

Student Number

Mathematics

 Extension 2
2015
 TRIAL
 HIGHER SCHOOL CERTIFICATE

AM Friday 31 July

Section I - Multiple Choice

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample
$2+4=$
(A) $2 \quad$ (B) 6
(C) 8
(D) 9
(A) \bigcirc
(B) \bigcirc
(C) \bigcirc
(D) \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
(A)
(B)
(C) \bigcirc
(D) \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows.
(A)
(B)

(C)
\bigcirc
(D) \bigcirc

$\underset{\text { Here }}{\text { Start }} \rightarrow$	1.	A \bigcirc	B \bigcirc	CO	D \bigcirc
	2.	A	B \bigcirc	CO	D \bigcirc
	3.	A 0	B \bigcirc	CO	D \bigcirc
	4.	A	B \bigcirc	CO	D \bigcirc
	5.	A	B \bigcirc	CO	D \bigcirc
	6.	A	B \bigcirc	CO	D \bigcirc
	7.	A	B \bigcirc	CO	D \bigcirc
	8.	A	B \bigcirc	CO	DO
	9.	A	B \bigcirc	CO	D \bigcirc
	10.	A 0	B \bigcirc	CO	D \bigcirc

BLANK PAGE

Mathematics
 Extension 2

Staff Involved:

- BHC*
- RMH*
- KJL
- MRB

Number of copies: 50

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided on page 2
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations

2015 TRIAL HIGHER SCHOOL CERTIFICATE

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0
\end{array}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

Section I - Multiple Choice

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for Questions 1-10.

1. The eccentricity of the ellipse with equation $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
(A) $\frac{9}{25}$
(B) $\frac{4}{5}$
(C) $\frac{3}{5}$
(D) $\frac{\sqrt{41}}{5}$
2. The equation of degree 10 whose roots are the reciprocals of the equation $x^{10}-5 x^{3}+x-4=0$ is
(A) $\quad 4 x^{10}-x^{9}+5 x^{7}-1=0$
(B) $\quad 1-5 x^{7}-x^{9}-4 x^{10}=0$
(C) $\quad 4 x^{10}+x^{9}+5 x^{7}-1=0$
(D) $\quad 4 x^{10}-x^{9}-5 x^{7}+1=0$
3. $P(x)=x^{4}+2 x^{3}+9 x^{2}+8 x+20$ has a zero $x=2 i-1$.

What is the value of $P(\overline{2 i-1})$?
(A) $-10+12 i$
(B) $\quad-10-12 i$
(C) $10-12 i$
(D) 0
4. $\int \tan ^{4} x d x$ equals
(A) $\frac{1}{3} \tan ^{3} x+\tan x+x+c$
(B) $\frac{1}{3} \tan ^{3} x-\tan x+x+c$
(C) $\frac{1}{3} \tan ^{3} x-\tan x-x+c$
(D) $\frac{1}{3} \tan ^{3} x+\tan x-x+c$
5. If w is one of the complex roots of $z^{3}=1$, what is the value of $(1-w)\left(1-w^{2}\right)\left(1-w^{4}\right)\left(1-w^{8}\right) ?$
(A) 9
(B) 6
(C) 3
(D) 0
6. The vertices of a conic are $(2,0)$ and $(-2,0)$ and the foci are $(3,0)$ and $(-3,0)$. What is the equation of this conic?
(A) $\frac{x^{2}}{4}+\frac{y^{2}}{5}=1$
(B) $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
(C) $\frac{x^{2}}{4}-\frac{y^{2}}{\sqrt{5}}=1$
(D) $\frac{x^{2}}{4}+\frac{y^{2}}{\sqrt{5}}=1$
7. $\int x e^{-2 x} d x$ equals
(A) $\frac{x}{2} e^{-2 x}-\frac{1}{2} \int e^{-2 x} d x$
(B) $\frac{x}{2} e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x$
(C) $-\frac{x}{2} e^{-2 x}-\frac{1}{2} \int e^{-2 x} d x$
(D) $\quad-\frac{x}{2} e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x$
8. The polynomial $a x^{8}+b x^{7}+2$ is divisible by $(x+1)^{2}$.

What are the values of a and b ?
(A) $\quad a=-14$ and $b=-16$
(B) $\quad a=14$ and $b=-16$
(C) $\quad a=14$ and $b=16$
(D) $\quad a=-14$ and $b=16$
9. A unit circle has its centre at the origin O.

The point z_{1} moves on the circle and $z_{2}=\frac{\sqrt{2}-3 i}{z_{1}}$.
The Cartesian equation of the locus of z_{2} is:
(A) $x^{2}-y^{2}=11$
(B) $x^{2}+y^{2}=11$
(C) $\quad x^{2}+y^{2}=\sqrt{11}$
(D) $\quad x^{2}-y^{2}=\sqrt{11}$
10. All the solutions of the equation $z^{4}=(z-1)^{4}$ are
(A) $z=\frac{1}{2}, \quad z=\frac{i}{-1+i}, \quad z=\frac{i}{1+i}$
(B) $z=\frac{1}{2}, \quad z=\frac{-i}{1+i}, \quad z=\frac{i}{-1+i}$
(C) $z=\frac{1}{2}, \quad z=\frac{2 i}{-1+i}, \quad z=\frac{2 i}{1+i}$
(D) $\quad z=\frac{1}{2}, \quad z=\frac{2 i}{1+i}, \quad z=\frac{-2 i}{1+i}$

End of Section I

Section II

90 marks

Attempt Questions 11-16.
Allow about 2 hours 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Show relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
[Use a SEPARATE writing booklet]
Marks
(a) (i) Find the square root of the complex number $-5+12 i$.

Express your answer in the form $a+i b$.
(ii) Hence, or otherwise, solve $2 z^{2}-(6+i) z+5=0$ for z.

