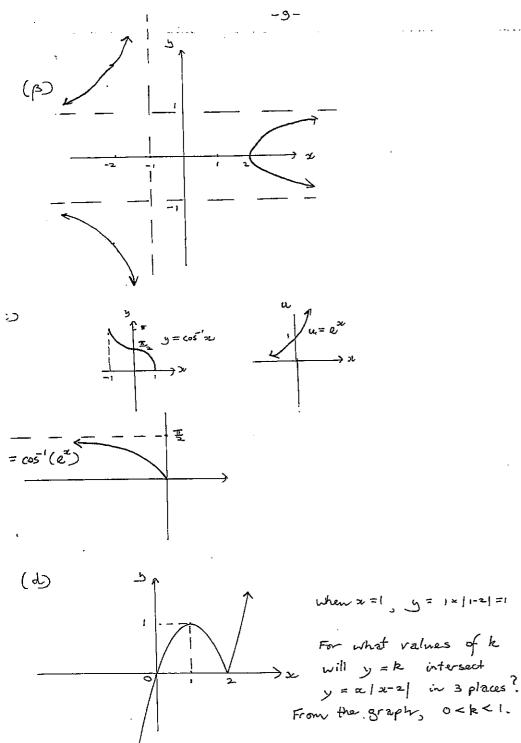
$$3 + \frac{1}{5} - \frac{1}{5} = -2$$

(d) Let the roots be
$$\alpha, \beta, \gamma$$
 where $\alpha = \beta$
 E roots: $\alpha + \beta + \gamma = -a$
 $\therefore 2\alpha = -a = \alpha = -\frac{a}{2}$
Sum froots 2 at a time: $\alpha \beta + \alpha \gamma + \beta \gamma = b$
 $\therefore \alpha(\beta + \gamma) + \beta \gamma = b$
 $\therefore (-\frac{a}{2})(-\frac{a}{2}) + \beta \gamma = b$
 $\therefore \beta \gamma = -\frac{a^2}{4} + b$... (1)
Product of roots: $\alpha \beta \gamma = -c$
 $\therefore \beta \gamma = \frac{-c}{\alpha}$
 $\therefore \beta \gamma = \frac{2c}{a} - \cdots (2)$
from (1) $k(2): -\frac{a^2}{4} + b = \frac{2c}{a}$
 $\therefore -a^3 + 4ab = 8c$
 $\therefore 0 = a^3 - 4ab + 8c$

Question 4
(a) (i)
$$\phi^{3} = 1$$
, $\phi \neq 1$
 $\phi^{3} - 1 = 0$
 $(\phi - 1)(\phi^{2} + \phi + 1) = 0$
 $\therefore \phi^{2} + \phi + 1 = 0$ $(\phi \neq 1)$
 $\therefore \phi^{2} + \phi = -1$
(ii) $(a - b)(a - \phi^{b})(a - \phi^{2}b)$
 $= (a - b)(a^{2} - \phi^{2}ab - \phi ab + \phi^{3}b^{2})$
 $= (a - b)(a^{2} + b^{2} - ab(\phi^{2} + \phi))$
 $= (a - b)(a^{2} + b^{2} - ab(\phi^{2} + \phi))$
 $= (a - b)(a^{2} + b^{2} + ab)$
 $= a^{3} - b^{3}$



x=0, y=-2 5=0, x=2



Question 5 $(a) (i) \cdot y = \frac{c^2}{a}$ $\frac{dy}{dy} = -\frac{\zeta^2}{\chi^2}$ when z = ct, $\frac{dv}{dv} = -\frac{c}{c^2 + 2} = -\frac{1}{t^2} = 7m_N = t^2$ $\therefore Eq^2 n of normal : y - \frac{c}{4} = t^2 (x - ct)$ $ty - c = t^{3}x - ct^{4}$ $ty + ct^{4} = t^{3}x + c$ (ii) Tangent is a + ty = 2ct. when z = 0, $t^2 = 2ct$ $y = \frac{2c}{t} = 7 \ y \ is \left(0, \frac{2c}{t}\right)$ when y= =, x = 2 ct = x is (z ct, o) for Q, sub 5=- >> in ty + ct = t3x+c: $-sct + ct^{4} = t^{3} \alpha + c$ $sc(t^{3}+t) = c(t^{4}-t)$ $c = \frac{c(t^{2}-1)(t^{2}+1)}{t(t^{2}+1)} = \frac{c(t^{2}-1)}{t(t^{2}+1)}$

sub $x = c(t^2 - 1)$ in y = -3t $\therefore \quad y = \frac{c(1-t^2)}{t}$ $\Rightarrow Q is \left(\frac{c(t^2-1)}{t}, \frac{c(1-t^2)}{t}\right)$

