

2020
 YEAR 12
 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 2

Staff Involved:
8:30 AM
FRIDAY 14 AUGUST

WMD* ARM

40 copies

TOPICS COVERED

- Complex Numbers I \& II
- Proof
- Integration
- Vectors
- Mechanics

General Instructions:

- Reading time - 10 minutes
- Working time -3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided separately
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Marks may not be awarded for careless or poorly arranged working
- Diagrams are not to scale unless specifically stated

Total marks:
Section I - 10 marks (pages 2-6)
100

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 7-13)

- Attempt Questions 11-16
- Allow about 2 hour and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple choice answer sheet for Questions 1-10.

1. If $\underset{\sim}{a}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ then a non-zero vector $\underset{\sim}{c}$ such that $\underset{\sim}{a} \cdot \underset{\sim}{c}=\underset{\sim}{b} \cdot \underset{\sim}{c}=0$ could be
A. $\left(\begin{array}{c}-1 \\ 5 \\ -3\end{array}\right)$
B. $\quad\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)$
C. $\left(\begin{array}{c}-1 \\ 5 \\ 3\end{array}\right)$
D. $\quad\left(\begin{array}{l}-1 \\ -5 \\ -3\end{array}\right)$
2. A certain complex number $\frac{\bar{z}}{i}$ is represented by the point P on the Argand diagram below. The axes have the same scale.

The complex number z is best represented by
A. A
B. B
C. C
D. D

Section I continues on the next page

Section I continued

3. In this diagram, $\overrightarrow{O A}=\left(\begin{array}{c}6 \\ -1 \\ 8\end{array}\right), \overrightarrow{O B}=\left(\begin{array}{c}-3 \\ 4 \\ -2\end{array}\right)$ and $A P: P B=1: 2$.

The vector $\overrightarrow{O P}$ is equal to

A. $\frac{1}{3}\left(\begin{array}{l}0 \\ 7 \\ 4\end{array}\right)$
B. $\quad\left(\begin{array}{l}9 \\ 7 \\ 4\end{array}\right)$
C. $\left(\begin{array}{c}9 \\ 12 \\ 4\end{array}\right)$
D. $\frac{1}{3}\left(\begin{array}{c}9 \\ 2 \\ 14\end{array}\right)$
4. If $m=a \operatorname{cis}\left(\theta_{1}\right)$ and $n=3 \operatorname{cis}\left(\theta_{2}\right)$ and $m n=\frac{1}{2} \operatorname{cis}\left(-\frac{7 \pi}{12}\right)$ then a, θ_{1} and θ_{2} respectively could be
A. $\frac{1}{6},-\frac{2 \pi}{3}, \frac{3 \pi}{4}$
B. $6, \frac{2 \pi}{3}, \frac{3 \pi}{4}$
C. $\frac{1}{6}, \frac{2 \pi}{3}, \frac{3 \pi}{4}$
D. $6,-\frac{\pi}{3}, \frac{\pi}{4}$

Section I continued

5. The points R, S and T are collinear.

Given that $\overrightarrow{O R}=\underset{\sim}{i}+\underset{\sim}{j}, \overrightarrow{O S}=2 \underset{\sim}{i}-\underset{\sim}{j}+\underset{\sim}{k}$ and $\overrightarrow{O T}=3 \underset{\sim}{i}+\underset{\sim}{m j}+n \underset{\sim}{k}$, the values of m and n are
A. $m=3, n=-2$
B. $m=-1, n=0$
C. $m=0, n=1$
D. $m=-3, n=2$
6. Consider the complex numbers $2 z,-i z$ and $2 z-i z$, where $z \neq 0$.

These three complex numbers are plotted in the Argand plane and together with the origin O, they form the vertices of a quadrilateral.
The area of this quadrilateral is
A. $2\left|z^{2}\right|$
B. $|2 z|$
C. $\left|z^{2}\right|$
D. $|z|+|2 z|$

Section I continues on the next page

Section I continued

7. Given the vector $\underset{\sim}{a}=\frac{1}{2}(\sqrt{2} \underset{\sim}{i}-\underset{\sim}{j}+\underset{\sim}{k})$, then the vector $\underset{\sim}{a}$
A. makes an angle of 120° with the positive y-axis and 30° with the positive z-axis.
B. makes an angle of 45° with the positive x-axis and 120° with the positive y-axis.
C. makes an angle of 45° with the positive x-axis and 150° with the positive y-axis.
D. makes an angle of 135° with the positive x-axis and 150° with the positive y-axis.
8. The number of distinct roots of the equation $\left(z^{2}-2 z i-1\right)\left(z^{2}+2 i\right)\left(z^{2}+2 z i+2\right)=0$ is
A. 3
B. 4
C. 5
D. 6

Section I continues on the next page

Section I continued

9. The triangle formed by the three points whose position vectors are

$$
\left(\begin{array}{c}
2 \\
4 \\
-1
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
1
\end{array}\right) \text { and }\left(\begin{array}{c}
3 \\
6 \\
-3
\end{array}\right) \text { is }
$$

A. a scalene triangle
B. a right-angled triangle which is not isosceles
C. an isosceles triangle which is not right-angled
D. a right-angled isosceles triangle
10. By using the substitution $u=\cos x$, or otherwise, it can be shown that $\int \cos ^{2} x \sin ^{7} x d x=$
A. $-\frac{\cos ^{3} x}{3}+\frac{3 \cos ^{5} x}{5}-\frac{3 \cos ^{7} x}{7}+\frac{\cos ^{9} x}{9}+C$
B. $\quad-\cos ^{3} x+3 \cos ^{5} x-3 \cos ^{7} x+\cos ^{9} x+C$
C. $\frac{\cos ^{3} x}{3}-\frac{3 \cos ^{5} x}{5}+\frac{3 \cos ^{7} x}{7}-\frac{\cos ^{9} x}{9}+C$
D. $\cos ^{3} x-3 \cos ^{5} x+3 \cos ^{7} x-\cos ^{9} x+C$

End of Section I

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z_{1}=-1+3 i$ and $z_{2}=2-i$.

Find the following, in simplest form:
(i) $z_{1}+z_{2} \quad 1$
(ii) $z_{1} z_{2}$
(iii) $\operatorname{Re}\left(z_{1}\right)-\operatorname{Im}\left(z_{2}\right)$
(b) (i) Find $\frac{d}{d x}\left(\log _{e}\left(x^{2}+1\right)\right)$.
(ii) Evaluate $\int_{0}^{\sqrt{e^{2}-1}} \frac{4 x}{x^{2}+1} \log _{e}\left(x^{2}+1\right) d x$, answering in simplified form.
(c) (i) Express $5 \cos \theta-2 \sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) Hence, or otherwise, find $\int \frac{d x}{\left(5 \cos \frac{x}{2}-2 \sin \frac{x}{2}\right)^{2}}$.
(d) A complex number z satisfies the inequality $|z+2-2 \sqrt{3} i| \leq 2$.
(i) Sketch the corresponding region representing all possible values of z.
(ii) Find the set of possible values $\operatorname{Arg} z$ can take.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Simplify $(1-i)^{6}$.

