\qquad

Barker College

2010
 TRIAL
 HIGHER SCHOOL CERTIFICATE

Mathematics Extension 2

Staff Involved:

PM THURSDAY $5^{\text {TH }}$ AUGUST

- MRB*
- GDH
- BHC
- WMD

40 copies

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using blue or black pen
- Make sure your Barker Student Number is on ALL pages of your answer sheets
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper

Total marks - 120

- Attempt Questions 1-8
- ALL necessary working should be shown in every question
- Start each question on a NEW page
- Write on one side of each answer page
- Marks may be deducted for careless or badly arranged work

THIS PAGE IS INTENTIONALLY BLANK

Marks

Question 1 (15 marks) [START A NEW PAGE]
(a) Find $\int x^{2} \log _{e} x d x$
(b) Find $\int \frac{\cos ^{2} x}{\sin ^{2} x} d x$
(c) Find $\int \frac{\cos ^{3} x}{\sin ^{2} x} d x$
(d) Using the substitution of $t=\tan \frac{\theta}{2}$ or otherwise,

$$
\text { evaluate } \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{3-\cos \theta}
$$

(e) (i) Find the remainder when $x^{2}+6$ is divided by $x^{2}+x-6$.
(ii) Hence, find $\int \frac{x^{2}+6}{x^{2}+x-6} d x$

Question 2 (15 marks) [START A NEW PAGE]
(a) Let $z=18+4 i$ and $w=3-i$
(i) Express $\frac{z}{w}$ in the form $a+i b$, where a and b are real numbers
(ii) Hence or otherwise find $\left|\frac{z}{w}\right|$ and $\arg \left(\frac{z}{w}\right)$
(b) Sketch the region in the complex plane where the inequalities

$$
|z-1+2 i| \leq 3 \text { and }|\arg (z-1+2 i)| \leq \frac{\pi}{3} \text { both hold. }
$$

(c) Evaluate: $\left(\frac{1+i}{\sqrt{2}}\right)^{2010}$
(d)

The points P and Q in the complex plane correspond to the complex numbers z and w respectively. The triangle $O P Q$ is isosceles and $\angle P O Q$ is a right angle.

Show that $z^{2}+w^{2}=0$
(ii) Let λ be a cube root of 1 where λ is not real. Show that $\lambda^{2}=-(\lambda+1)$
(iii) Hence simplify $(1+\lambda)^{6}$

End of Question 2

(a) By considering the quadratic equation $x^{2}-x y+1=0$ in terms of x,

Show $|y| \geq 2$
(b) Let $f(x)=x+\frac{1}{x}$
(i) By considering your result in (a) or otherwise, sketch a half page graph of $y=f(x)$.

Provide separate half page sketches of the following functions.
(ii) $\quad y=|f(x)|$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=\sqrt{f(x)}$
(v) $y=e^{f(x)}$
(c) (i) The number of original thoughts (T) in a small community is given by the equation $\frac{d T}{d t}=k(10000-T)$.
Show that $T=10000-A e^{-k t}$ where A, k are constants, is a solution of this equation.
(ii) Initially there were 2500 original thoughts and then 10 years later this had risen to 5000 . When will the number of original thoughts be 7500 ?

End of Question 3

Question 4 (15 marks) [START A NEW PAGE]
(a) (i) Suppose that k is a double root of the polynomial equation $f(x)=0$. Show that $f^{\prime}(k)=0$.
(ii) The polynomial $P(x)=a x^{7}+b x^{6}+1$ is divisible by $(x-1)^{2}$. Find a and b.
(iii) Let $E(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}$.

Prove $E(x)=0$ has no double root.
(b) The roots of $x^{3}+7 x^{2}+13=0$ are α, β, γ,
(i) Find the polynomial equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$.
(ii) Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$
(c) (i) By first finding the turning points of $p(x)=x^{3}-x^{2}-5 x-1$, sketch the graph of $y=p(x)$.
(ii) Without attempting to solve the equation, explain why $p(x)=0$ has three distinct real roots, two of which are negative.
(iii) Starting with an approximation of $x=0$, use one application of Newton's method to estimate a root of the equation $p(x)=0$.
(iv) Using Newton's method, what initial approximation would you use to estimate the positive root of $p(x)=0$? State briefly your reasons for this choice.

End of Question 4

Question 5 (15 marks) [START A NEW PAGE]

(a) The ellipse \sum has the cartesian equation $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$.
(i) Sketch \sum clearly labelling the foci, S and S^{\prime} and directrices
(iii) The point $Q\left(x_{1}, y_{1}\right)$ is located on the ellipse \sum where $x_{1}>0$ and $\mathrm{y}_{1}>0$. The tangent at Q meets the directrix at $M\left(x_{2}, y_{2}\right)$ where $x_{2}>0$.

Show that $Q M$ subtends a right angle at one of the foci.
(b) The line $L: a x+b y=1$ meets the rectangular hyperbola $H: x y=c^{2}$ in two distinct points, $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.
$C\left(x_{0}, y_{0}\right)$ is the mid-point of $A B$.
(i) Find a quadratic equation whose roots are x_{1} and x_{2}.
(ii) Show that the equation of L may be written $\frac{x}{x_{0}}+\frac{y}{y_{0}}=2$.
(iii) A line M (other than an asymptote) passes through the centre of a rectangular hyperbola. This line bisects all chords parallel to a certain direction. What is the direction of these chords in terms of the direction of M ?

