BAULKHAM HILLS HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2004

MATHEMATICS EXTENSION 2

Time Allowed - Three hours

GENERAL INSTRUCTIONS:

- Reading time - 5 minutes.
- Working time - 3 hours.
- Write using blue or black pen.
- Start each question on a new page.
- Write your Student Number at the top of each page.
- Calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every Question.

QUESTION 1

(a) Use the substitution $u=x^{2}$ to calculate.

$$
\int_{0}^{\frac{1}{\sqrt{2}}} \frac{x d x}{\sqrt{1-x^{4}}}
$$

(b) Find: $\int \sec ^{4} x d x$.
(©) By rationalising the numerator, show that:

$$
\text { Show that } \quad \int_{0}^{1} \sqrt{\frac{1+x}{3+x}} d x=\sqrt{8}-\sqrt{3}+\ln \left(\frac{2+\sqrt{3}}{3+\sqrt{8}}\right)
$$

(d) Find real numbers A, B and C such that

$$
\begin{aligned}
& \frac{4 \mathrm{x}+2}{(\mathrm{x}+3)\left(\mathrm{x}^{2}+1\right)} \equiv \frac{A}{x+3}+\frac{\mathrm{Bx}+\mathrm{C}}{\mathrm{x}^{2}+1} \text { and hence find: } \\
& \int \frac{4 x+2}{(x+3)\left(x^{2}+1\right)} d x
\end{aligned}
$$

(e) Use integration by parts to find $\int x \tan ^{4} x^{4} d x$

QUESTION 2.

(a) let $\mathrm{z}=1+2 \mathrm{i}$ and $\omega=2-\mathrm{i}$. Find in the form $\mathrm{x}+\mathrm{iy}$.
(i) $\mathrm{z} \bar{\omega}$.
(ii) $\frac{1}{\omega^{2}}$.
(b) Sketch the region in the complex plane where the inequalities

$$
|z-3-4 i| \leq 5 \quad \text { and } \quad 0 \leq \arg z \leq \frac{\pi}{4} \text { both hold. }
$$

(c) Given that $1-i$ is a root of $x^{3}-3 x^{2}+4 x-2=0$, find the other two roots.
(d) If $\sqrt{3}+\mathrm{i}$ and two other complex numbers form the vertices of an equilateral triangle on the complex plane with its centre at the origin, find the two other complex numbers.
(e) Express $(-1+\mathrm{i})$ in modulus argument form and hence evaluate $(-1+\mathrm{i})^{8}$.

QUESTION 3

(a) The diagram shows the graph of $y=f(x)$.

Draw separate half page sketches of the graphs of the following showing all obvious features.
(i) $y=\frac{1}{f(x)}$.
(ii) $\quad \mathrm{y}=\sqrt{\mathrm{f}(\mathrm{x})}$.
(iii) $\quad y=f(|x|)$.
(iv) $y=\ln f(x)$.
(b) An ellipse centred at the origin has a focus at $(-4,0)$ and a directrix $x=9$, find its equation.
(c) The curve $\mathrm{y}=\frac{a x^{2}+b x+c}{c x^{2}+b x+a}$ has a horizontal asymptote of $\mathrm{y}=4$. Find where this curve cuts the y axis.
(d) If z lies on the locus of $|z-2|=2$ in the Argand diagram, show that: $|z|^{2}+|z-4|^{2}$ is a constant

QUESTION 4

(a) The area bounded by the curve $y=12 x-x^{2}$, the x axis, $x=2$ and $x=10$ is rotated about the y axis to form a solid By using the method of cylindrical shells calculate the volume of the solid.
(b) The base of a solid is the segment of the parabola $x^{2}=4 y$ cut off by the line $y=2$. Each cross section perpendicular to the y axis is a right angled isosceles triangle with hypotenuse in the base of the solid. Find the volume of the solid.
(c) The normal at a point $\mathrm{P}\left(\mathrm{cp}, \frac{\mathrm{c}}{\mathrm{p}}\right.$) on the rectangular hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ meets the x axis at Q. M is the mid point of $P Q$.
(i) By proving that the equation of this normal is:

$$
y-\frac{c}{p}=p^{2}(x-c p)
$$

show that M is the point $\left(\frac{2 c p^{4}-c}{2 \mathrm{p}^{3}}, \frac{c}{2 \mathrm{p}}\right)$.
(ii) Hence show that the locus of M is given by:

$$
2 x y c^{2}=c^{4}-8 y^{4}
$$

QUESTION 5

(a) The diagram shows the point $P(a \cos \theta, b \sin \theta)$ on the ellipse.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

P lies vertically above S, one of the foci of the ellipse. The tangent at P meets the y-axis at T and the normal at P meets the y-axis at $K . M$ is the foot of the perpendicular from P to the y-axis.