1

2
(ii) Solve the equation $z^{3}=(1-i)^{6}$, writing the solutions in the form $x+i y$.
(b) The complex number $3-i$ is denoted by u.
(i) Express $\frac{\bar{u}}{u}$ in the form $x+i y$.

1
(ii) By considering the argument of $\frac{\bar{u}}{u}$, prove that $\tan ^{-1}\left(\frac{3}{4}\right)=2 \tan ^{-1}\left(\frac{1}{3}\right)$.

2
(c) What are the values of real numbers p and q such that $1-i$ is a root of the equation $z^{3}+p z+q=0$?
(d) (i) By using the method of completing the square, or otherwise, solve $z^{2}-2 z \cos \theta+1=0$. Give your simplified solutions for z in terms of θ.
(ii) Let α and β be the two solutions found in (i). If P and Q are points on the Argand diagram representing $\alpha^{n}+\beta^{n}$ and $\alpha^{n}-\beta^{n}$ respectively, show that $P Q$ is of constant length for $n, n \in \mathbf{Z}^{+}$.
(e) Find the coordinates of the point which is nearest to the origin on the line

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
-3 \\
0
\end{array}\right)
$$

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Using the exponential form of a complex number, prove that

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta), n \in \mathbf{Z}
$$

(c) A particle's motion is defined by the equation $v^{2}=12+4 x-x^{2}$, where x is its displacement from the origin in metres and v its velocity in ms^{-1}.
Initially the particle is 6 metres to the right of the origin.
(i) Show that the particle is moving in Simple Harmonic Motion, stating the centre of motion.
(ii) Find the period and the amplitude of the motion.
(iii) The displacement of the particle at any time t is given by the equation $x=a \sin (n t+\theta)+b$. Find the values of θ and b, given $0 \leq \theta \leq 2 \pi$.
(d) A particle of mass $m \mathrm{~kg}$ is fired directly upwards with speed $200 \mathrm{~ms}^{-1}$ in a medium where the resistance is $\frac{1}{10} m v$ newtons when the speed is $v \mathrm{~ms}^{-1}$. Let $g=10 \mathrm{~ms}^{-2}$. Hence, for the upward journey, $\ddot{x}=-\frac{1}{10}(100+v)$, where x metres is the vertical displacement from the point of projection.
(i) Show that the maximum height attained above the point of projection is $1000\left(2-\log _{e} 3\right)$ metres.
(ii) Show that the speed $v \mathrm{~ms}^{-1}$ of the particle on return to its point of projection satisfies the equation $\frac{v}{100}+\ln \left|1-\frac{v}{100}\right|+(2-\ln 3)=0$.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) The prime numbers are $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, \ldots$.

The square numbers are $1,4,9,16,25,36,49,64, \ldots$.
With one exception, if a square number differs from a prime by 1 , the prime is bigger.
For example, 16 is a square and 17 is a prime. The prime is bigger. The only exception is prime 3 and square 4.

It is conjectured that for all consecutive numbers that are a prime and a square, except for 3 and 4, the prime is bigger.
Prove the conjecture is true.
(b) Use proof by contradiction to prove that if a, b are integers, then $a^{2}-4 b-3 \neq 0$.

You may wish to consider the case when a is even and the case when a is odd.
(c) A sequence of numbers is given by $T_{1}=6, T_{2}=27$ and $T_{n}=6 T_{n-1}-9 T_{n-2}$ for integers $n \geq 3$.
Use mathematical induction to show that $T_{n}=(n+1) 3^{n}$ for integers $n \geq 1$.
(d) (i) Use De Moivre's theorem to show that $(1+i \tan \theta)^{5}=\frac{\cos 5 \theta+i \sin 5 \theta}{\cos ^{5} \theta}$.
(ii) Hence find expressions for $\cos 5 \theta$ and $\sin 5 \theta$ in terms of $\tan \theta$ and $\cos \theta$.
(iii) Show that $\tan 5 \theta=\frac{5 t-10 t^{3}+t^{5}}{1-10 t^{2}+5 t^{4}}$ where $t=\tan \theta$.
(iv) Use the result of (iii) and an appropriate substitution to show that $\tan \frac{\pi}{5}=\sqrt{5-2 \sqrt{5}}$.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) The trajectory of a projectile fired with speed $u \mathrm{~ms}^{-1}$ at an angle θ to the horizontal, in a medium whose resistance to the projectile's motion is proportional to the projectile's velocity, is represented by the parametric equations
$x=\frac{u \cos \theta}{k}\left(1-e^{-k t}\right)$ and $y=\frac{(10+k u \sin \theta)}{k^{2}}\left(1-e^{-k t}\right)-\frac{10 t}{k}$,
where k is the constant of proportionality of the resistance.
(i) Show the greatest height is reached when $t=\frac{1}{k} \log _{e}\left(\frac{10+k u \sin \theta}{10}\right)$.

2
(ii) If $k=0.5, u=40$ and $\theta=30^{\circ}$, show that the greatest height is reached when the projectile is at the point $\left(20 \sqrt{3}, 40\left(1-\log _{e} 2\right)\right)$.
(b) $\quad I_{n}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} d x, n=1,2,3, \ldots$
(i) Show that $I_{n+1}=\frac{2 n-1}{2 n} I_{n}+\frac{1}{\left(2^{n+1}\right) n}$.
(ii) Hence evaluate $\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{3}} d x$.

Question 15 continued

(c) Relative to a fixed origin O, the points A, B and C have position vectors
$\underset{\sim}{a}=\left(\begin{array}{c}-1 \\ \frac{4}{3} \\ 7\end{array}\right), \underset{\sim}{b}=\left(\begin{array}{l}4 \\ \frac{4}{3} \\ 2\end{array}\right)$ and $\underset{\sim}{c}=\left(\begin{array}{c}6 \\ \frac{16}{3} \\ 2\end{array}\right)$ respectively.
(i) Find the cosine of $\angle A B C$. 1
(ii) Hence find the area of the triangle $A B C$.
(iii) Use a vector method to find the shortest distance between the point A and the line passing through the points B and C.

Let D be the point such that the quadrilateral $A B C D$ is a kite, where $B C=C D$ and $B A=A D$.
(iv) Find the position vector of the point D.