End of Question 5

(a) $\quad I_{n}=\int_{0}^{1} x^{n} e^{x} d x$
(i) Show that $I_{n}=e-n I_{n-1}$ for $n=1,2,3, \ldots \ldots \ldots$.
(ii) Hence evaluate I_{2}
(b)

NOT TO SCALE

The diagram shows the shaded area A between the smooth curve $y=f(x),-a \leq x \leq a$, and the x-axis. (Note that $f(x) \geq 0$ for $-a \leq x \leq a$ and $f(-a)=f(a)=0$). The area A is rotated about the line $x=-s$ (where $s>a$) to generate the volume V. This volume is to be found by slicing A into thin vertical strips, rotating these to obtain cylindrical shells, and adding the shells. Two typical strips of width δt whose centre lines are distance t from the y-axis are shown.
(i) Show that the indicated strips generate shells of approximate volume $2 \pi f(-t)(s-t) \delta t$ and $2 \pi f(t)(s+t) \delta t$ respectively.
(ii) Assuming that $f(x)$ is an even function, show that $V=2 \pi s A$.

Question 6 (continued)

Assuming the result of part (ii), solve the following problems.
(iii) A doughnut shape is formed by rotating a circular disc of radius r about an axis in its own plane at a distance of $s(s>r)$ from the centre of the disc. Find the volume of the doughnut.
(iv) The shape of a certain party jelly can be represented by rotating the area between the curve $y=\sin x, 0 \leq x \leq \pi$, and the x-axis about the line $x=-\pi / 4$. Find the volume generated.
(c) (i) By considering $\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$ show that the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$ units ${ }^{2}$.

A flag pole of height d metres is constructed on an elliptical base where the length of the major axis is twice the length of the minor axis. The pole tapers to a circular cross section whose radius is half that of the semi-minor axis. Let the radius of this circle be r metres.
(ii) Show that the area of the elliptical cross section h metres above the ground is given by $\frac{\pi r^{2}}{d^{2}}\left(3 h^{2}-10 h d+8 d^{2}\right)$ square metres.
(iii) Calculate the volume of the flag pole in terms of r and d.

End of Question 6

Question 7 (15 marks) [START A NEW PAGE]

NOT TO SCALE

Consider the graph of the function $y=\sqrt{x}$.
(i) Show that this curve is increasing for all $x>0$.
(ii) Explain why $\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n} \geq \int_{0}^{n} \sqrt{x} d x$.
(iii) Hence show $\sqrt{1}+\sqrt{2}+\ldots \ldots+\sqrt{n} \geq \frac{2}{3} n \sqrt{n}$.
(iv) By squaring both sides, show that

$$
(4 k+3) \sqrt{k}<(4 k+1) \sqrt{k+1} \text { for } k>0
$$

(v) Use mathematical induction to show that

$$
\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n} \leq \frac{4 n+3}{6} \sqrt{n} \text { for all integers } n \geq 1
$$

(vi) Hence, estimate $\sqrt{1}+\sqrt{2}+\ldots+\sqrt{10000}$ to the nearest hundred.

Question 7 (continued)
(b) Let $q=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$

The complex number $\alpha=q+q^{2}+q^{4} \quad$ is a root of the quadratic equation
$x^{2}+a x+b=0$, where a and b are real.
(i) Prove that $1+q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}=0$.
(ii) The second root of the quadratic equation is β. Express β in terms of positive powers of q.
(iv) Deduce:

$$
\sin \frac{\pi}{7}-\sin \frac{2 \pi}{7}-\sin \frac{3 \pi}{7}=\frac{-\sqrt{7}}{2}
$$

End of Question 7

(a) The body of mass one kilogram is projected vertically upwards from the ground at a speed of 20 metres per second. The particle is under the effect of both gravity and a resistance which, at any time, has a magnitude of $\frac{1}{40} v^{2}$, where v is the magnitude of the particle's velocity at that time.

In the following questions take the acceleration due to gravity to be 10 metres per second per second.
While the body is travelling upwards the equation of motion is: $\bar{x}=-\left(10+\frac{1}{40} v^{2}\right)$
(i) Taking $x=v \frac{d v}{d x}$, calculate the greatest height reached by the particle.
(ii) Taking $\bar{x}=\frac{d v}{d t}$, calculate the time taken to reach this greatest height.

Having reached its greatest height the particle falls to its starting point. The particle is still under the effect of both gravity and a resistance which, at any time, has a magnitude of $\frac{1}{40} v^{2}$.
(iii) Write down the equation of motion of the particle as it falls.
(iv) Find the speed of the particle when it returns to its starting point.
(b) Two stones are thrown simultaneously from the same point in the same direction and with the same non-zero angle of projection (upward inclination to the horizontal), α, but with different velocities V_{1} and V_{2} metres per second where $V_{1}<V_{2}$.

The slower stone hits the ground at a point P on the same level as the point of projection. At that instant the faster stone just clears a wall of height h metres above the level of projection and its (downward) path makes an angle β with the horizontal.
(i) Show that, while both stones are in flight, the line joining them has an inclination to the horizontal which is independent of time.
(ii) Hence, express the horizontal distance from P to the foot of the wall in the terms of h and α.
(iii) Show that $V_{2}(\tan \alpha+\tan \beta)=2 V_{1} \tan \alpha$, and deduce that, if $\beta=\frac{1}{2} \alpha$, then $\mathrm{V}_{1}<\frac{3}{4} V_{2}$.