(iii) Midpoint of
$$PQ = \left(\frac{c}{t}\left(\frac{t}{t}+1+\frac{t^{2}}{2}\right), \frac{c}{t}\left(\frac{t^{2}+1+t-t^{2}}{2}\right)\right)$$

$$= \left(\frac{c}{2t}\left(2t^{2}\right), \frac{c}{2t}\times2\right)$$

$$= \left(\frac{ct}{t}, \frac{c}{t}\right)$$

$$= R$$

$$midpoint of XY = \left(\frac{2ct+0}{2}, \frac{0+\frac{2c}{t}}{2}\right)$$

$$= \left(\frac{ct}{t}, \frac{c}{t}\right)$$

$$= R$$

$$XY \notin PQ \text{ share the same midpoint, hence they must bisect each other.$$

(iv)
$$XY = \sqrt{(2cb)^2 + (\frac{2c}{b})^2}$$

$$= \sqrt{4c^2 t^2 + 4c^2}$$

$$PQ = \sqrt{\left(\frac{c}{t}(t^2 + 1 - (t^2 - 1))^2 + (\frac{c}{t}(t^2 + 1 - (1 - t^2))\right)^2}$$

$$= \sqrt{4c^2 + \frac{c^2}{t^2} + \frac{c^2}{t^2} \times 4t^4}$$

$$PQ = \int \frac{4c^{2}}{t^{2}} + 4c^{2}t^{2} = XY$$

٠

$$2 \sec \theta - 2e \qquad a(\sec \theta - e)$$

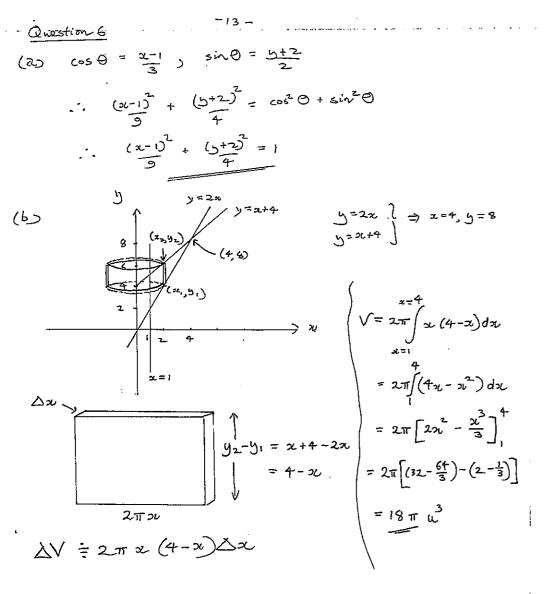
$$m_{ps} \times m_{qs} = \frac{b(\sec \theta - e)}{2 \tan \theta(i - e^{2})} \times \frac{b \tan \theta}{2(\sec \theta - e)}$$

$$= \frac{b^{2}}{a^{2}(i - e^{2})}$$

$$i.e. \quad m_{ps} \times m_{qs} = -1 \quad 2e \quad b^{2} = a^{2}(e^{2} - i)$$

•

.•



$$\frac{\partial R}{\Delta V} = \pi \left[(x + \Delta x)^2 - x^2 \right] \left[4 - x \right]$$

$$= \pi \left[2x \Delta x + (\Delta x)^2 \right] \left[4 - x \right]$$

$$V = \lim_{\lambda x \to 0} \frac{4}{x^2 + 1} \pi \left[2x \Delta x + (\Delta x)^2 \right] \left[4 - x \right]$$