End of Question 15

(a) Use the substitution $t=\tan \frac{x}{2}$ to show $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2-\cos x+2 \sin x}=\log _{e} 2$.

$$
1+2+3+4+\ldots \ldots+(n-1)
$$

(ii) Using calculus, or otherwise, show that for $x>0, x>\log _{e}(1+x)$.
(iii) Using (i) and (ii), show that $e^{\binom{n}{2}}>n$! for positive integers $n=2,3,4 \ldots$
(c) Consider the function $f(x)=\sum_{k=1}^{n}\left(\sqrt{a_{k}} x-\frac{1}{\sqrt{a_{k}}}\right)^{2}$ where $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers.
(i) By expressing $f(x)$ as a quadratic function of x, show that

$$
\left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \geq n^{2} .
$$

(ii) Hence show that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq \frac{2 n}{n+1}$.

End of Question 16

End of Paper

Year 12 Extension 2 Trial Examination 2020

1. Test each answer.

$$
\begin{gathered}
\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
5 \\
3
\end{array}\right)=-2+5-3=0 \\
\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
5 \\
3
\end{array}\right)=-1-5+6=0 \\
C
\end{gathered}
$$

2. To produce $\frac{\bar{z}}{i}, z$ has been reflected in the real axis then rotated $\frac{\pi}{2}$ about the origin clockwise.

3.

$$
\begin{aligned}
\overrightarrow{O P} & =\overrightarrow{O A}+\overrightarrow{A P} \\
& =\overrightarrow{O A}+\frac{1}{3} \overrightarrow{A B} \\
& =\overrightarrow{O A}+\frac{1}{3}(\overrightarrow{O B}-\overrightarrow{O A}) \\
& =\left(\begin{array}{c}
6 \\
-1 \\
8
\end{array}\right)+\frac{1}{3}\left[\left(\begin{array}{c}
-3 \\
4 \\
-2
\end{array}\right)-\left(\begin{array}{c}
6 \\
-1 \\
8
\end{array}\right)\right] \\
& =\left(\begin{array}{c}
6 \\
-1 \\
8
\end{array}\right)+\frac{1}{3}\left(\begin{array}{c}
-9 \\
5 \\
-10
\end{array}\right) \\
& =\left(\begin{array}{c}
3 \\
\frac{2}{3} \\
\frac{14}{3}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
9 \\
2 \\
14
\end{array}\right)
\end{aligned}
$$

4. $m n=3 a \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$
$\therefore \frac{1}{2}=3 a$ so $a=\frac{1}{6} \quad \therefore A$ or C
$\operatorname{Tr} \frac{-2 \pi}{3}+\frac{3 \pi}{4}=\frac{\pi}{12} \neq \frac{-7 \pi}{12}(\operatorname{not} A)$
Try $\frac{2 \pi}{3}+\frac{3 \pi}{4}=\frac{17 \pi}{12}$
$\frac{17 \pi}{12}-2 \pi=\frac{-7 \pi}{12}$
5. Since collinear, $\overrightarrow{R S}=\lambda \overrightarrow{S T}$

$$
\begin{align*}
& \left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)-\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)=\lambda\left[\left(\begin{array}{c}
3 \\
m \\
n
\end{array}\right)-\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)\right] \\
& \left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)=\lambda\left(\begin{array}{c}
1 \\
m+1 \\
n-1
\end{array}\right) \quad \text { so } \quad \lambda=1 \\
& -2=m+1 \quad 1=n-1 \quad|D| \\
& m=-3 \quad n=2 \quad
\end{align*}
$$

6.

long side length $=\left|z_{z}\right|$
short side length $=|z|$
\therefore area $=|2 z||z|=2\left|z^{2}\right|$ A
7. $\underset{\sim}{a}=\frac{1}{\sqrt{2}} i-\frac{1}{2} j+\frac{1}{2} \underset{\sim}{k}$
$\cos \theta_{x}=\frac{1}{\sqrt{2}} \quad \cos \theta_{y}=\frac{-1}{2} \quad \cos \theta_{z}=\frac{1}{2}$

$$
\theta_{x}=45^{\circ} \quad \theta_{y}=120^{\circ} \quad \theta_{z}=60^{\circ}
$$

8. Factorise to:

$$
(z-i)^{2}\left(z^{2}+2 i\right)\left(z^{2}+2 z i+z\right)=0
$$

Degree 6 polynomial with ore double root $\Rightarrow 5$ distinct routs.

C]
9. Vectors for the three sidles:

$$
\begin{aligned}
& \left(\begin{array}{l}
4 \\
5 \\
1
\end{array}\right)-\left(\begin{array}{l}
2 \\
4 \\
-1
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right),\left|\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)\right|=3 \\
& \left(\begin{array}{l}
3 \\
6 \\
-3
\end{array}\right)-\left(\begin{array}{c}
4 \\
5 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
-4
\end{array}\right),\left|\left(\begin{array}{c}
-1 \\
1 \\
-4
\end{array}\right)\right|=3 \sqrt{2} \\
& \left(\begin{array}{l}
2 \\
4 \\
-1
\end{array}\right)-\left(\begin{array}{c}
3 \\
6 \\
-3
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right),\left|\left(\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right)\right|=3
\end{aligned}
$$

\therefore isosceles
And since $3^{2}+3^{2}=(3 \sqrt{2})^{2}$
(or since $\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}-1 \\ -2 \\ 2\end{array}\right)=0$) also a right angle triangle. D

$$
\begin{aligned}
& \text { 10. } \frac{d u}{d x}=-\sin x \Rightarrow d x=\frac{-d u}{\sin x} \\
& I=\int u^{2}\left(1-u^{2}\right)^{3} \sin x \cdot \frac{-d u}{\sin x} \\
& =-\int u^{2}\left(1-3 u^{2}+3 u^{4}-u^{6}\right) d u \\
& =-\int\left(u^{2}-3 u^{4}+3 u^{6}-u^{8}\right) d u \\
& =\frac{-u^{3}}{3}+\frac{3 u^{5}}{5}-\frac{3 u^{7}}{7}+\frac{u^{9}}{9}+C
\end{aligned}
$$