End of Paper

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

2010 Extension 2 Trial MSC-Barher college
$\theta(a)$

$$
\begin{aligned}
\int x^{2} \ln x d x & =\frac{x^{3}}{3} \ln x-\int \frac{x^{3}}{3} \times \frac{1}{x} d x \\
& =\frac{x^{3} \ln x}{3}-\int \frac{x^{2}}{3} d x \\
& =\frac{x^{3} \ln x}{3}-\frac{x^{3}}{9}+c
\end{aligned}
$$

(ii) $\int \frac{x^{2}+6}{x^{2}+x-6} d x=\int 1+\frac{12-x}{x^{2}+x-6} d x$

Find A, B such that $\frac{12-x}{x^{2}+x-6}=\frac{A}{x+3}+\frac{B}{x-2}$

$$
\therefore 12-x \equiv A(x-2)+B(x+3)
$$

(b) $\begin{aligned} \int \frac{\cos ^{2} x}{\sin ^{2} x} d x=\int \cot ^{2} x d x & =\int \operatorname{cosec}^{2} x-1 d x \\ & =-\cot x-x+c\end{aligned}$

If $x=-3:-5 A=15 \quad \therefore A=-3$
If $x=2: \quad 5 B=10 \quad \therefore B=2$

$$
=-\cot x-x+c
$$

$$
\because \int 1-\frac{3}{x+3}+\frac{2}{x-2} d x
$$

(C) $\int \frac{\cos ^{2} x \cos x}{\sin ^{2} x} d x=\int \frac{\cos x-\sin ^{2} x \cos x}{\sin ^{2} x} d x$

$$
=x-3 \ln |x+3|+2 \ln |x-2|+c
$$

$$
=\int \frac{\cos x}{\sin ^{2} x} d x-\int \cos x d x
$$

(2)
(a) (i)

$$
=\int \cos x(\sin x)^{-2} d x-\sin x+c
$$

(i) $\frac{18+4 i}{3-i} \times \frac{3+i}{3+i}=\frac{50+30}{10}=5+3 i$

$$
=-\frac{1}{\sin x}-\sin x+C
$$

(ii) $\int_{3}^{\sqrt{34}} \quad \therefore\left|\frac{z}{w}\right|=\sqrt{34}, \arg \left(\frac{z}{w}\right)=\tan ^{-1} \frac{3}{5}$
(d)

$$
\begin{aligned}
& \sin x \\
& t=\tan \frac{\theta}{2} \quad \frac{d t}{d \theta}=\frac{1}{2} \sec ^{2} \frac{\theta}{2}=\frac{1}{2}\left(1+\tan ^{2}\right. \\
& \therefore 2 d t=\left(11 t^{2}\right) d \theta, \frac{1+t^{2}}{2} \\
& \therefore d \theta=\frac{2 d t}{1+t^{2}}, 1+t^{2} / \theta t \\
& \text { when } \theta=0, t=0 \\
& \theta=\frac{\pi}{2}, t=\tan \frac{\pi}{4}=1 \quad
\end{aligned}
$$

(b) $\quad \therefore \quad 4$

$$
\begin{aligned}
& \therefore \int_{0}^{1} \frac{2 d t}{\left(1+t^{2}\right)\left(3-\frac{1-t^{2}}{1+t^{2}}\right)} \\
& =2 \int_{0}^{1} \frac{d t}{3+3 t^{2}-1+t^{2}} \\
& =2 \int_{0}^{1} \frac{d t}{2+4 t^{2}}=\int_{0}^{1} \frac{d t}{1+2 t^{2}}=\frac{1}{2} \int_{0}^{1} \frac{d t}{\frac{1}{2}+t^{2}} \\
& =\frac{1}{2} \frac{1}{\frac{1}{\sqrt{2}}}\left[\tan ^{-1} \frac{t}{\frac{1}{\sqrt{2}}}\right]_{0}^{1}=\frac{1}{\sqrt{2}}\left(\tan ^{-1} \sqrt{2}\right) \therefore(c
\end{aligned}
$$

(c) $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i=\operatorname{cis} \frac{\pi}{4}$

(e) (i)

$$
\left(x^{2}+x-6\right) 1+12-x=x^{2}+6
$$

\therefore Remaiveler is $12-x$

$$
\begin{align*}
& \text { (e) (i) } \\
& z^{3}=1 \\
& z^{3}=\operatorname{cis}(0+2 k \pi) \tag{ii}\\
& \text { or }(z-1)\left(z^{2}+z+1\right)=0 \\
& z=i \operatorname{lin} \frac{2 k}{3} \\
& \left.\begin{array}{l}
k=0:, z=1 \\
k=1: z=\sin \frac{2 \pi}{3}
\end{array}\right\}\left\{\begin{array}{l}
z=1, \frac{-1 \pm i \sqrt{3}}{2}
\end{array}\right. \\
& k=-1: z=\operatorname{cis}-\frac{2 \text { 价 }}{3}
\end{align*}
$$

(iii)
(3) (a)
(b)