Express your answer in the form $a+i b$.
(b) Prove that $\left|z_{1}-z_{2}\right|^{2}=z_{1} \overline{z_{1}}+z_{2} \overline{z_{2}}-2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)$.
(c) (i) Write down the five roots of $z^{5}=-1$.
(ii) Hence show that

$$
\begin{equation*}
z^{5}+1=(z+1)\left(z^{2}-2 z \cos \frac{\pi}{5}+1\right)\left(z^{2}-2 z \cos \frac{3 \pi}{5}+1\right) \tag{3}
\end{equation*}
$$

(d) (i) If $z=\cos \theta+i \sin \theta$, show that $z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta$
(ii) Hence show that

$$
\begin{equation*}
\sin ^{5} \theta=\frac{1}{16}[\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta] \tag{3}
\end{equation*}
$$

End of Question 11

(a) Use the substitution $5 x-1=u^{2}$ to show that

$$
\int x \sqrt{5 x-1} d x=\frac{2(5 x-1)(15 x+2) \sqrt{5 x-1}}{375}+C
$$

(b) Use an appropriate 't-result' substitution to evaluate

$$
\int_{0}^{\frac{\pi}{4}} \frac{d \theta}{2+\sin 2 \theta}
$$

(c) (i) Show that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
(ii) Hence find $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x} d x}{\sqrt{\sin x}+\sqrt{\cos x}}$.
(d) (i) Let $I_{n}=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{n} x d x$ and show that $I_{n}=\frac{-\sqrt{3}}{n 2^{n}}+\left(\frac{n-1}{n}\right) I_{n-2}$
(ii) Hence find $\int_{0}^{\frac{1}{2}} \frac{x^{3} d x}{\sqrt{1-x^{2}}}$ by letting $x=\cos \theta$.

End of Question 12

(a) The equation $2 x^{3}-5 x^{2}+8 x-3=0$ has roots α, β and γ. Find α, β and γ, given that one of the roots is $\alpha=1-\sqrt{2} i$.
(b) (i) Prove that if the polynomial $P(x)$ has a root of multiplicity m at $x=k$ then $P^{\prime}(x)$ has a root of multiplicity $(m-1)$ at $x=k$.
(ii) If $P(x)=4 x^{3}+15 x^{2}+12 x-4$ has a double zero, find all the zeros and factorise $P(x)$ fully over the real numbers.
(c) The equation $x^{4}+4 x^{3}-3 x^{2}-4 x+2=0$ has roots α, β, γ and δ. Find the equation with roots $\alpha^{2}, \beta^{2}, \gamma^{2}$ and δ^{2}.
(d) One of the roots of the equation $x^{3}+a x^{2}+b x+c=0$ is double the sum of the other two roots. Show that $4 a^{3}-18 a b+27 c=0$.

End of Question 13

(a) (i) For the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$, find the equation of the asymptote with positive gradient.
(ii) If $P\left(x_{1}, y_{1}\right)$ is a point on the hyperbola in the first quadrant, show that the equation of the tangent at P is $9 x x_{1}-4 y y_{1}=36$.
(iii) If this tangent passes through $(1,0)$ find the coordinates of P.
(iv) Let α be the angle between the tangent at P and the asymptote with positive gradient. Draw a diagram indicating the location of α and show that $\alpha=\tan ^{-1}\left[\frac{24-13 \sqrt{3}}{23}\right]$.
(b) (i) Show that the equation $4 x^{2}-y^{2}-24 h x+2 h y-4 a^{2}+35 h^{2}=0$, where h and a are positive constants, represents a hyperbola.
(ii) If the tangent to this hyperbola at the point (p, q) is perpendicular to the straight line $y=\left(e^{2}-1\right) x$, where e is the eccentricity of the hyperbola, show that $16 p+q=49$ h.

Question 14 (continued)
(c) The diagram below shows two points, T_{1} and T_{2}, with parameters t_{1} and t_{2} respectively, on the rectangular hyperbola $x y=c^{2}$.
T is a third point with parameter t on the hyperbola such that $\angle T_{1} T T_{2}$ is a right angle.

Show that the gradient of $T_{1} T$ is $\frac{-1}{t_{1} t}$ and deduce that, since $\angle T_{1} T T_{2}$ is a right-angle, $\quad \mathbf{3}$ $t^{2}=\frac{-1}{t_{1} t_{2}}$.

End of Question 14

(a) Using the method of cylindrical shells, find the volume obtained by revolving the

4 region bounded by the parabola $y=x^{2}+2$, the x-axis, the y-axis and the line $x=2$, about the line $x=2$.
(b) The base of a solid is the ellipse $4 x^{2}+25 y^{2}=100$.

All cross-sections perpendicular to the x-axis are isosceles right triangles (with the smallest side lying in the base).

Find the volume of the solid.
(c) In the figure below, the bisector $A P$ of $\angle B A C$ is extended to meet the circle in M.

(i) Prove that $\triangle A B M\|\| \triangle A P C$.
(ii) Prove that $B P \times P C=P M \times P A$.
(d) Show by mathematical induction that $35^{n}+3 \times 7^{n}+2 \times 5^{n}+6$ is divisible by 12 for all integers $n \geq 0$.

4

End of Question 15

(a)

The diagram shows the graph of $y=f(x)$.
Draw separate one-third page sketches of the graphs of the following:
(i) $\quad y=|f(|x|)|$
(ii) $\quad y=\ln (f(x))$

Question 16 (continued)

(b) A spherical planet of mass m_{1} and radius R has a rocket launched from its surface with an initial speed of V. The mass of the rocket is m_{2} and the distance between the rocket and the centre of the planet is x. The gravitational force, F, acting on the rocket is given by

$$
F=\frac{G m_{1} m_{2}}{x^{2}}
$$

where G is the constant of gravitation on that planet.
Assume that there are no other forces acting on the rocket.
(i) Write down an expression for the acceleration of the rocket in terms of x, taking the positive direction as away from the surface of the planet.
(ii) Find an expression for the velocity v of the rocket in terms of x.
(c) The rise and fall of a tide approximates simple harmonic motion.

In a harbour, low tide is at 7 am and high tide is at $1: 40 \mathrm{pm}$.
The corresponding depths are 20 m and 40 m .
Find the first time after 7am that a ship which requires $(5 \sqrt{3}+30)$ metres of water is able to enter the harbour.
(d) When a polynomial $P(x)$ is divided by $x^{2}-a^{2}$, where $a \neq 0$, the remainder is of the form $p x+q$ where
$p=\frac{1}{2 a}[P(a)-P(-a)]$ and $q=\frac{1}{2}[P(a)+P(-a)]$.
(You do not have to prove these results.)
Find the remainder when $P(x)=x^{n}-a^{n}$, for n a positive integer, is divided by $x^{2}-a^{2}$.