A

Question 11.
a) i) $-1+3 i+2-i=1+2 i$
ii)

$$
\begin{aligned}
(-1+3 i)(2-i) & =-2+i+6 i-3 i^{2} \\
& =-2+3+7 i \\
& =1+7 i
\end{aligned}
$$

iii) $-1-(-1)=0$
b) $i \frac{2 x}{x^{2}+1}$

$$
\text { ii) } \begin{aligned}
& \int_{0}^{\sqrt{e^{2}-1}} 2 \cdot \frac{2 x}{x^{2}+1} \cdot \log _{e}\left(x^{2}+1\right) d x \\
= & {\left[2 \cdot \frac{1}{2}\left(\log _{e}\left(x^{2}+1\right)\right)^{2}\right]_{0}^{\sqrt{e^{2}-1}} } \\
= & \left(\log _{e}\left(e^{2}-1+1\right)\right)^{2}-\left(\log _{e}(0+1)\right)^{2} \\
= & \left(\log _{e}\left(e^{2}\right)\right)^{2}-0 \\
= & 4
\end{aligned}
$$

$$
\begin{aligned}
& \text { di) } 5 \cos \theta-2 \sin \theta=R \cos \theta \cos \alpha-R \sin \theta \sin \alpha \\
& 5=R \cos \alpha \quad R=\sqrt{5^{2}+2^{2}} \\
& 2=R \sin \alpha \quad=\sqrt{29} \\
& \frac{2}{5}=\tan \alpha \Rightarrow \alpha=\tan ^{-1} \frac{2}{5} \\
& \therefore 5 \cos \theta-2 \sin \theta=\sqrt{29} \cos \left(\theta+\tan ^{-1} \frac{2}{5}\right)
\end{aligned}
$$

ii) $I=\int \frac{d x}{\left(\sqrt{29} \cos \left(\frac{x}{2}+\alpha\right)\right)^{2}}$ where $\alpha=\tan ^{-1} \frac{2}{5}$

$$
=\frac{1}{29} \int \sec ^{2}\left(\frac{x}{2}+\alpha\right) d x
$$

$$
=\frac{1}{29} \cdot 2 \tan \left(\frac{x}{2}+\alpha\right)+C
$$

$$
=\frac{2}{29} \tan \left(\frac{x}{2}+\tan ^{-1} \frac{2}{5}\right)+C
$$

or, alternatively:

$$
\begin{aligned}
& =\frac{2}{29} \frac{\tan \frac{x}{2}+\frac{2}{5}}{1-\left(\tan \frac{x}{2}\right)\left(\frac{2}{5}\right)} \\
& =\frac{2\left(5 \tan \frac{x}{2}+2\right)}{29\left(5-2 \tan \frac{x}{2}\right)}
\end{aligned}
$$

d) i)

Circle, radius 2 , centre

$$
-2+2 \sqrt{3} i
$$

ii) Minimum value for $\operatorname{Arg}(z)=\frac{\pi}{2}$

$$
|-2+2 \sqrt{3} i|=\sqrt{4+(2 \sqrt{3})^{2}}=\sqrt{16}=4
$$

so $\sin \theta=\frac{2}{4}$ and $\theta=\frac{\pi}{6}$
Max value for $\operatorname{Arg}(3)=\frac{\pi}{2}+2 \times \frac{\pi}{6}=\frac{5 \pi}{6}$

$$
\therefore \quad \frac{\pi}{2} \leqslant \operatorname{Arg}(z) \leqslant \frac{5 \pi}{6}
$$

Question 12
a) i)

$$
\begin{aligned}
& =\left(\sqrt{2} e^{-\frac{\pi}{4} i}\right)^{6} \\
& =8 e^{\frac{-6 \pi}{4} i} \\
& =8 e^{\frac{\pi}{2} i}=8 i
\end{aligned}
$$

ii) $z^{3}=8 i \quad$ let $z=r \operatorname{cis} \theta$

$$
r^{3} \operatorname{cis} 3 \theta=8 \operatorname{cis}\left(\frac{\pi}{2}+2 k \pi\right)
$$

$$
\begin{aligned}
r^{3} & =8 \Rightarrow r=2 \\
3 \theta & =\frac{\pi}{2}+2 k \pi \\
\theta & =\frac{\pi(1+4 k)}{6} \\
\text { and }-\pi & <\frac{\pi(1+4 k)}{6} \leqslant \pi \\
-6 & <1+4 k \leqslant 6 \\
-\frac{7}{4} & <k \leqslant \frac{5}{4}
\end{aligned}
$$

So, for $k=-1,0,1$

$$
\begin{aligned}
\theta & =\frac{-3 \pi}{6}, \frac{\pi}{6}, \frac{5 \pi}{6} \\
z & =2 \operatorname{cis}\left(\frac{-\pi}{2}\right), 2 \operatorname{cis}\left(\frac{\pi}{6}\right), 2 \cos \left(\frac{5 \pi}{6}\right) \\
& =-2 i, \sqrt{3}+i,-\sqrt{3}+i
\end{aligned}
$$

b) i)

$$
\begin{aligned}
\frac{3+i}{3-i} \times \frac{3+i}{3+i} & =\frac{9+6 i+i^{2}}{9+1} \\
& =\frac{8+6 i}{10} \\
& =\frac{4}{5}+\frac{3}{5} i
\end{aligned}
$$

ii) $\int_{\frac{4}{5}}^{\frac{\pi}{4}}$

$$
\begin{align*}
\arg \left(\frac{\bar{u}}{u}\right) & =\tan ^{-1}\left(\frac{3 / 5}{4 / 5}\right) \\
& =\tan ^{-1}\left(\frac{3}{4}\right) \tag{1}
\end{align*}
$$

But $\arg \left(\frac{\bar{u}}{u}\right)=\arg \bar{u}-\arg u$

$$
\begin{align*}
& =\tan ^{-1}\left(\frac{1}{3}\right)-\tan ^{-1}\left(-\frac{1}{3}\right) \\
& =\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{3}\right) \\
& =2 \tan ^{-1}\left(\frac{1}{3}\right) \tag{2}
\end{align*}
$$

From (1) and (2):

$$
\tan ^{-1}\left(\frac{3}{4}\right)=2 \tan ^{-1}\left(\frac{1}{3}\right)
$$

c) If $1-i$ is a root,

$$
\begin{aligned}
(1-i)^{3}+p(1-i)+q & =0 \\
-2-2 i+p-p i+q & =0 \\
(-2+p+q)+(-2-p) i & =0 \\
-2-p=0 \quad-2+p+q & =0 \\
p=-2 \quad-4+q & =0 \\
q & =4
\end{aligned}
$$

d) i)

$$
\begin{aligned}
& z^{2}-2 z \cos \theta+\cos ^{2} \theta=-1+\cos ^{2} \theta \\
& (z-\cos \theta)^{2}=-\sin ^{2} \theta \\
& z-\cos \theta= \pm i \sin \theta \\
& z=\cos \theta \pm i \sin \theta
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \alpha=\cos \theta+i \sin \theta \\
& \alpha^{n}=\cos (n \theta)+i \sin (n \theta) \\
& \beta=\cos \theta-i \sin \theta \\
&=\cos (-\theta)+i \sin (-\theta) \\
& \beta^{n}=\cos (-n \theta)+i \sin (-n \theta) \\
&=\cos (n \theta)-i \sin (n \theta) \\
& \alpha^{n}+\beta^{n}=2 \cos (n \theta) \\
& \alpha^{n}-\beta^{n}=2 i \sin (n \theta) \\
& P \theta=\left|\left(\alpha^{n}+\beta^{n}\right)-\left(\alpha^{n}-\beta^{n}\right)\right| \\
&=|2 \cos (n \theta)-2 i \sin (n \theta)| \\
&=2 \sqrt{\cos ^{2}(n \theta)+\sin ^{2}(n \theta)} \\
&=2 \sqrt{1} \\
&=2
\end{aligned}
$$

e) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1-\lambda \\ 2-3 \lambda \\ 2\end{array}\right)$