(ii) If λ is unreal, λ satenfier $\lambda^{2}+\lambda+1=0$

$$
\therefore \lambda^{2}=-\lambda-1=-(\lambda+1)
$$

$$
\begin{aligned}
& (1+\lambda)^{6}=\left(-\lambda^{2}\right)^{6}=\lambda^{12}=\left(\lambda^{3}\right)^{4} \\
& \text { Now } \lambda^{3}=1 \quad \therefore(1+\lambda)^{6}=1^{4}=1 \quad \text { (iv) }
\end{aligned}
$$

$$
\begin{aligned}
x=\frac{y \pm \sqrt{y^{2}-4}}{2} \quad \therefore \begin{array}{l}
y^{2}-4 \geqslant 0 \\
(y-2)(y+2) \geqslant 0 \\
\therefore \quad \\
\\
\\
\\
\end{array} \quad \text { ie }|y| \geqslant 2 \text { or } y \leq-2
\end{aligned}
$$

(i)

$$
\begin{aligned}
& y=x+\frac{1}{x} \\
& x y=x^{2}+1
\end{aligned}
$$

$x^{2}-1 x y+1=0$ ie same graph on in (1)
Thus $y= \pm 2$ ase tuming paints
If $y=2,2=x+\frac{1}{x}$
(V)

$$
\therefore M \operatorname{Min} T P(1,2)
$$

$$
\text { If } y=-2,-2=x+\frac{1}{x}
$$

$$
\because \text { Max TP }(-1,-2)
$$

Asyptate $x=0$
As $x \rightarrow \pm \infty, y \rightarrow \pm x \quad \therefore$ Asyiptote $y=x$

$$
\begin{gathered}
x^{2}-2 x+1=0 \\
(x-1)^{2}=0 \\
x=1 \\
x^{2}+2 x+1=0 \\
(x+1)^{2}=0 \\
x=-1
\end{gathered}
$$

$$
\begin{aligned}
& (n) \\
& \text { (c)(i) } \frac{d T}{\left.e^{2}\right)} \\
& \quad \text { Now } A e^{-k t}=k A e^{-k t} \\
& \therefore \frac{d T}{d t}
\end{aligned}=k(10000-T)
$$

(4) (a)(i) Let $f(x)=(x-k)^{2} g(x)$
where $g(k) \neq 0$

$$
\begin{aligned}
\therefore f^{\prime}(x) & =2(x-k) g(x)+g^{\prime}(x)(x-k)^{2} \\
& =(x-k)\left[2 g(x)+g^{\prime}(x)(x-k)\right] \\
\therefore f^{\prime}(k) & =0
\end{aligned}
$$

(ii) From(i), $P(1)=0$ and $P^{\prime}(1)=0$

$$
\begin{aligned}
\therefore a+b+1=0 \quad & \text { and } 7 a+6 b=0 \\
b=-a-1 \quad & \rightarrow 7 a+6(-a-1)=0 \\
& \therefore \quad a=6 \\
& \quad b=-7
\end{aligned}
$$

(iii) $\left.\left.E^{\prime}(x)=1+2+\frac{x^{2}}{2}+\frac{x^{3}}{6}\right\} \begin{array}{l}\text { Let } E(\alpha)=0 \\ \therefore E(x)=E^{\prime}(x)+\frac{x^{4}}{24}\end{array}\right\} \quad$ ie α i root

Now if $E(x)=E^{\prime}(\infty)$ then α is lou the root
For this to be true, $\frac{\alpha^{4}}{24}=0$ ie $\alpha=0$

(ii) Polynomial, with turning pains of pporite sing of y-values must have 3 distinct roots. since product of roots is 1 , They're either all tue or arty ore is prese. Since x value of ore $T-P$ is -re, mut be at learnt one -re \& then 2 mut the -re.

Gut if $\alpha=0, E(\alpha)=1$ which is a contradictor.
$\therefore E(x)=0$ han so double root.
(b)
(i) Let $y=x^{2}$

$$
\begin{gathered}
\therefore y \sqrt{y}+7 y+13=0 \\
y \sqrt{y}=-7 y-13 \\
y^{3}=47 y^{2}+182 y+169 \\
\therefore x^{3}-49 x^{2}-182 x-169=0 \\
\text { (ii) Sum of roo s of }=49
\end{gathered}
$$

(c)

$$
\begin{aligned}
& \text { (i) } p(0)=-1 \\
& p(1)=3 x^{2}-2 x-5=0 \quad \text { stat et, } \\
& \quad(3 x-5)(x+1)=0 \\
& x=\frac{5}{3} \text { or }-1 \\
& \text { Stat pt: }\left(\frac{5}{3},-7 \frac{13}{27}\right),(-1,2) \\
& \therefore p^{\prime \prime}(x)=6 x-2 \\
& p^{\prime \prime}\left(\frac{5}{3}\right)=8>0 \quad \therefore \operatorname{MinTP}\left(\frac{5}{3},-7 \frac{13}{27}\right) \\
& p^{\prime \prime}(-1)=-8<0 \quad \therefore \operatorname{Max} T P(-1,2)
\end{aligned}
$$

(iv) Any $x>\frac{5}{3}$ with converge an the positive root since any tangent will gerecte x-value $>$ the positive rest due to tire cancounty
(a)

$$
\begin{align*}
& \text { (i) } a=2, \quad b=\sqrt{3} \tag{5}\\
& b^{2}=a^{2}\left(1-e^{2}\right) \quad \therefore 3=4\left(1-e^{2}\right) \\
& e^{2}=\frac{1}{4}, \therefore e=\frac{1}{2}
\end{align*}
$$