Extension 2 Mathematics 31.7. 15 Solutions
Multiple Choice
QI: $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$

$$
\begin{align*}
b^{2} & =a^{2}\left(1-e^{2}\right) \\
16 & =25\left(1-e^{2}\right) \\
\frac{16}{25} & =1-e^{2} \\
e^{2} & =\frac{9}{25} \tag{B}\\
e & =\frac{3}{5} \tag{c}
\end{align*}
$$

$$
\text { QA. } \begin{aligned}
&=\int \tan ^{4} x d x \\
&=\int\left(\sec ^{2} x-1\right) \cdot \tan ^{2} x d x \\
&=\int \tan ^{2} x \cdot \sec ^{2} x-\tan ^{2} x d x \\
&=\frac{1}{3} \tan ^{3} x-\int\left(\sec ^{2} x-1\right) d x \\
&=\frac{1}{3} \tan ^{3} x-\tan x+x+C
\end{aligned}
$$

Q2:" The Required equation is

$$
\begin{align*}
& \left(\frac{1}{x}\right)^{10}-5\left(\frac{1}{x}\right)^{3}+\frac{1}{x}-4=0 \\
& 1-5 x^{7}+x^{9}-4 x^{10}=0 \\
& 4 x^{10}-x^{9}+5 x^{7}-1=0 \tag{A}
\end{align*}
$$

Qu) $P(x)$ has Real coefficients so complex roots occur in

$$
=[2+1]^{2}
$$ conjugate pairs.

$$
\begin{aligned}
\text { QL. } & (1-w)\left(1-w^{2}\right)\left(1-w^{4}\right)(1 \\
& =(1-w)\left(1-w^{2}\right)(1-w)(1-w \\
& =\left[(1-w)\left(1-w^{2}\right)\right]^{2} \\
& =\left[1-w-w^{2}+w^{3}\right]^{2} \\
& =\left[2-w-w^{2}\right]^{2}
\end{aligned}
$$

but $1+w+w^{2}=0$ so

$$
-w-w^{2}=1
$$

$$
\begin{equation*}
=9 \tag{D}
\end{equation*}
$$

Qb,

It is a hyperbola.
Hence $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Q7.1 $\int x e^{-2 x} d x$

$$
\begin{aligned}
& =-\frac{1}{2} e^{-2 x} \cdot x-\int-\frac{1}{2} e^{-2 x} \cdot(1) d x \\
& =-\frac{x}{2} \cdot e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x
\end{aligned}
$$

$$
=-\frac{x}{2} \cdot e^{-2 x}+\frac{1}{2}\left[-\frac{1}{2} e^{-2 x}\right]
$$

$$
\begin{equation*}
=-\frac{x}{2} e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x \tag{B}
\end{equation*}
$$

And when $y=0, x=2$

$$
\Rightarrow a=2
$$

Also as $=3$

$$
\text { Q8: } \begin{aligned}
P(x) & =a x^{8}+b x^{7}+2 \\
p^{\prime}(x) & =8 a x^{7}+7 b x^{6}
\end{aligned}
$$

$$
\begin{aligned}
2 e & =3 \\
e & =3 / 2
\end{aligned}
$$

$$
\begin{aligned}
P(-1)=0 \Rightarrow a-b+2 & =0 \\
P^{\prime}(-1)=0 \Rightarrow-8 a+7 b & =0 \\
8 a-8 b & =-16 \\
\therefore b & =16 \\
\therefore a & =14
\end{aligned}
$$

$\Phi 9 \ldots\left|z_{1}\right|=1$
Hence $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$

$$
\begin{align*}
& z_{1} \times z_{2}=\sqrt{2}-3 i \tag{B}\\
& \left|z_{1} z_{2}\right|=|\sqrt{2}-3 i|=\sqrt{11} \\
& \left|z_{1}\right| \times\left|z_{2}\right|=11 \quad \therefore\left|z_{2}\right|=\sqrt{11}
\end{align*}
$$

Let $z_{2}=x+i y$
then $\sqrt{x^{2}+y^{2}}=\sqrt{11}$
ie, $\quad x^{2}+y^{2}=11$

Q10\% $z^{4}=(z-1)^{4}$

$$
\left(\frac{z}{z-1}\right)^{4}=1
$$

Hence $\frac{z}{z-1}=1,-1, i,-i$
If $\frac{z}{z^{-1}}=1$ then $z=z^{-1}$ (no solutions)

If $\frac{z}{z-1}=-1$ then $z=1-z \Rightarrow z=\frac{1}{2}$

If $\frac{z}{z-1}=i$ then $z=i z-i$.

$$
\begin{aligned}
z(1-i) & =-i \\
z & =\frac{-i}{1-i}=\frac{i}{-1+i}
\end{aligned}
$$

If $\frac{z}{z-1}=-i$ then $z=-i z+i$

$$
\begin{aligned}
z(1+i) & =i \\
z & =\frac{i}{1+i}
\end{aligned}
$$

Hence (A)

QII\% (a)
(i) Let $(x+i y)^{2}=-5+12 i$
then $x^{2}-y^{2}=-5$ and $2 x y i=12 i$

$$
y=\frac{6}{x}
$$

Hence $x^{2}-\left(\frac{6}{x}\right)^{2}=-5$

$$
\begin{aligned}
x^{4}+5 x^{2}-36 & =0 \\
\left(x^{2}+9\right)\left(x^{2}-4\right) & =0 \\
x & = \pm 2
\end{aligned}
$$

When $x=2, y=3$
when $x=-2, y=-3$
Hence the square Roots of $-5+12 i$ are $2+3 i$ and $-2-3 i$
(ii)

$$
\begin{aligned}
2 z^{2}-(6+i) z+5 & =0 \\
z & =\frac{6+i \pm \sqrt{(6+i)^{2}-4 \times 2 \times 5}}{4} \\
z & =\frac{6+i \pm \sqrt{-5+12 i}}{4} \\
z & =\frac{6+i \pm(2+3 i)}{4} \\
z & =2+i \text { and } 1-\frac{1}{2} i
\end{aligned}
$$

(b) RTP that

$$
\left|z_{1}-z_{2}\right|^{2}=z_{1} \bar{z}_{1}+z_{2} \bar{z}_{2}-2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)
$$