Distance from \mathcal{O} to a point on the line is:

$$
\begin{aligned}
d & =\sqrt{x^{2}+y^{2}+z^{2}} \\
d^{2} & =(1-\lambda)^{2}+(2-3 \lambda)^{2}+2^{2} \\
& =1-2 \lambda+\lambda^{2}+4-12 \lambda+9 \lambda^{2}+4 \\
& =10 \lambda^{2}-14 \lambda+9
\end{aligned}
$$

minimum value of d^{2} (and hence d) is when $\lambda=\frac{-b}{2 a}$

$$
=\frac{14}{20}=\frac{7}{10}
$$

So, closest point to 0 is:

$$
\begin{aligned}
\overrightarrow{Q P}=\operatorname{proj}_{\underset{\sim}{j}} \overrightarrow{O P} & =\frac{\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
-3 \\
0
\end{array}\right)}{\left(\begin{array}{c}
-1 \\
-3 \\
0
\end{array}\right) \cdot\binom{-1}{-3}}\left(\begin{array}{c}
-1 \\
-3 \\
0
\end{array}\right) \\
& =\frac{-7}{10}\left(\begin{array}{c}
-1 \\
-3 \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
\frac{7}{10} \\
\frac{11}{10} \\
0
\end{array}\right)
\end{aligned}
$$

$\overrightarrow{O Q}=\overrightarrow{O P}-\overrightarrow{Q P}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)-\left(\begin{array}{c}\frac{7}{10} \\ \frac{11}{10} \\ 0\end{array}\right)=\left(\begin{array}{c}\frac{3}{10} \\ \frac{10}{10} \\ 2\end{array}\right)$

Question 13
a)

$$
\begin{aligned}
\cos \theta+i \sin \theta & =e^{i \theta} \\
(\cos \theta+i \sin \theta)^{n} & =\left(e^{i \theta}\right)^{n} \\
& =e^{i n \theta} \\
& =\cos (n \theta)+i \sin (n \theta)
\end{aligned}
$$

b) i) Euler's identity:

$$
\begin{aligned}
e^{i \pi} & =-1 \\
\left(e^{i \pi}\right)^{-i} & =(-1)^{-i} \\
e^{-i^{2} \pi} & =(-1)^{-i} \\
e^{\pi} & =(-1)^{-i}
\end{aligned}
$$

ii) Similar ty:

$$
-1=e^{i(\pi+2 k \pi)} \quad, k \in \mathbb{Z}
$$

$$
(-1)^{-i}=e_{1}^{-i}
$$

$$
=e^{(2 k+1) \pi}
$$

$$
\text { c) i) } \begin{aligned}
\frac{1}{2} v^{2} & =6+2 x-\frac{1}{2} x^{2} \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =2-x \\
\ddot{x} & =-1^{2}(x-2)
\end{aligned}
$$

which is of the form

$$
\ddot{x}=-n^{2}(x-c)
$$

\therefore SHM with centre 2 .
ii) $\min / \max x$ at $v=0$:

$$
\begin{aligned}
& 0=12+4 x-x^{2} \\
& 0=(x-6)(x+2) \\
& x=-2,6
\end{aligned}
$$

amplitude $=6-2=2--2=4$
period $=\frac{2 \pi}{n}=\frac{2 \pi}{1}=2 \pi$
(iii) centre of motion, $b=2$

$$
x=4 \sin (t+\theta)+2
$$

at $t=0, x=6$

$$
\begin{aligned}
& 6=4 \sin (0+\theta)+2 \\
& 1=\sin \theta \\
& \theta=\frac{\pi}{2}
\end{aligned}
$$

d) i)

$$
\begin{aligned}
& v \frac{d v}{d x}=\frac{-1}{10}(100+v) \\
& \int_{200}^{0} \frac{v d v}{100+v}=\frac{-1}{10} \int_{0}^{h} d x \\
& \int_{200}^{0} \frac{100+v-100}{100+v} d v=\frac{-1}{10}[x]_{0}^{h} \\
& \int_{200}^{0}\left(1-\frac{100}{100+v}\right) d v=\frac{-h}{10} \\
& {[v-100 \ln (100+v)]_{200}^{0}=\frac{-h}{10}}
\end{aligned}
$$

$$
\begin{gathered}
-100 \ln 100-200+100 \ln 300=\frac{-h}{10} \\
-2000+1000 \ln \left(\frac{300}{100}\right)=-h \\
h=1000(2-\ln 3)
\end{gathered}
$$

$$
\begin{aligned}
& \text { ii) } \quad \int^{\frac{1}{10} m v} \quad \text { Let max } \\
& +\downarrow v \quad \downarrow_{m g}^{m} \quad \begin{array}{l}
\text { height be } \\
x=0 \text { now. }
\end{array} \\
& m a=F \quad(v=0 \text { there }) \\
& m a=m g-\frac{1}{10} m v \\
& 18 \frac{d v}{d x}=10-\frac{v}{10}
\end{aligned}
$$

$$
\begin{gathered}
v \frac{d v}{d x}=\frac{100-v}{10} \\
\int_{0}^{v} \frac{v d v}{100-v}=\frac{1}{10} \int_{0}^{1000(2-\ln 3)} d x
\end{gathered}
$$

$-\int_{0}^{v} \frac{v-100+100}{v-100} d v=\frac{1}{10}[x]_{0}^{1000(2 \ln 3)}$

$$
\begin{aligned}
& \int_{0}^{v}\left(1+\frac{100}{v-100}\right) d v=\frac{-1}{10}(1000(2-\ln 3)) \\
& {[v+100 \ln |v-100|]_{0}^{v}=-100(2-\ln 3)} \\
& \left.\begin{array}{rl}
v & +100 \ln |v-100|-0
\end{array}\right)-100 \ln |0-100| \\
& +100(2-\ln 3)=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{v}{100}+\ln \left|\frac{v-100}{100}\right|+(2-\ln 3)=0 \\
& \frac{v}{100}+\ln \left|\frac{v}{100}-1\right|+(2-\ln 3)=0 \\
& \frac{v}{100}+\ln \left|1-\frac{v}{100}\right|+(2-\ln 3)=0
\end{aligned}
$$

Question 14
a) Let the prime be p and the square number be n^{2}.
For. $n^{2}=1$ and $p=2, p>n^{2}$.
For. $n^{2}=4$ and $p=3, p<n^{2}$ (the exception)
For $n \geqslant 3$, if $p=n^{2}-1$ then $p=(n-1)(n+1)$ where, since $n \geqslant 3, n-1>1$ and $n+1>1$ which implies that p is composite.