\therefore Farci $(\pm 1,0)$
Direelrices: $x= \pm 4$

$$
\begin{aligned}
& M_{Q S}=\frac{y_{1}}{x_{1}-1} \\
& M_{M S}=\frac{\frac{3\left(1-x_{1}\right)}{y_{1}}}{4-1}=\frac{1-x_{1}}{y_{1}}
\end{aligned}
$$

The facm-directrix de $(\bar{n}$
says that $P S+P S^{\prime}=e P N+e P N^{\prime}$

$$
\begin{aligned}
& =e\left(P N+P N^{\prime}\right)=e\left(2 \frac{a}{e}\right)=2 a \\
& \therefore P S+P S^{\prime}=2(2)=4 \text { unts }
\end{aligned}
$$

Now $M_{Q S} \times M_{M S}=\frac{y_{1}}{x_{1}-1} \times \frac{1-x_{1}}{y_{1}}=-1$
\therefore as h MS $\#$ QM subtend e
a right-angle at the tie foci
(iii) The force in gin is clearly the positive foci splice if $\alpha M \operatorname{mos}(s a y)$ The horizontal tangent, $\angle Q S^{\prime} M$ would te acute. Thin the diagram:.' (ii) Since C is midpt $A B$,

$x=4$

$$
\frac{x_{1}+x_{2}}{2}=x_{0}
$$

$$
\text { But we know that } x_{1}+x_{2}=\frac{1}{a}
$$

$$
\therefore \frac{\frac{1}{a}}{2}=x_{0}
$$

$$
\therefore \frac{a}{2}=2 x_{0} \quad a=\frac{1}{2 x_{0}}
$$

Repeating all the steps above for y
given us $b=\frac{1}{2 y_{0}}$
Gradient OM: $\quad \frac{x}{2}+\frac{2 y}{3} \frac{d y}{d x}=0$

$$
\frac{d y}{d x}=\frac{-3 x}{4 y} \therefore M_{Q M}=\frac{-3 x_{1}}{4 y_{1}}
$$

\therefore Live L: $\frac{x}{2 x_{0}}+\frac{y}{2 y_{0}}=1$

$$
\therefore \frac{x}{x_{0}}+\frac{y}{y_{0}}=2
$$

$$
E_{l} \pi \partial m:
$$

$$
\begin{aligned}
M: y-y_{1} & =-\frac{3 x_{1}}{4 y_{1}}\left(x-x_{1}\right) \\
4 y y_{1}-4 y_{1}^{2} & =-3 x x_{1}+3 x_{1}^{2} \\
3 x_{1}^{2}+4 y_{1}^{2} & =3 x x_{1}+4 y y_{1} \\
12 & =3 x x_{1}+4 y y_{1} \\
\therefore 1 & =\frac{x x_{1}}{4}+\frac{y y_{1}}{3}
\end{aligned}
$$

Cares M: when $x=4_{1} \quad 1=x_{1}+\frac{y_{2} y_{1}}{3}$

$$
\begin{aligned}
& 3=3 x_{1}+y_{2} y_{1} \\
& \therefore y_{2}=\frac{3\left(1-x_{1}\right)}{y_{1}} \quad \therefore M\left(4, \frac{3\left(1-x_{1}\right)}{y_{1}}\right)
\end{aligned}
$$

(iii) Certs of rectangular hypernda in $(0,0)$
\therefore Eqin of line M is $y=k x$
If this lie e bisect, the chords (line L)
let it porn though the nidpt of the
end of the chords, ie through $\left(x_{0}, y_{0}\right)$
$\therefore y_{0}=k x_{0} \quad \therefore k=\frac{y_{0}}{x_{0}} \quad \therefore$ gradient of
Now gradient of line $L: \frac{y}{y_{0}}=\frac{-x}{x_{0}}+2$ $y=\frac{-y_{0}}{x_{0}} x+2 y_{0}$ which han gradient $\frac{y_{0}}{x_{0}}$
\therefore M and the chords have the same gradient

$$
\begin{aligned}
& \text { (6) (x) (i) } I_{n}=\left[e^{x} x^{n}\right]_{0}^{1}-\int_{0}^{1} e^{x} n x^{n-1} d x \\
& I_{n}=(e-0)-n \int_{0}^{1} x^{n-1} e^{n} d x \\
& I_{n}=e-n I_{n-1} \\
& \text { (ii) } I_{2}=e-2 I_{1} \\
& I_{1}=e-I_{0} \\
& I_{0}=\int_{0}^{1} e^{x} d x=\left[e^{x}\right]_{0}^{1}=e-1 \\
& \therefore I_{1}=e-(e-1)=1 \\
& \therefore I_{2}=e-2(1)=e-2
\end{aligned}
$$

(iii) $V=2 \pi s A$ where $A=\pi r^{2}$

$$
\therefore V=2 \pi s\left(\pi r^{1}\right)=2 \pi^{2} r^{2} s u^{3}
$$

(iv):
\vdots
\vdots

S is the distance for $-\frac{\pi}{4} d_{0}$ axis of syumet of $y=\sin x$ fir $0 \leq x \leq \pi$,

$$
x=-\frac{\pi}{4}
$$ ie distance $\operatorname{son}-\frac{\pi}{4}+\frac{\pi}{2}$

$$
\therefore S=\frac{3 \pi}{4}
$$

Now $A=\int_{0}^{\pi} \sin x d x$

$$
\begin{aligned}
& =[-\cos x]_{0}^{\pi} \\
& =1--1=2 \\
\therefore V & =2 \pi\left(\frac{3 \pi}{4}\right)(2)=3 \pi^{2} u^{3}
\end{aligned}
$$