Let $z_{1}=a+b i$ and $z_{2}=c+d i$

$$
\begin{aligned}
\text { LHS } & =\left|z_{1}-z_{2}\right|^{2} \\
& =|(a+b i) \overline{4}(c+d i)|_{2}^{2} \\
& =|(a-c)+i(b-d)|^{2} \\
& =\left(\sqrt{(a-c)^{2}+(b-d)^{2}}\right)^{2} \\
& =(a-c)^{2}+(b-d)^{2} \\
\text { RHS } & =z_{1} \bar{z}_{1}+z_{2} \overline{z_{2}}-2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right) \\
& =(a+b i)\left(a-b_{i} i\right)+(c+d i)(c-d i)-2 \operatorname{Re}[(a+b i)(c-d i)] \\
& =a^{2}+b^{2}+c^{2}+d^{2}-2 \operatorname{Re}[a c+b d+b c i-a d i] \\
& =a^{2}+b^{2}+c^{2}+d^{2}-2 a c-2 b d \\
& =(a-c)^{2}+(b-d)^{2}
\end{aligned}
$$

Hence $L H S=$ RHS as RequiRed.
(c) (i)

$$
z^{5}=-1
$$

$z=-1$ is one solution
The other Roots are equally spaced around a unit circle.

The five roots are

$$
-1, \operatorname{cis}\left(\frac{\pi}{5}\right), \operatorname{cis}\left(\frac{-\pi}{5}\right), \operatorname{cis}\left(\frac{3 \pi}{5}\right), \operatorname{cis}\left(\frac{-3 \pi}{5}\right)
$$

(ii) Now

$$
\begin{aligned}
z^{5}+1= & (z+1)\left(z-\operatorname{cis}\left(\frac{\pi}{5}\right)\right)\left(z-\operatorname{cis}\left(-\frac{\pi}{5}\right)\right) x \\
& \left(z-\operatorname{cis}\left(\frac{3 \pi}{5}\right)\right)\left(z-\operatorname{cis}\left(-\frac{3 \pi}{5}\right)\right) \\
= & (z+1)\left(z-\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)\right)\left(z-\left(\cos \frac{\pi}{5}-i \sin \frac{\pi}{5}\right)\right) x \\
& \left(z-\left(\cos \frac{3 \pi}{5}+i \sin \frac{3 \pi}{5}\right)\right)\left(z-\left(\cos \frac{3 \pi}{5}-i \sin \frac{3 \pi}{5}\right)\right) \\
= & (z+1)\left(z^{2}-2 z \cos \frac{\pi}{5}+\cos ^{2} \frac{\pi}{5}+\sin ^{2} \frac{\pi}{5}\right) x \\
& \left(z^{2}-2 z \cos \frac{3 \pi}{5}+\cos ^{2} \frac{3 \pi}{5}+\sin ^{2} \frac{3 \pi}{5}\right) \\
= & (z+1)\left(z^{2}-2 z \cos \frac{\pi}{5}+1\right)\left(z^{2}-2 z \cos \frac{3 \pi}{5}+1\right)
\end{aligned}
$$

as required.
(d) (i) Let $z=\cos \theta+i \sin \theta$
then $z^{n}=(\cos \theta+i \sin \theta)^{n}$
$=\cos n \theta+i \sin n \theta$, by de Moirre's Theorem.

Also $z^{-n}=(\cos \theta+i \sin \theta)^{-n}$
$=\cos (-n \theta)+i \sin (-n \theta)$, by de Move.

$$
=\cos n \theta-i \sin n \theta
$$

Hence $z^{n}-\frac{1}{z^{n}}=(\cos n \theta+i \sin n \theta)-(\cos n \theta-i \sin n \theta)$
$=2 i \sin n \theta$ as required.
(ii) RTP that $\sin ^{5} \theta=\frac{1}{16}[\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta]$

Now $z-\frac{1}{z}=2 i \sin \theta$
Hence $(2 i \sin \theta)^{5}=\left(z-\frac{1}{z}\right)^{5}$

$$
\begin{aligned}
32 i \sin ^{5} \theta= & z^{5}-5 z^{4}\left(\frac{1}{z}\right)+10 z^{3}\left(\frac{1}{z^{2}}\right)-10 z^{2}\left(\frac{1}{z^{3}}\right) \\
& +5 z\left(\frac{1}{z^{4}}\right)-\left(\frac{1}{z^{5}}\right) \\
= & \left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right) \\
= & 2 i \sin 5 \theta-5(2 i \sin 3 \theta)+10(2 i \sin \theta) \\
= & 2 i[\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta] \\
\text { Hence } \sin ^{5} \theta= & \frac{1}{16}[\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta]
\end{aligned}
$$ as Required.

Q12."
(a) $\int x \sqrt{5 x-1} d x$

Let $\mu^{2}=5 x-1 \Rightarrow x=\frac{\mu^{2}+1}{5}$

$$
\begin{aligned}
& 2 u \frac{d u}{d x}=5 \\
& \frac{2 u}{5} d u=d x \\
& I=\int \frac{\mu^{2}+1}{5} \cdot \sqrt{\mu^{2}} \cdot \frac{2 \mu}{5} d u \\
& =\frac{2}{25} \int u^{2}\left(u^{2}+1\right) d u \\
& =\frac{2}{25} \int u^{4}+u^{2} d u \\
& =\frac{2}{25}\left[\frac{u^{5}}{5}+\frac{\mu^{3}}{3}\right]+c \\
& =\frac{2 u^{3}}{25}\left[\frac{3 u^{2}+5}{15}\right]+C \\
& =\frac{2}{25} \cdot(5 x-1) \cdot \sqrt{5 x-1} \cdot\left(\frac{3(5 x-1)+5}{15}\right)+C \\
& =\frac{2(5 x-1) \sqrt{5 x-1}(15 x+2)}{375}+C \\
& =\frac{2(5 x-1)(15 x+2) \sqrt{5 x-1}}{375}+c \text {, as Required. }
\end{aligned}
$$