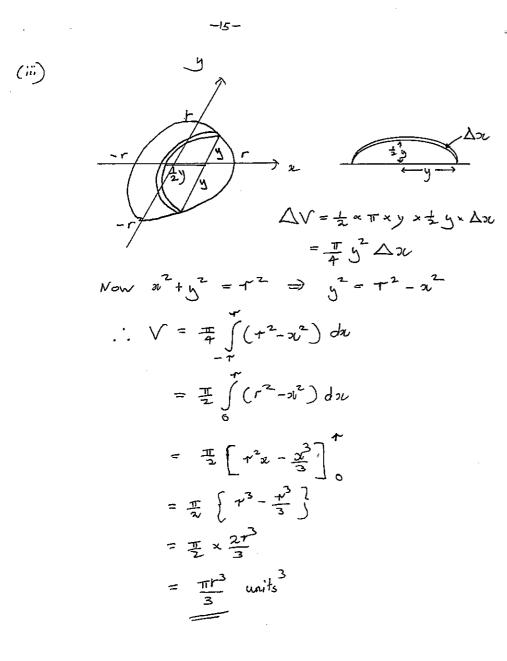
$$= \lim_{\Delta x \to 0} \frac{4}{x^2 + 1} (x + \Delta x)^2 \left[4 - x \right]$$

$$= \lim_{\lambda x \to 0} \frac{4}{x^2 + 1} 2\pi (x + \Delta x)^2 \left[4 - x \right] \Delta x$$

$$= \lim_{\lambda x \to 0} \frac{4}{x^2 + 1} \left[2\pi \left(x + \Delta x \right)^2 \right] \left[4 - x \right]$$

(i)
$$\int_{a}^{2} \sqrt{\frac{a}{a}^{2} - x^{2}} dx$$
 calculates the
area of the 1st quadrant of a
circle centred at the origin with radius a
 $\therefore \int_{a}^{2} \sqrt{\frac{a}{a}^{2} - x^{2}} dx = \frac{1}{4} \times \pi \times a^{2}$.
 $= \frac{\pi a}{\frac{1}{4}}$
(i) $\frac{u^{1}}{2^{2}} + \frac{b^{2}}{b^{2}} = 1$
 $\int_{a}^{a} - \frac{b^{2}}{a^{2}} (1 - \frac{x^{2}}{a^{2}})$
 $\int_{a}^{a} = \frac{b^{2}}{a^{2}} (a^{2} - x^{2})$
 $\int_{a}^{a} = \frac{b}{a} \sqrt{a^{2} - x^{2}}$
 $A = \frac{ab}{a} \int_{a}^{a} \sqrt{a^{2} - x^{2}} dx$
 $= \frac{4b}{a} \int_{a}^{a} \sqrt{a^{2} - x^{2}} dx$
 $= \frac{4b}{a} \int_{a}^{a} \sqrt{a^{2} - x^{2}} dx$

ഗ



Question 7
(a)
$$n+3 \int_{n}^{n-3} \frac{1}{16} (n+7) (n-7) + 16 \frac{n^2 + 3n}{16} (n+7) (n-7) + 16 \frac{n^2 + 3n}{16} (n+7) (n+3) \left[\frac{16}{16} (n+7) (n+3) \right] (16) \frac{1}{16} (n+7) (n+3) (16) \frac{16}{16} (n+7) (1$$

(d)
$$8.20pm - 13.6m \quad x = 3.2$$

 $12.3m \quad x = 1.9$
 $10.4m \quad x = 0$
 $2.05pm = 7.2m \quad x = -3.2$

Let
$$x = A\cos(nt + \alpha)$$

$$\therefore \mathcal{R} = 3.2 \cos\left(\frac{\pi t}{375} + \alpha\right)$$

 $A = \frac{13.6-7.2}{2} = 3.2$

 $n = \frac{2T}{T}, T = 375 \times 2$

 $\therefore n = \frac{T}{37.5}$

- 750

-17-

-18or_ 8:20pm + 13.6 21=3.2 Let x = A sinnt, taking t=0 when x=0. 12.3m x=1.3 A = 3.2, $n = \frac{2\pi}{T}$, T = 375x2= $\frac{\pi}{375}$ 5:12:30 pm 10.4 x=0 $\therefore x = 3.2 \sin(\frac{\pi t}{375})$ 2:05pm - 7.2m 21=-3.2 when = 1.9, $1.9 = 3.2 \sin\left(\frac{\pi t}{375}\right)$ $\frac{\pi t}{275} = \sin^{-1}\left(\frac{1.9}{3.2}\right)_{T} - 54\sqrt{1}\left(\frac{1.9}{3.2}\right)_{T} \dots$ + = 75.88 , 239.11 He should leave between 6:29 pm and 10:11 pm.