(c) (i)

$$
a^{\prime} y=\sqrt{a^{2}-x^{2}}
$$

(b) Remember a, s, t are all positive quantities.

$$
\delta V=2 \pi(s t t) \delta t f(t)
$$

$$
=2 \pi f(t)(s+t) \delta t
$$

(ii)

$$
\begin{aligned}
& \text { i) } V=\sum_{t=0}^{a} 2 \pi f(-t)(5-t) \delta t+\sum_{t=0}^{a} 2 \pi f(t)(\\
& =2 \pi \int_{0}^{a} f(-t)(5-t) d t+2 \pi \int_{0}^{a} f(t)(5+t) d t \\
& =2 \pi \int_{0}^{a} f(-t)(5-t)+f(t)(5+t) d t
\end{aligned}
$$

Now $f(-t)=f(t)$ since $f(x)$ even function

$$
\begin{aligned}
\therefore & =2 \pi \int_{0}^{a} f(t)[s-t)+f(t)(s+t) d t \\
& =2 \pi \int_{0}^{a} f(t)[s-t+s+t] d t \\
& =2 \pi \int_{0}^{a} 2 s f(t) d t \quad
\end{aligned}
$$

For the ellipse:

$$
\begin{aligned}
\frac{y^{2}}{b^{2}} & =1-\frac{x^{2}}{a^{2}} \\
y^{2} & =b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) \\
y^{2} & =\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right) \\
y & = \pm \frac{b}{a} \sqrt{a^{2}-x^{2}} \\
\text { Area enclosed } & =4 \frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} b \\
& =4 \frac{b}{a} \frac{\pi a^{2}}{4}=\pi a b x^{2}
\end{aligned}
$$

(ii) circle

Ellipse
Major axis:

Mine axis:

(7) (a) (i) $\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}$. For $x>0, \frac{d y}{d x}>0$
\therefore cure increasing for $x>0$
(ii) Area of rectangles \geqslant Area under curve

$$
\begin{aligned}
& \therefore 1(\sqrt{1})+1(\sqrt{2})+1(\sqrt{3})+\cdots+1(\sqrt{n-1})+1(\sqrt{n}) \\
& \geqslant \int_{0}^{n} \sqrt{x} d x \\
& \therefore \sqrt{1}+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n-1}+\sqrt{n}>\int_{0}^{n} \sqrt{x} d x
\end{aligned}
$$

(iii) LHS $\geqslant\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{n}$

$$
\begin{aligned}
& L H S \geqslant \frac{2}{3} n^{\frac{3}{2}} \\
& L H S \geqslant \frac{2}{3} n n^{\frac{1}{2}} \\
& \text { LH } \geqslant \frac{2}{3} n \sqrt{n}
\end{aligned}
$$

(iv) Since $k>0$, every quarbly is tue, Thus squair, both sides doe, not impact inequality sign
$\left[\begin{array}{l}\text { ie }-4<3 \text { but }(-4)^{2}<3^{2} \\ \text { but in this case not an issue }\end{array}\right]$
\therefore Area $=\pi a b=\pi r^{2}\left(4-\frac{3 h}{d}\right)\left(2-\frac{h}{d}\right)$

$$
=\pi r^{2}\left(\frac{4 d-3 h}{d}\right)\left(\frac{2 d-h}{d}\right)
$$

$$
=\frac{\pi r^{2}}{d^{2}}\left(8 d^{2}-4 d h-6 d h+3 h^{2}\right)
$$

$$
=\frac{\pi r^{2}}{d^{2}}\left(3 h^{2}-10 h d+8 d^{2}\right)
$$

$$
\text { (iii) } \begin{aligned}
\Delta V & =A \Delta h \\
V & =\sum_{h=0}^{d} A \Delta h \\
V & =\frac{\pi r^{2}}{d^{2}} \int_{0}^{d}\left(3 h^{2}-10 h d+8 d^{2}\right) d h \\
V & =\frac{\pi r^{2}}{d^{2}}\left[h^{3}-5 h^{2} d+8 d^{2} h\right]_{0}^{d} \\
& =\frac{\pi r^{2}}{d^{2}}\left[d^{3}-5 d^{3}+8 d^{3}\right]=4 \pi r^{2} d
\end{aligned}
$$

$$
\begin{aligned}
& L H S=\left(16 k^{2}+24 k+9\right) k \\
&=16 k^{3}+24 k^{2}+9 k \\
& \text { RMS }=\left(16 k^{2}+8 k+1\right)(k+1) \\
&=16 k^{3}+16 k^{2}+8 k^{2}+8 k+k+1 \\
&=16 k^{3}+24 k^{2}+9 k+1 \\
& \therefore 14 S<2+1 \\
&\left.h^{2}\right) \\
& \therefore(4 k+3) \sqrt{k}<(4 k+1) \sqrt{k+1} \\
& \quad \text { for } k>0
\end{aligned}
$$

(v) Let $n=1$,

$$
\begin{aligned}
& \text { CHS }=\sqrt{1}=1 \text { RMS }=4\left(\frac{4)+3}{6} \sqrt{1}\right. \\
&=\frac{7}{6} \times 1=\frac{7}{6}>1 \\
& \therefore \text { True for } n=1
\end{aligned}
$$