(b) $\int_{0}^{\pi / 4} \frac{d \theta}{2+\sin 2 \theta}$

Let $t=\tan \theta$

$$
\begin{aligned}
& \frac{d t}{d \theta}=\sec ^{2} \theta \\
& \frac{d t}{d \theta}=1+t^{2} \\
& d \theta=\frac{d t}{1+t^{2}}
\end{aligned}
$$

$$
I=\int_{0}^{1} \frac{d t / 1+t^{2}}{2+2 t / 1+t^{2}}
$$

$$
=\int_{0}^{1} \frac{d t}{2\left(1+t^{2}\right)+2 t}
$$

$$
=\int_{0}^{1} \frac{d t}{2\left(t^{2}+t+1\right)}
$$

$$
=\frac{1}{2} \int_{0}^{1} \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+\frac{3}{4}}
$$

$$
=\frac{1}{2} \int_{0}^{1} \frac{d t}{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(t+\frac{1}{2}\right)^{2}}
$$

$$
=\frac{1}{2}\left[\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{t+\frac{1}{2}}{\sqrt{3} / 2}\right)\right]_{0}^{1}
$$

$$
=\left[\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 t+1}{\sqrt{3}}\right)\right]_{0}^{1}
$$

when $\theta=0, t=0$
(c) (i) RTP that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.

Let $I=\int_{0}^{a} f(a-x) d x$
and let $u=a-x$
then $d u=-d x$
so $d x=-d u$
When $x=a, \mu=0$
when $x=0, \quad u=a$
Hence $I=\int_{a}^{0} f(u) .(-d u)$

$$
\begin{aligned}
& =-\int_{a}^{0} f(u) d u \\
& =\int_{0}^{a} f(u) d u \\
& =\int_{0}^{a} f(x) d x
\end{aligned}
$$

because μ is a dummy variable.
(ii)

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{\sqrt{\sin x} d x}{\sqrt{\sin x}+\sqrt{\cos x}} \\
& =\int_{0}^{\pi / 2} \frac{\sqrt{\sin (\pi / 2-x)} d x}{\sqrt{\sin (\pi / 2-x)}+\sqrt{\cos (\pi / 2-x)}} \\
& =\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
2 I & =\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}+\sqrt{\cos x} d x}{\sqrt{\sin x}+\sqrt{\cos x}} \\
& =\int_{0}^{\pi / 2} 1 d x \\
& =\frac{\pi}{2}
\end{aligned}
$$

Hence $I=\frac{\pi}{4}$
(d) (i)

$$
\begin{aligned}
& \text { (i) } I_{n}=\int_{\pi / 3}^{\pi / 2} \cos ^{n} x d x \\
& =\int_{\pi / 3}^{\pi / 2} \cos x \cdot \cos ^{n-1} x d x \\
& =\left[\sin x \cdot \cos ^{n-1} x\right]_{\frac{\pi}{3}}^{\pi / 2} \\
& -\int_{\pi / 3}^{\pi / 2} \sin x \cdot(n-1) \cos ^{n-2} x \cdot(-\sin x) d x \\
& =-\sin \frac{\pi}{3} \times(\cos \pi / 3)^{n-1}+\int_{\frac{\pi}{3}}^{\pi / 2} \sin ^{2} x \cdot(n-1) \cos ^{n-2} x d x \\
& =-\frac{\sqrt{3}}{2} \cdot\left(\frac{1}{2}\right)^{n-1}+(n-1) \int_{\pi / 3}^{\pi / 2}\left(1-\cos ^{2} x\right) \cdot \cos ^{n-2} x d x \\
& =\frac{-\sqrt{3}}{2^{n}}+(n-1) \int_{\frac{\pi}{3}}^{\pi / 2} \cos ^{n-2} x d x-(n-1) \int_{\pi / 3}^{\pi / 2} \cos ^{n} x d x \\
& =-\frac{\sqrt{3}}{2^{n}}+(n-1) I_{n-2}-(n-1) I_{n} \\
& \therefore \quad(n-1) I_{n}+I_{n}=\frac{-\sqrt{3}}{2^{n}}+(n-1) I_{n-2} \\
& n I_{n}=-\frac{\sqrt{3}}{2^{n}}+(n-1) I_{n-2} \\
& \therefore \quad I_{n}=\frac{-\sqrt{3}}{n 2^{n}}+\left(\frac{n-1}{n}\right) I_{n-2}
\end{aligned}
$$

(ii) $\int_{0}^{1 / 2} \frac{x^{3} d x}{\sqrt{1-x^{2}}}$

Let $x=\cos \theta$
when $x=\frac{1}{2}, \theta=\frac{\pi}{3}$

$$
d x=-\sin \theta d \theta
$$

$$
\text { when } x=0, \theta=\frac{\pi}{2}
$$

Hence $I=\int_{\pi / 2}^{\pi / 3} \frac{\cos ^{3} \theta \cdot(-\sin \theta d \theta)}{\sqrt{1-\cos ^{2} \theta}}$

$$
=\int_{\pi / 3}^{\pi / 2} \cos ^{3} \theta d \theta=I_{3}
$$

And $I_{3}=\frac{-\sqrt{3}}{3 \times 2^{3}}+\frac{2}{3} I_{1} \quad$ (from part (i))
And $\quad I_{1}=\int_{\pi / 3}^{\pi / 2} \cos x d x$

$$
\begin{aligned}
& =[\sin x]^{\pi / 3} \\
& =1-\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\text { Hence } \begin{aligned}
I_{3} & =\frac{-\sqrt{3}}{24}+\frac{2}{3}\left(1-\frac{\sqrt{3}}{2}\right) \\
& =-\frac{\sqrt{3}}{24}+\frac{16}{24}-\frac{8 \sqrt{3}}{24}=\frac{16-9 \sqrt{3}}{24}
\end{aligned}
$$

QB프 (a)

$$
2 x^{3}-5 x^{2}+8 x-3=0 \text { has } \alpha=1-\sqrt{2} i
$$

Hence $\beta=1+\sqrt{2} i$ since complex roots occur in conjugate pairs when all coefficients are real.
But $\Sigma(\alpha)=-\frac{b}{a}=\frac{5}{2}$
Hence $(1-\sqrt{2} i)+(1+\sqrt{2} i)+\gamma=\frac{5}{2}$

$$
\gamma=\frac{1}{2}
$$

(b) (i) Let $P(x)=(x-k)^{m} \cdot Q(x)$
then $\quad P^{\prime}(x)=(x-k)^{m} \times Q^{\prime}(x)+Q(x) \times m(x-k)^{m-1}$

$$
\therefore \quad p^{\prime}(k)=p(k)=0
$$

$\therefore p^{\prime}(x)$ has a root of multiplicity (m-1)
(b) (ii)

$$
\begin{aligned}
P(x) & =4 x^{3}+15 x^{2}+12 x-4 \\
P^{\prime}(x) & =12 x^{2}+30 x+12 \\
& =6\left(2 x^{2}+5 x+2\right) \\
& =6(2 x+1)(x+2)
\end{aligned}
$$