This is a contradiction so The situation where the prime is one less than the square -is impossible. Hence, for $n \geqslant 3$,

$$
p=n^{2}+1
$$

\therefore The conjecture is true.
b) Assume $a^{2}-4 b-3=0$

$$
(a, b \in \mathbb{Z})
$$

So $a^{2}-4 b=3$
If a is even, $a=2 n \quad(n \in \mathbb{Z})$

$$
\begin{aligned}
& (2 n)^{2}-4 b=3 \\
& 4 n^{2}-4 b=3 \\
& 2\left(2 n^{2}-2 b\right)=3
\end{aligned}
$$

which is a contradiction since LHS is even.
If a is odd, $a=2 n+1(n \in \mathbb{Z})$

$$
\begin{array}{r}
(2 n+1)^{2}-4 b=3 \\
4 n^{2}+4 n-4 b=2 \\
4\left(n^{2}+n-b\right)=2 \\
n^{2}+n-b=\frac{1}{2}
\end{array}
$$

which is a contradiction since
LHS must be an integer

$$
\therefore a, b \in \mathbb{Z} \Rightarrow a^{2}-4 b-3 \neq 0
$$

c) Prove for $n=1$:

$$
\begin{aligned}
T_{1} & =(1+1) 3^{\prime} \\
& =2 \times 3 \\
& =6 \text { as stated }
\end{aligned}
$$

Prove for $n=2$:

$$
\begin{aligned}
T_{2} & =(2+1) 3^{2} \\
& =3 \times 9 \\
& =27 \text { as stated }
\end{aligned}
$$

Assume true for $n=k, k \geqslant 1$
i.e. $T_{k}=(k+1) 3^{k}$

Assume true for $n=k+1, k \geqslant 1$

$$
\text { i.e. } \begin{aligned}
T_{k+1} & =(k+1+1) 3^{k+1} \\
& =(k+2) 3^{k+1}
\end{aligned}
$$

Now prove for $n=k+2, k \geqslant 1$
RIP: $T_{k+2}=(k+3) 3^{k+2}$

$$
T_{k+2}=6 T_{k+2-1}-9 T_{k+2-2}
$$

$$
=6 T_{k+1}-9 T_{k}
$$

$$
=6(k+2) 3^{k+1}-9(k+1) 3^{k}
$$

$$
=2(k+2) \cdot 3 \cdot 3^{k+1}-(k+1) \cdot 3^{2} \cdot 3^{k}
$$

$$
=(2 k+4) 3^{k+2}-(k+1) 3^{k+2}
$$

$$
=(2 k+4-k-1) 3^{k+2}
$$

$$
=(k+3) 3^{k+2}
$$

Hence by the principle of mathematical induction, the statement is true $\forall n \in \mathbb{Z}, n \geqslant 1$.

$$
\begin{aligned}
\text { d) } i)(\cos \theta+i \sin \theta)^{5} & =\cos 5 \theta+i \sin 5 \theta \\
(\cos \theta[1+i \tan \theta])^{5} & =\cos 5 \theta+i \sin 5 \theta \\
\cos ^{5} \theta(1+i \tan \theta)^{5} & =\cos 5 \theta+i \sin 5 \theta \\
(1+i \tan \theta)^{5} & =\frac{\cos 5 \theta+i \sin 5 \theta}{\cos ^{5} \theta}
\end{aligned}
$$

ii) From part i)

$$
\begin{aligned}
\text { LH }= & 1^{5}+5 i \tan \theta+10 i^{2} \tan ^{2} \theta+10 i^{3} \tan ^{3} \theta \\
& +5 i^{4} \tan ^{4} \theta+i^{5} \tan ^{5} \theta \\
= & 1-10 \tan ^{2} \theta+5 \tan ^{4} \theta \\
& +i\left(5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta\right) \\
\text { RMS }= & \frac{\cos 5 \theta}{\cos ^{5} \theta}+i \frac{\sin 5 \theta}{\cos ^{5} \theta}
\end{aligned}
$$

Equating real/imaginary ports:

$$
\begin{aligned}
& \frac{\cos 5 \theta}{\cos 5}=1-10 \tan ^{2} \theta+5 \tan ^{4} \theta \\
& \cos 5 \theta=\cos ^{5} \theta\left(1-10 \tan ^{2} \theta+5 \tan ^{4} \theta\right)
\end{aligned}
$$

Similarly:
$\sin 5 \theta=\cos ^{5} \theta\left(5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta\right)$
iii)

$$
\begin{aligned}
\tan 5 \theta & =\frac{\sin 5 \theta}{\cos 5 \theta} \\
& =\frac{\cos ^{5} \theta\left(5 t-10 t^{3}+t^{5}\right)}{\cos ^{5} \theta\left(1-10 t^{2}+5 t^{4}\right)} \\
& =\frac{5 t-10 t^{3}+t^{5}}{1-10 t^{2}+5 t^{4}}
\end{aligned}
$$

iv) Let $\theta=\frac{\pi}{5}$ so $t=\tan \frac{\pi}{5}$ and $\tan 5 \theta=\tan \pi=0$

$$
\text { so } \begin{aligned}
0 & =\frac{5 t-10 t^{3}+t^{5}}{1-10 t^{2}+5 t^{4}} \\
0 & =t\left(t^{4}-10 t^{2}+5\right)
\end{aligned}
$$

But $t=\tan \frac{\pi}{5} \neq 0$ so,

$$
\begin{aligned}
&\left(t^{2}\right)^{2}-10 t^{2}+5=0 \\
& t^{2}=\frac{10 \pm \sqrt{100-4 \times 5}}{2} \\
&=5 \pm 2 \sqrt{5}
\end{aligned}
$$

but since $\tan x$ is always increasing, $\tan \frac{\pi}{5}<\tan \frac{\pi}{4}$

$$
\tan \frac{\pi}{5}<1
$$

so $t^{2}<1$

$$
\begin{aligned}
& t^{2}=5-2 \sqrt{5} \\
& t= \pm \sqrt{5-2 \sqrt{5}}
\end{aligned}
$$

but $t=\tan \frac{\pi}{5}>0$

$$
\therefore \tan \frac{\pi}{5}=\sqrt{5-2 \sqrt{5}}
$$

Question 15
a) i)

$$
\dot{y}=\frac{(10+k u \sin \theta)}{k^{2}}\left(k e^{-k t}\right)-\frac{10}{k}
$$