Let k be an integer such that

$$
\sqrt{1}+\sqrt{2}+\cdots+\sqrt{k} \leq \frac{4 k+3}{6} \sqrt{k}
$$

Prove that $k+1$ is an integer such that
froof:LHS $\leq \frac{(4 k+3)}{6} \sqrt{k}+\sqrt{k+1}$ (from anumption)

$$
\begin{aligned}
\frac{6}{6} & \leqslant \frac{(4 k+3) \sqrt{k}+6 \sqrt{k+1}}{6} \\
& \leqslant \frac{\sqrt{k+1}(4 k+1+6)}{6} \\
& \leqslant \frac{\sqrt{k+1}(4 k+7)}{6} \\
& \leqslant \text { RHS }
\end{aligned}
$$

\therefore If true for integer k, is also true to integer $k+1$.
\therefore If true for $n=1$, is the for $n=2$ if true for $n=2$, is true for $n=3$ and so on for all positive integer n
(ii) From (iii) $4(v), \frac{2}{3} \sqrt{n} \leq \sqrt{1}+\sqrt{2}+\cdots+\sqrt{n} \leq \frac{4 n+3}{6} \sqrt{n}$

$$
\begin{aligned}
& \therefore \quad \frac{20000}{3}(100) \leqslant \sqrt{1}+\sqrt{2}+\cdots+\sqrt{10000} \leqslant \frac{40003}{6} \text { (100) } \\
& \therefore \quad 666,666.6 \leqslant \sqrt{1}+\sqrt{2}+\cdots+\sqrt{10000} \leqslant 666716.6
\end{aligned}
$$

$\therefore \sqrt{1}+\sqrt{2}+\ldots+\sqrt{10000} \geqslant 666,700$ (rearect hundred)
(b) (i)Solve $x^{7}=1$
$x=[\operatorname{cis}(0+2 k \pi)]^{\frac{1}{7}}$

$$
x=\sin \frac{2 k \pi}{7} . I f k=1
$$

$\therefore q$ is a complex $7^{\text {th }}$ roast of unity
Alternatively, to solve $x^{7}=1$,

$$
x^{7}-1=0 \quad . \quad(x-1)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)=0
$$

$x=1$ is the real solis $* q \not p 1$
$\therefore q$ is a sots to the $2^{\text {nd }}$ bracket,
ic $1+q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}=0$
(ii) Since a and b are real, roots are in

$$
\begin{aligned}
& \alpha \beta=b \quad \therefore\left(q+q^{2}+q^{4}\right)\left(q^{6}+q^{5}+q^{3}\right)=b \\
& q^{7}+q^{6}+q^{4}+q^{8}+q^{7}+q^{5}+q^{10}+q^{9}+q^{7}=b \\
& 1+1+1+q^{6}+q^{4}+q+q^{5}+q^{3}+q^{2}=b \\
& 1 \text { and } q^{8}=q \text { etc? }
\end{aligned}
$$

[since $q^{7}=1$ and $q^{8}=q$ etc]

$$
\therefore 3+-1=6 \quad \therefore b=2
$$

(iv) $x^{2}+x+2=0$ has roots
$x=\frac{-1}{2} \pm \frac{i \sqrt{7}}{2}$. Equating innaginoog pars,

$$
\frac{\sqrt{7}}{2}=\operatorname{Imag}\left(\operatorname{cis} \frac{2 \pi}{7}+\operatorname{cis} \frac{4 \pi}{7}+\operatorname{is} \frac{8 \pi}{7}\right)
$$

$$
\sin \ln \operatorname{cog}\left(\sin \frac{6 \pi}{7}+\cos \frac{10 \pi}{7}+\sin \frac{12 \pi}{7}\right)
$$

$$
\begin{aligned}
& +q^{4} \quad \therefore \frac{\sqrt{7}}{2}=\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin \frac{8 \pi}{7} \\
& \sin \sin \frac{6 \pi}{7}+\sin \frac{10 \pi}{7}+\sin \frac{12 \pi}{7} \\
& \therefore \frac{\sqrt{7}}{2}=\frac{\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}-\sin \frac{\pi}{7}}{+ \text { or }} \text { or } \frac{\sin \frac{\pi}{7}-\sin \frac{3 \pi}{7}-\sin \frac{2 \pi}{7}}{-v e} \\
& \therefore \frac{\sqrt{7}}{2}=\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}-\sin \frac{\pi}{7} \\
& \therefore \sin \frac{\pi}{7}-\sin \frac{2 \pi}{7}-\sin \frac{3 \pi}{7}=\frac{-\sqrt{7}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8)(a)(i) } \frac{d v}{d x}=-\left(\frac{400+v^{2}}{40 v}\right) \\
& \therefore \frac{d x}{d v}=\frac{-40 v}{400+v^{2}}=(-20) \frac{2 v}{400+v^{2}} \\
& \therefore x=-20 \ln \left(400+v^{2}\right)+c \\
& \text { when } x=0, v=20 \quad \therefore 0=-20 \ln 800+c \\
& c=20 \ln 800 \\
& \therefore x=20 \ln \left(\frac{800}{400+v^{2}}\right)
\end{aligned}
$$