$\therefore P^{\prime}(x)=0$ when $x=-\frac{1}{2}$ and $x=-2$
But $P\left(-\frac{1}{2}\right)=\frac{-4}{8}+\frac{15}{4}-6-4 \neq 0$
and $P(-2)=-4 \times 8+60-24-4$

$$
\begin{aligned}
& =-32+60-28 \\
& =0
\end{aligned}
$$

Hence $x=-2$ is the double zero.
Hence $P(x)=(x+2)^{2}(a x+b)$
but $a=4$ and $b=-1$ by inspection.
Hence $P(x)=(x+2)^{2}(4 x-1)$ and the zeros are $-2,-2, \frac{1}{4}$.
(c) The Required equation is

$$
\begin{gathered}
(\sqrt{x})^{4}+4(\sqrt{x})^{3}-3(\sqrt{x})^{2}-4(\sqrt{x})+2=0 \\
x^{2}+4 x \sqrt{x}-3 x-4 \sqrt{x}+2=0 \\
x^{2}-3 x+2=4 \sqrt{x}(1-x) \\
\left(x^{2}-3 x+2\right)\left(x^{2}-3 x+2\right)=16 x(1-x)^{2} \\
x^{4}-3 x^{3}+2 x^{2}-3 x^{3}+9 x^{2}-6 x+2 x^{2}-6 x+4=16 x-32 x^{2}+16 x^{3} \\
x^{4}-6 x^{3}+13 x^{2}-12 x+4=16 x-32 x^{2}+16 x^{3} \\
4-22 x^{3}+45 x^{2}-28 x+4=0
\end{gathered}
$$

(d) Let the roots of $x^{3}+a x^{2}+b x+c=0$ be α, β and γ where $\alpha=2(\beta+\gamma)$.

Now the sum of the roots is

$$
\text { ie, } \begin{aligned}
\alpha+\beta+\gamma & =-a \\
\alpha+\frac{\alpha}{2} & =-a \\
\frac{3 \alpha}{2} & =-a \\
\alpha & =-\frac{2 a}{3}
\end{aligned}
$$

And the sum of the product of the roots 2 at a time is

$$
\begin{align*}
& \alpha \beta+\beta \gamma+\alpha \gamma=b \\
& 2(\beta+\gamma) \cdot \beta+\beta \gamma+2(\beta+\gamma) \cdot \gamma=b \\
&(\beta+\gamma)(2 \beta+2 \gamma)+\beta \gamma=b \\
& 2(\beta+\gamma)(\beta+\gamma)+\beta \gamma=b \\
& 2\left(\frac{\alpha}{2}\right)\left(\frac{\alpha}{2}\right)+\beta \gamma=b \\
& \beta \gamma=b-\frac{\alpha^{2}}{2} \\
& \beta \gamma=b-\frac{\left(-\frac{2 a}{3}\right)^{2}}{2} \\
& \beta \gamma=b-\frac{4 a^{2}}{18} \tag{1}
\end{align*}
$$

And the product of the roots 3 at a time is

$$
\begin{align*}
\alpha \beta \gamma & =-c \\
\beta \gamma & =-c / \alpha=-c /-2 a / 3=\frac{3 c}{2 a} \tag{2}
\end{align*}
$$

Equating (1) and (2) gives

$$
\begin{aligned}
& \frac{3 c}{2 a}=b-\frac{4 a^{2}}{18} \\
& 3 c=2 a b-\frac{8 a^{3}}{18} \\
& 54 c=36 a b-8 a^{3} \\
& 4 a^{3}-18 a b+27 c=0
\end{aligned}
$$

24."
(a) (i) $y=\frac{3}{2} x$
(ii)

$$
\begin{aligned}
& \frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \\
& \frac{2 x}{4}-\frac{2 y}{9} \cdot \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{18 x}{8 y}=\frac{9 x}{4 y}
\end{aligned}
$$

Hence the gradient of the tangent at $\left(x_{1}, y_{1}\right)$ is $\frac{9 x_{1}}{4 y_{1}}$
Hence the equation of the tangent is

$$
\begin{aligned}
& y-y_{1}=\frac{9 x_{1}}{4 y_{1}}\left(x-x_{1}\right) \\
& 4 y y_{1}-4\left(y_{1}\right)^{2}=9 x x_{1}-9\left(x_{1}\right)^{2} \\
& 9\left(x_{1}\right)^{2}-4\left(y_{1}\right)^{2}=9 x x_{1}-4 y_{y_{1}}
\end{aligned}
$$

But from $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \quad 9 x^{2}-4 y^{2}=36$
So $\quad 9\left(x_{1}\right)^{2}-4\left(y_{1}\right)^{2}=36$
Hence the equation of the tangent is

$$
9 x_{x_{1}}-4 y_{y_{1}}=36
$$

(iii) $\quad 9 x x_{1}-4 y_{y_{1}}=36$
passes through $(1,0)$ so

$$
\begin{aligned}
9 x_{1} & =36 \\
x_{1} & =4
\end{aligned}
$$

And $9\left(x_{1}\right)^{2}-4\left(y_{1}\right)^{2}=36$

$$
\begin{aligned}
9 \times 4^{2}-4\left(y_{1}\right)^{2} & =36 \\
108 & =4\left(y_{1}\right)^{2} \\
y_{1} & =\sqrt{27} \\
y_{1} & =3 \sqrt{3}
\end{aligned}
$$

Hence $\left(x_{1}, y_{1}\right)=(4,3 \sqrt{3})$

$\beta=\alpha+\gamma$ (exterior angle)

$$
\begin{aligned}
\alpha & =\beta-\gamma \\
\tan \alpha & =\tan (\beta-\gamma) \\
& =\frac{\tan \beta-\tan \gamma}{1+\tan \beta \cdot \tan \gamma}
\end{aligned}
$$