and max height is at $\dot{y}=0$

$$
\begin{aligned}
& \frac{(10+k u \sin \theta) k e^{-k t}}{k^{2}}=\frac{10}{k} \\
& e^{-k t}=\frac{10}{10+k u \sin \theta} \\
& -k t=\ln \left(\frac{10}{10+k u \sin \theta}\right) \\
& t=\frac{1}{k} \ln \left(\frac{10+k u \sin \theta}{10}\right)
\end{aligned}
$$

ii)

$$
\begin{aligned}
t & =\frac{1}{0.5} \ln \left(\frac{10+0.5 \times 40 \times \sin 30^{\circ}}{10}\right) \\
& =2 \ln 2
\end{aligned}
$$

at $t=2 \ln 2$:

$$
\begin{aligned}
y & =\frac{10+0.5 \times 40 \times \sin 30^{\circ}}{0.5^{2}}\left(1-e^{-0.5(2 \ln 2)}\right)-\frac{10(2 \ln 2)}{0.5} \\
& =80\left(1-\frac{1}{2}\right)-40 \ln 2 \\
& =40-40 \ln 2 \\
& =40(1-\ln 2) \\
x & =\frac{40 \cos 30^{\circ}}{0.5}\left(1-e^{-0.5(2 \ln 2)}\right) \\
& =40 \sqrt{3}\left(1-\frac{1}{2}\right) \\
& =20 \sqrt{3}
\end{aligned}
$$

$$
\therefore \max \text { height at }(20 \sqrt{3}, 40(1-\ln 2))
$$

$$
\begin{aligned}
& \text { b) i) } I_{n}=\int_{0}^{1}\left(1+x^{2}\right)^{-n} d x \\
& u=\left(1+x^{2}\right)^{-n} \quad v^{\prime}=1 \\
& u^{\prime}=-n\left(1+x^{2}\right)^{-n-1} .2 x \quad v=x \\
& =\frac{-2 n x}{\left(1+x^{2}\right)^{1+1}} \\
& \text { so, } I_{n}=\left[x\left(1+x^{2}\right)^{-n}\right]_{0}^{1}-\int_{0}^{1} \frac{-2 n x^{2}}{\left(1+x^{2}\right)^{n+1}} d x \\
& =\frac{1}{2^{n}}+2 n \int_{0}^{1} \frac{1+x^{2}-1}{\left(1+x^{2}\right)^{n+1}} d x \\
& =\frac{1}{2^{n}}+2 n \int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} d x-2 \int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{n+1}} \\
& { }_{2} I_{n}=\frac{1}{2^{n}}+2 n I_{n}-2 n I_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& 2_{n} I_{n+1}=2 n I_{n}-I_{n}+\frac{1}{2^{n}} \\
& I_{n+1}=\frac{2 n I_{n}-I_{n}}{2 n}+\frac{1}{2 n \cdot 2^{n}} \\
& \quad=\frac{2 n-1}{2 n} I_{n}+\frac{1}{\left(2^{n+1}\right) n}
\end{aligned}
$$

ii)

$$
\text { i) } \begin{aligned}
& I_{1}=\int_{0}^{1} \frac{1}{1+x^{2}} d x \\
&=\left[\tan ^{-1} x\right]_{0}^{1} \\
&=\frac{\pi}{4} \\
& I_{2}=\frac{2-1}{2} \cdot \frac{\pi}{4}+\frac{1}{2^{2}} \\
&=\frac{\pi+2}{8} \\
& \int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{3}} d x=I_{3} \\
&=\frac{4-1}{4} \times \frac{\pi+2}{8}+\frac{1}{2^{3} \times 2} \\
&=\frac{3(\pi+2)}{32}+\frac{1}{16} \\
&=\frac{3 \pi+8}{32}
\end{aligned}
$$

c) i) Let $\angle A B C=\theta$

$$
\begin{aligned}
& B \rightarrow \overrightarrow{B C} \\
& \overrightarrow{B A} \cdot \overrightarrow{B C}=|\overrightarrow{B A}||\overrightarrow{B C}| \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, \overrightarrow{B A}=\left(\begin{array}{c}
-1 \\
4 / 3 \\
7
\end{array}\right)-\left(\begin{array}{c}
4 \\
4 / 3 \\
2
\end{array}\right)=\left(\begin{array}{c}
-5 \\
0 \\
5
\end{array}\right)\right. \\
& |\overrightarrow{B A}|=\sqrt{(-5)^{2}+5^{2}}=\sqrt{50} \\
& \overrightarrow{B C}=\left(\begin{array}{c}
6 \\
\frac{16}{3} \\
2
\end{array}\right)-\left(\begin{array}{c}
4 \\
\frac{4}{3} \\
2
\end{array}\right)=\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right) \\
& |\overrightarrow{B C}|=\sqrt{2^{2}+4^{2}}=\sqrt{20} \\
& \left(\begin{array}{c}
-5 \\
0 \\
5
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right)=\sqrt{50} \sqrt{20} \cos \theta \\
& \cos \theta=\frac{-10}{\sqrt{1000}}=\frac{-1}{\sqrt{10}}
\end{aligned}
$$

ii) ${ }_{3} \int_{0}^{\sqrt{10}} \quad \sin \theta=\frac{3}{\sqrt{10}}$

Area $\triangle A B C=\frac{1}{2} \sqrt{50} \sqrt{20}-\frac{3}{\sqrt{10}}$

$$
=15 \text { units }^{2}
$$

iii)

$$
\begin{aligned}
& \overrightarrow{B M}=\operatorname{proj}_{\overrightarrow{B C}} \overrightarrow{B A} \\
&\left.=\frac{\left(\begin{array}{c}
-5 \\
0 \\
5
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right)}{\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right)} \begin{array}{l}
2 \\
0
\end{array}\right) \\
&=\frac{-10}{20}\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-2 \\
0
\end{array}\right) \\
&|\overrightarrow{B M}|=\sqrt{(-1)^{2}+(-2)^{2}}=\sqrt{5} \\
& A M=\sqrt{\sqrt{50}^{2}-\sqrt{5}^{2}} \quad \text { (Pythagoras) } \\
& 22=3 \sqrt{5}^{2} \quad
\end{aligned}
$$

iv)

$$
\begin{aligned}
\overrightarrow{B N} & =\overrightarrow{B A}+\lambda \overrightarrow{A C} \\
& \left.=\left(\begin{array}{c}
-5 \\
0 \\
5
\end{array}\right)+\lambda\left[\begin{array}{c}
6 \\
\frac{6}{3} \\
2
\end{array}\right)-\left(\begin{array}{c}
-1 \\
4 / 3 \\
7
\end{array}\right)\right] \\
& =\left(\begin{array}{c}
-5 \\
0 \\
5
\end{array}\right)+\lambda\left(\begin{array}{c}
7 \\
4 \\
-5
\end{array}\right) \\
& =\left(\begin{array}{c}
-5+7 \lambda \\
4-\lambda \\
5-5 \lambda
\end{array}\right)
\end{aligned}
$$