Max height when $v=0 \therefore=20 l_{n} 2$ elves
(ii) $\frac{d t}{d v}=\frac{-40}{400+v^{2}}$
$\therefore t=\frac{-40}{20} \tan ^{-1} \frac{v}{20}+c \quad \therefore A=c-2 \tan ^{-1} \frac{v}{20}$
(i) Slow store Foot stare
$\left\{\begin{array}{l}\text { tue } \\ \text { direct in }\end{array}\right.$

$$
\left\{\begin{array}{ll}
x_{1}=v_{1} t \cos \alpha & x_{v_{2}}=v_{2} t \cos \alpha \\
\text { the } & y_{v_{1}}=v_{1} t \sin \theta-\frac{t^{2}}{2}
\end{array} y_{v_{2}}=v_{2} t \sin \alpha-\frac{g t^{2}}{2}\right.
$$

$$
\begin{aligned}
& \text { Cadien belween }=\frac{y v_{2}-y_{v_{1}}}{x_{v_{2}}-x_{v_{1}}}=\frac{t \sin \alpha\left(v_{2}-v_{1}\right)}{t \cos \alpha\left(v_{2}-v_{1}\right)}
\end{aligned}
$$

$=\tan \alpha \therefore$ independent of time

$$
\begin{aligned}
& \tan \alpha=\frac{h}{\omega} \\
& \therefore \omega=h \cot \alpha
\end{aligned}
$$

when $v=20, t=0 \quad \therefore \quad 0=c-2 \tan ^{-1} 1$

$$
\begin{aligned}
& \text { (iii) Fast stane: } \tan \left(\frac{\dot{y}}{*}\right) \\
& \tan \left(\frac{v_{2} \sin \alpha-g t}{v_{2} \cos \alpha}\right)=-\beta
\end{aligned}
$$

$$
\therefore t=\frac{\pi}{2}-2 \tan ^{-1} \frac{6}{20}
$$

Max height when $v=0 \therefore \frac{\pi}{2}$ seconds
(iii) $\quad x=10-\frac{1}{40} v^{2}$
(iv)

$$
\frac{v d v}{d x}=\frac{400-v^{2}}{40} \quad \therefore \frac{d x}{d v}=\frac{40 v}{400-v^{2}}
$$

$$
\therefore \tan (-\beta)=\frac{v_{2} \sin \alpha-g t}{v_{2} \cos \alpha}
$$

Af this moment, slow store hits ground

$$
\therefore 0=v_{1} t \sin a-\frac{g t^{2}}{2}=t\left(v_{1} \sin a-\frac{g t}{2}\right)
$$

$$
\therefore t=\nless \operatorname{er} \frac{2 v_{1} \sin \theta}{9}
$$

$$
\therefore \tan (-\beta)=\frac{v_{2} \sin \alpha-2 v_{1} \sin \alpha}{v_{2} \cos \alpha}
$$

$$
\begin{aligned}
& \frac{d x}{d v}=(-20) \frac{-2 v}{400-v^{2}} \\
& \therefore x=-20 \ln \left(400-v^{2}\right)+c
\end{aligned}
$$

When $x=0, v=0 \quad \therefore 0=-20 \ln \left(480-0^{2}\right)+c$

$$
\begin{aligned}
& \therefore c=20 \ln 400 \\
& \therefore x=20 \ln \left(\frac{400}{400-v^{2}}\right)
\end{aligned}
$$

$\left\{\begin{array}{l}\text { tue } \quad \tan (-\beta)=\frac{\sin \alpha\left(v_{2}-2 v_{1}\right)}{v_{2} \cos \alpha} \\ \text { direction }-\tan \beta=\left(v_{2}-2 v_{1}\right)\end{array}\right.$
direction $-\tan \beta=\left(\frac{v_{2}-2 v_{1}}{v_{2}}\right) \tan \alpha$

$$
v_{2}(\tan \alpha+\tan \beta)=2 v_{1} \tan \alpha
$$

At starting paint, $x=20 \ln 2$

$$
\begin{aligned}
\therefore \quad 2=\frac{400}{400-v^{2}} \quad \therefore 400-v^{2} & =200 \\
v^{2} & =200 \\
v & =10 \sqrt{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\therefore-v_{2} \tan \beta=v_{2} \tan \alpha-2 v_{1} \tan \alpha
$$

Now if $2 \beta=\alpha, v_{2}(\tan 2 \beta+\tan \beta)=2 v_{1} \tan 2 \beta$

$$
\begin{aligned}
& V_{2}\left[\frac{2 \tan \beta}{1-\tan ^{2} \beta}+\tan \beta\right]=\frac{\left(2 v_{1}\right) 2 \tan \beta}{1-\tan ^{2} \beta}\left[x 1-\tan ^{2} \beta\right] \\
& \therefore V_{2}\left(2 \tan \beta+\tan \beta-\tan ^{3} \beta\right)=4 v_{1} \tan \beta
\end{aligned}
$$

Since $\tan \beta \neq 0, \div \tan \beta \quad \therefore V_{2}\left(3-\tan ^{2} \beta\right)=4 v_{1}$
(b)

$$
3 v_{2}-v_{2} \tan ^{2} \beta=4 v_{1}
$$

$\tan ^{2} \beta=\frac{3 v_{2}-4 v_{1}}{v_{2}} \quad$. Now since $\tan ^{2} \beta>0$,

$$
\begin{aligned}
& 3 v_{2}-4 v_{1}>0 \\
& \therefore 3 v_{2}>4 v_{1} \quad \text { or } \quad v_{1}<\frac{3}{4} v_{2}
\end{aligned}
$$