But $\tan \beta=\frac{3 \sqrt{3}}{4-1}=\sqrt{3}$ and $\tan \gamma=\frac{3}{2}$
Hence $\tan \alpha=\frac{\sqrt{3}-\frac{3}{2}}{1+\sqrt{3} \times \frac{3}{2}}=\frac{2 \sqrt{3}-3}{2+3 \sqrt{3}} \times \frac{2-3 \sqrt{3}}{2-3 \sqrt{3}}=\frac{-24+13 \sqrt{3}}{-23}$

$$
\therefore \alpha=\tan ^{-1}\left[\frac{24-13 \sqrt{3}}{23}\right]
$$

(b) (i)

$$
\begin{align*}
& 4 x^{2}-y^{2}-24 h x+2 h y-4 a^{2}+35 h^{2}=0 \\
& 4 x^{2}-24 h x-y^{2}+2 h y=4 a^{2}-35 h^{2} \\
& (2 x-6 h)^{2}-(y-h)^{2}-36 h^{2}+h^{2}=4 a^{2}-35 h^{2} \\
& (2 x-6 h)^{2}-(y-h)^{2}=4 a^{2} \\
& 4(x-3 h)^{2}-(y-h)^{2}=4 a^{2} \\
& \frac{(x-3 h)^{2}}{a^{2}}-\frac{(y-h)^{2}}{4 a^{2}}=1
\end{align*}
$$

(d) is of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Hence the equation Represents a hyperbola.
(ii) Differentiating (d) we get

$$
\frac{2(x-3 h)}{a^{2}}-\frac{2(y-h)}{4 a^{2}} \times \frac{d y}{d x}=0
$$

So

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 \times 4 a^{2}(x-3 h)}{2 \times a^{2}(y-h)} \\
& \frac{d y}{d x}=\frac{4(x-3 h)}{(y-h)}
\end{aligned}
$$

Hence the gradient of the tangent at (p, q) is

$$
\frac{4(p-3 h)}{q-h}
$$

Now the gradient of the line perpendicular to

$$
\begin{equation*}
y=\left(e^{2}-1\right) x \quad \text { is } \quad \frac{-1}{e^{2}-1} \tag{1}
\end{equation*}
$$

Hence $\frac{-1}{e^{2}-1}=\frac{4(p-3 h)}{q-h}$
But $b^{2}=a^{2}\left(e^{2}-1\right)$
so $e^{2}-1=\frac{b^{2}}{a^{2}}$
But $b^{2}=4 a^{2}$ so $e^{2}-1=4$.
Substituting into (1) we get

$$
\begin{aligned}
\frac{-1}{4} & =\frac{4(p-3 h)}{q-h} \\
h-q & =16 p-48 h \\
\therefore \quad 16 p & +q=49 h, \text { as Required. }
\end{aligned}
$$

(c) Now $T_{1}=\left(c t_{1}, \frac{c}{t_{1}}\right)$
and $T=\left(c t, \frac{c}{t}\right)$
Hence m of $T_{1} T$ is

$$
\frac{\frac{c}{t}-\frac{c}{t_{1}}}{c t-c t_{1}}=\frac{\frac{1}{t}-\frac{1}{t_{1}}}{t-t_{1}}
$$

$$
=\frac{\frac{t_{1}-t}{t_{1} t}}{t-t_{1}}=\frac{\frac{-\left(t-t_{1}\right)}{t_{1} t}}{t-t_{1}}=\frac{-1}{t_{1} t}
$$

Similarly m of $T_{2} T$ is $\frac{-1}{t_{2} t}$.
since $\angle T_{1} T T_{2}$ is 90° then

$$
\begin{aligned}
& \left(m \text { of } T_{1} T\right) \times\left(m \text { of } T_{2} T\right)=-1 \\
& \frac{-1}{t_{1} t} \times \frac{-1}{t_{2} t}=-1 \\
& \therefore \frac{1}{t_{1} t_{2} t^{2}}=-1 \\
& \therefore \frac{1}{t_{1} t_{2}}=-t^{2} \\
& \therefore \quad t^{2}=\frac{-1}{t_{1} t_{2}} \text {, as Required. }
\end{aligned}
$$

Q15." (a)

Rotation of the shaded strip about the line $x=2$ produces a cylindrical shell of volume ΔV where

$$
\begin{aligned}
\Delta V & =\pi\left[(r+\Delta x)^{2}-r^{2}\right] \times y \\
& =\pi[(2 R+\Delta x) \Delta x] \times\left(x^{2}+2\right) \\
& =\pi[2 R \Delta x]\left(x^{2}+2\right) \text { because }(\Delta x)^{2} \text { is very small } \\
& =\pi\left[2(2-x)\left(x^{2}+2\right) \Delta x\right] \\
\therefore V & =\lim _{\Delta x \rightarrow 0} \Delta V \\
& =2 \pi \int_{0}^{2}(2-x)\left(x^{2}+2\right) d x \\
& =2 \pi \int_{0}^{2}\left(2 x^{2}+4-x^{3}-2 x\right) d x \\
& =2 \pi\left[\frac{2 x^{3}}{3}+4 x-\frac{x^{4}}{4}-x^{2}\right]_{0}^{2} \\
& =2 \pi\left(\frac{16}{3}+8-4-4\right)=\frac{32 \pi}{3} \text { units }^{3}
\end{aligned}
$$

The volume of a slice is ΔV.

$$
\begin{aligned}
\Delta V & =\frac{1}{2} \times 2 y \times 2 y \times \Delta x \\
& =2 y^{2} \Delta x
\end{aligned}
$$

Now $\quad y^{2}=\frac{100-4 x^{2}}{25} \quad \therefore \Delta V=2\left(\frac{100-4 x^{2}}{25}\right) \Delta x$

The required volume is V where

$$
\begin{aligned}
V & =\lim _{\Delta x \rightarrow 0} \Delta V \\
& =\int_{-5}^{5} \frac{2}{25}\left(100-4 x^{2}\right) d x \\
& =\int_{-5}^{5} \frac{8}{25}\left(25-x^{2}\right) d x \\
& =\frac{16}{25} \int_{0}^{5}\left(25-x^{2}\right) d x \\
& =\frac{16}{25}\left[25 x-\frac{x^{3}}{3}\right]_{0}^{5}=\frac{160}{3} \text { units }^{3}
\end{aligned}
$$

(c)

(i) Join B to M.