Question 8

 $(a) (i) (\cos \Theta + i\sin \Theta)^{3}$ $= \cos^{3}\Theta + 3\cos^{2}\Theta i \sin \Theta + 3\cos\Theta(i\sin \Theta)^{2} + (i\sin \Theta)^{3}$ $By \quad De \quad MoiVre^{3}s \quad theorem \quad (\cos \Theta + i\sin \Theta)^{3} = \cos 3\Theta + i\sin \Theta$

-19-

- $\therefore \cos 3\theta + i \sin 3\theta = \cos^3 \theta 3\cos \theta \sin^3 \theta + i (3\cos^2 \theta \sin \theta \sin^3 \theta)$ Equating real parts: $\cos 3\theta = \cos^3 \theta - 3\cos \theta (1 - \cos^2 \theta)$ $= 4\cos^3 \theta - 3\cos \theta$
- (i) $8x^3 6x + 1 = 0$ 8x3-6x = -1 $4_{22}^3 - 3_{22} = -\frac{1}{2}$ 4 cos³ € - 3 cos € = - 1 , where x = cos € $\therefore \cos 3\theta = -\frac{1}{2} \left\{ from (i) \right\}$ 30 = 2 5 5 $\theta = \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{5\pi}{9}$:. $2L = \cos \frac{2\pi}{3} \cos \frac{4\pi}{3} \cos \frac{8\pi}{3}$ ¥., (iii) Product of roots = - 1/3 ... cos 2 cos 4 cos 8 = - 2 cos 걜 cos 뚷(-cos풀) = - 쿻 다 문 다 말 다 말 = 날 · ser & ser = ser = s

(i)
$$\overline{L}_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx$$

$$= \int_{0}^{\frac{\pi}{2}} \sin^{n-1} x \, d(-\cos x)$$

$$= \left[-\cos x \sin^{n-1} x\right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, d(\sin^{n-1} x)$$

$$= \left[-\cos x \sin^{n-1} x\right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, d(\sin^{n-1} x)$$

$$= \left(n + \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^{2} x) \, dx$$

$$= \left(n - 1\right) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \, dx - \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx$$

$$= \left(n - 1\right) \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \, dx - \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx$$

$$= \left(n - 1\right) \int_{0}^{\frac{\pi}{2}} \int_{-\infty}^{\infty} - 1 \int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx$$

- 2,0 -

(6)

 $\overline{I}_{i} = \int \sin x \, dx$ (ii) = [-cos 72] $I_3 = \frac{2}{3} \times 1 = \frac{2}{3}$ $I_5 = \frac{4}{5} \times \frac{1}{13} = \frac{2}{3} \times \frac{4}{5}$ $I_7 = \frac{2 \times 4 \times 6}{3 \times 5 7}$ $\overline{L}_{g} = \frac{2 \times 4 \times 6 \times 8}{3 \times 5 \times 7 \times 9}$ $I_{tr} = \frac{2 \times 4 \times 6 \times 8 \times ... \times (n-1)}{1 \times 3 \times 5 \times 7 \times 3 \times ... \times h}$ where m is an odd positive integer $= \frac{2 \times 4 \times 6 \times 8 \times ... \times (n-1)}{1 \times 3 \times 5 \times 7 \times 9 \times ... \times n} \times \frac{2 \times 4 \times 6 \times 8 \times ... \times (n-1)}{2 \times 4 \times 6 \times 8 \times ... \times (n-1)}$ $= \left\{ 2^{(n-1)/2} (1 \times 2 \times 3 \times \dots \times \frac{n+1}{2}) \right\}^2$ n! $2^{n-1} \left\{ \binom{n-1}{2} \right\}^{2}$ Ξ

- 21-

· · · ·

n!