Also since $A C \perp B D$:

$$
\begin{aligned}
& \overrightarrow{B N} \cdot \overrightarrow{A C}=0 \\
& \left(\begin{array}{c}
-5+7 \lambda \\
4 \lambda \\
5-5 \lambda
\end{array}\right) \cdot\left(\begin{array}{c}
7 \\
4 \\
-5
\end{array}\right)=0 \\
& -35+49 \lambda+16 \lambda-25+2 \\
& 90 \lambda= \\
& \lambda= \\
& \text { So, } \overrightarrow{B N}=\left(\begin{array}{c}
-5+\frac{14}{3} \\
\frac{8}{3} \\
5-\frac{10}{3}
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{c}
-1 \\
8 \\
5
\end{array}\right)
\end{aligned}
$$

$$
-35+49 \lambda+16 \lambda-25+25 \lambda=0
$$

$$
90 \lambda=60
$$

$$
\lambda=\frac{2}{3}
$$

And $\overrightarrow{O D}=\overrightarrow{O B}+2 \overrightarrow{B N}$

$$
=\left(\begin{array}{c}
4 \\
\frac{4}{3} \\
2
\end{array}\right)+\frac{2}{3}\left(\begin{array}{c}
-1 \\
8 \\
5
\end{array}\right)=\frac{2}{3}\left(\begin{array}{c}
5 \\
10 \\
8
\end{array}\right)
$$

Question 16
a)

For $t=\tan \frac{x}{2}$

$$
\begin{aligned}
\frac{d t}{d x} & =\frac{1}{2} \sec ^{2} \frac{x}{2} \\
& =\frac{1}{2}\left(1+t^{2}\right) \\
d x & =\frac{2 d t}{1+t^{2}}
\end{aligned}
$$

$x=0, t=0$ and $x=\frac{\pi}{2}, t=1$

$$
\begin{aligned}
& \text { CHS }=\int_{0}^{1} \frac{1}{2-\frac{1-t^{2}}{1+t^{2}}+\frac{4 t}{1+t^{2}}} \times \frac{2 d t}{1+t^{2}} \\
&=\int_{0}^{1} \frac{2}{2+2 t^{2}-1+t^{2}+4 t} d t \\
&=\int_{0}^{1} \frac{2}{3 t^{2}+4 t+1} d t \\
&=\int_{0}^{1} \frac{2}{(3 t+1)(t+1)} d t \\
& \text { let } \frac{2}{(3 t+1)(t+1)}=\frac{A}{3 t+1}+\frac{B}{t+1}
\end{aligned}
$$

and $A=3, B=-1$

$$
\begin{aligned}
L H S & \left.=\int_{0}^{1} \frac{3}{3 t+1}-\frac{1}{t+1}\right) d t \\
& =[\ln (3 t+1)-\ln (t+1)]_{0}^{1} \\
& =\ln 4-\ln 2-\ln 1+\ln 1 \\
& =\ln 2
\end{aligned}
$$

23
b) 1

$$
\text { i) } \begin{aligned}
& \frac{n-1}{2}(1+(n-1)) \\
= & \frac{n(n-1)}{2}
\end{aligned}
$$

ii) Let $f(x)=x-\ln (1+x)$ for $x \geqslant 0$

$$
\begin{aligned}
f(0) & =0-\ln 1=0 \\
f^{\prime}(x) & =1-\frac{1}{1+x} \\
& =\frac{1+x-1}{1+x} \\
& =\frac{x}{1+x} \\
& >0 \quad \forall x>0
\end{aligned}
$$

So, $f(x)$ is increasing $\forall x>0$ and since $f(0)=0, f(x)>0 \quad \forall x>0$

$$
\begin{aligned}
& \therefore x-\ln (1+x)>0 \quad \forall x>0 \\
& \therefore x>\ln (1+x) \quad \forall x>0
\end{aligned}
$$

iii) Note:

$$
\begin{aligned}
\binom{n}{2}=\frac{n!}{2(n-2)!} & =\frac{n(n-1)(n-2)!}{2(n-2)!} \\
& =\frac{n(n-1)}{2} \\
& =1+2+3+\ldots+(n-1)(\text { by }(i))
\end{aligned}
$$

From port (ii):

$$
\begin{aligned}
1 & >\ln 2 \\
2 & >\ln 3 \\
\vdots & \\
n-1 & >\ln n
\end{aligned}
$$

Adding together gives:

$$
\begin{aligned}
& 1+2+3+\ldots+(n-1)>\ln 2+\ln 3+\ldots+\ln n \\
&\binom{n}{2}>\ln (2 \times 3 \times 4 \times \ldots \times n) \\
&\binom{n}{2}>\ln (n!) \\
&\left.e^{(n} \begin{array}{l}
n \\
2
\end{array}\right)>e^{\ln (n!)} \begin{array}{l}
\text { since born } \\
\text { sides ore } \\
\text { positive }
\end{array} \\
& \therefore \quad e^{\binom{n}{2}}>n!
\end{aligned}
$$

c) i) Since $f(x)$ is the sum of squares of reals, $f(x) \geqslant 0 \quad \forall x \in \mathbb{R}$.

$$
\begin{aligned}
&\left(\sqrt{a_{k}} x-\frac{1}{\sqrt{a_{k}}}\right)=\left(\sqrt{a_{k}} x\right)^{2}-2 \frac{\sqrt{a_{k}} x}{\sqrt{a_{k}}}+\left(\frac{1}{\sqrt{a_{k}}}\right)^{2} \\
&=a_{k} x^{2}-2 x+\frac{1}{a_{k}} \\
& f(x)=\sum_{k=1}^{n}\left(a_{k} x^{2}-2 x+\frac{1}{a_{k}}\right) \\
&=\left(a_{1}+a_{2}+\ldots+a_{n}\right) x^{2}-2 n x+\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right)
\end{aligned}
$$

Since $f(x) \geqslant 0, \Delta \leqslant 0$:

$$
\begin{aligned}
& \left(-n_{n}\right)^{2}-4\left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \leq 0 \\
& -4\left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \leqslant-4 n^{2} \\
& \left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \geqslant n^{2}
\end{aligned}
$$

ii) Let $a_{1}=1, a_{2}=2$ etc. (i.e. $a_{n}=n$)

$$
\begin{array}{r}
\therefore(1+2+\ldots+n)\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right) \geqslant n^{2} \\
\frac{n(1+n)}{2}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right) \geqslant n^{2} \\
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geqslant \frac{2 n^{2}}{n(1+n)} \\
\therefore \quad 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geqslant \frac{2 n}{n+1}
\end{array}
$$