In $\triangle A B M$ and $\triangle P C A$,

$$
\begin{aligned}
& \angle B A P=\angle P A C \quad \text { (given) } \\
& \angle B M A=\angle A C P
\end{aligned}
$$

(equal angles at the circumference standing on the same arc $A B$)
Hence $\triangle A B M$ III $\triangle A P C$ (equiangular)
(ii) Now $\angle M B C=\angle C A P$
(equal angles standing on arc $M C$)
$\therefore \triangle B M P$ III $\triangle A P C$ (equiangulaR)
$\therefore \frac{B P}{P A}=\frac{P M}{P C} \begin{gathered}\text { (ratios of corresponding sides } \\ \text { of similar triangles) }\end{gathered}$
$\therefore B P \times P C=P M \times P A$, as Required.
(d) STEP 1: when $n=0$,
$35^{n}+3 \times 7^{n}+2 \times 5^{n}+6$ is equal to
$\mid+3 \times 1+2 \times 1+6=12$, which is divisible by 12 .
Hence the statement is true when $n=0$.
STEP 2: We will assume that

$$
35^{k}+3 \times 7^{k}+2 \times 5^{k}+6=12 M \text { (} M \text { an integer } R \text {). }
$$

we will now try to prove that $35^{k+1}+3 \times 7^{k+1}+2 \times 5^{k+1}+6$ is divisible by 12 .
Now $35^{k+1}+3 \times 7^{k+1}+2 \times 5^{k+1}+6$

$$
=35.35^{k}+3.7^{k+1}+2.5^{k+1}+6
$$

but $35^{k}=12 M-6-2.5^{k}-3.7^{k}$ (by the assumption)

$$
\begin{aligned}
& =35\left(12 m-6-2.5^{k}-3.7^{k}\right)+3.7^{k+1}+2.5^{k+1}+6 \\
& =420 m-210-70.5^{k}-105.7^{k}+3.7^{k+1}+2.5^{k+1}+6 \\
& =420 m-210-70.5^{k}-105.7^{k}+21.7^{k}+10.5^{k}+6 \\
& =420 m-210-60.5^{k}-84.7^{k}+6 \\
& =420 m-204-60.5^{k}-84.7^{k}
\end{aligned}
$$

$=12\left[35 M-17-5^{k+1}-7^{k+1}\right]$ which is divisible by 12 .
Hence the statement is true by mathematical induction.

Q16:" (a)
(i)

$$
y=f(|x|)
$$

(ii) $y=\ln (f(x))$
asymptote at
$x=2$

(b) (i) $F=\frac{G m_{1} m_{2}}{x^{2}}$

But $F=m_{2} \times$ acceleration

$$
\begin{aligned}
\therefore \quad m_{2} \ddot{x} & =\frac{-G m_{1} m_{2}}{x^{2}} \\
\text { Hence } \ddot{x} & =\frac{-G m_{1}}{x^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =-\frac{G m_{1}}{x^{2}} \\
\frac{1}{2} v^{2} & =-G m_{1} \int \frac{d x}{x^{2}} \\
\frac{1}{2} v^{2} & =-G m_{1}\left(\frac{-1}{x}\right)+c
\end{aligned}
$$

But when $x=R, V=V$ so

$$
\begin{aligned}
\frac{1}{2} V^{2} & =\frac{G m_{1}}{R}+c \\
\therefore \quad c & =\frac{1}{2} V^{2}-\frac{G m_{1}}{R} \\
\therefore \quad \frac{1}{2} V^{2} & =\frac{G m_{1}}{x}+\frac{1}{2} V^{2}-\frac{G m_{1}}{R} \\
V^{2} & =\frac{2 G m_{1}}{x}+V^{2}-\frac{2 G m_{1}}{R} \\
\therefore V & =\sqrt{V^{2}+\frac{2 G m_{1}}{x}-\frac{2 G m_{1}}{R}}
\end{aligned}
$$

(c) The time between low and high tide is 6 h 40 min .

So the period of tide $=13 \mathrm{~h} 20 \mathrm{mins}$

$$
=\frac{40}{3} \text { hours }
$$

But $T=\frac{2 \pi}{n}=\frac{40}{3} \Rightarrow n=\frac{3 \pi}{20}$
The centre of motion is at 30 m and the amplitude is 10 m .

Now

$$
\begin{aligned}
x & =b+a \cos (n t+\alpha) \\
& =30+10 \cos (n t+\alpha)
\end{aligned}
$$

Let $t=0$ when $x=20$ (ie, at Tam) then

$$
\begin{aligned}
& 20=30+10 \cos \alpha \\
& \alpha=-\pi
\end{aligned}
$$

Hence $x=30+10 \cos \left(\frac{3 \pi}{20} t-\pi\right)$
Solve $\quad 5 \sqrt{3}+30=30+10 \cos \left(\frac{3 \pi}{20} t-\pi\right)$

$$
\begin{aligned}
\frac{\sqrt{3}}{2} & =\cos \left(\frac{3 \pi t}{20}-\pi\right) \\
-\frac{\pi}{6} & =\frac{3 \pi t}{20}-\pi \\
t & =\frac{50}{9} \text { hours }
\end{aligned}
$$

\therefore Ship can enter at 12:33 pm
(d) Now $P(x)=x^{n}-a^{n}$ and $x^{n}-a^{n}=\left(x^{2}-a^{2}\right) \cdot Q(x)+p x+q$.

When n is even, $P(a)=0$

$$
P(-a)=0
$$

Hence $p=0$ and $q=0$.
Hence there is no Remainder when n is even.
when n is odd, $\quad P(a)=0$

$$
\begin{aligned}
& p(-a)=-a^{n}-a^{n}=-2 a^{n} \\
& \therefore p x+q=\frac{1}{2 a}\left[0-\left(-2 a^{n}\right)\right] x+\frac{1}{2}\left[0-2 a^{n}\right] \\
&=a^{n-1} x-a^{n}
\end{aligned}
$$

When n is odd, the remainder is $a^{n-1} x-a^{n}$.