(i) Write down the co-ordinates of S .
(ii) Show that $\sin \theta=\sqrt{1-e^{2}}$ where e is the eccentricity of the ellipse
(iii) Find the co-ordinates of T,M and K . You may assume that the equation of the tangent at P is : $\quad y-b \sin \theta=\frac{-b \cos \theta}{a \sin \theta}(x-a \cos \theta)$
(iv) Prove that the area of triangle TPK is:

$$
A=\frac{a b e}{2} \times \frac{\left(e^{2}+1\right)}{\sqrt{1-e^{2}}}
$$

(b) The cubic $y=x^{3}-p x+q$ has two turning points
(i) Show that $\mathrm{p}>\mathrm{o}$.
(ii) Find the co-ordinates of these turning points.
(iii) The line $\mathrm{y}=\mathrm{k}$ meets the cubic in 3 points.

Show that

$$
q-\frac{2 \mathrm{p}}{3} \sqrt{\frac{p}{3}}<k<q+\frac{2 \mathrm{p}}{3} \sqrt{\frac{\mathrm{p}}{3}}
$$

(c) Sketch without using calculus

$$
y=\frac{2\left(x^{2}-8 x\right)}{x^{2}+x-20}
$$

QUESTION 6

(a) When $p(x)=x^{4}+a x^{2}+b x$ is divided by $x^{2}+1$ the remainder is $x+2$. Find the values of a and b.
(b) Given that the equation $a x^{4}+4 b x+c=0$ has a double root, prove that

$$
a c^{3}=27 b^{4}
$$

(c) The cubic equation $\mathrm{x}^{3}+\mathrm{px}+\mathrm{q}=0$ has 3 real non zero roots α, β, χ Find in terms of the constants p and q the value of:
(i) $\alpha^{2}+\beta^{2}+\chi^{2}$.
(ii) $(\alpha-1)(\beta-1)(\chi-1)$.
(iii) $\alpha^{3}+\beta^{3}+\chi^{3}$.
(iv) $\alpha^{4}+\beta^{4}+\chi^{4}$

QUESTION 7

(a) A particle of mass m is projected downwards under gravity, in a medium whose resistance is equal to the velocity of the particle multiplied by $\frac{m g}{\mathrm{~T}}$. Show that the terminal velocity of this particle is T.

If a particle is projected vertically upwards in the same medium with velocity u, show that it attains a height of:

$$
\mathrm{H}=\frac{u T}{g}+\frac{\mathrm{T}^{2}}{\mathrm{~g}} \log \left(\frac{T}{u+T}\right)
$$

(b) For what rational value (s) of k do the two equations:

$$
\begin{array}{r}
2 x^{2}-7 x+k=0 \quad \text { and } \\
2 x^{3}-x^{2}-37 x+36=0
\end{array}
$$

have a common root?
(c) Show that $(1+\mathrm{x})^{\mathrm{n}}\left(1+\frac{1}{\mathrm{x}}\right)^{\mathrm{n}}=\left(\sqrt{x}+\frac{1}{\sqrt{\mathrm{x}}}\right)^{2 n}$ and hence prove that

$$
\sum_{r=o}^{n}\left({ }^{n} C_{r}\right)^{2}={ }^{2 n} C_{n}
$$

QUESTION 8

(a) By using De Moivre's Theorem prove that

$$
\begin{aligned}
& \cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \quad \text { and hence solve the equation: } \\
& 16 \mathrm{x}^{5}-20 \mathrm{x}^{3}+5 \mathrm{x} \stackrel{+\theta}{=} 0
\end{aligned}
$$

and deduce the values of
(i) $\operatorname{Cos} \frac{\pi}{10}$.
(ii) $\operatorname{Cos} \frac{3 \pi}{10}$.
(b) Given that $\dot{I}_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x$

Prove that $\mathrm{I}_{\mathrm{n}}=\mathrm{n}\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}$ and hence evaluate:

$$
\int_{0}^{\frac{\pi}{2}} x^{4} \sin x d x
$$

(c) In $\triangle A B C$ a median is drawn from A to meet $B C$ at D. Prove that the length of the median is given by:

$$
m=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}
$$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

BAULKMAM MILLS HIGH TRIAL EXT 22004 SOLVITONS.
(1)
a) $\int_{0}^{\frac{1}{2}} \frac{x d x}{\sqrt{1-x^{4}}}$

Cet $u=x^{2} \quad x=\frac{1}{\sqrt{2}} \quad u=\frac{1}{2}$ du=2xdn' $x=0 \quad u=0$

2
b) $\int \mathrm{rec}^{4} \mathrm{x} d x$
$=\int\left(1+\hbar^{2} x\right) \mathrm{ma}^{2} x d n$

$$
=\int \sec ^{2} x d x+\int \operatorname{th}^{2} x \cos ^{2} x d x
$$

$$
\begin{equation*}
=\tan x+\frac{1}{3} \tan ^{3} x+c 1 \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \text { e) } \\
& I=\int x t^{-1} x d x \\
& \text { at } u=t^{-1} x \quad V^{\prime}=x \\
& u^{\prime}=\frac{1}{1+x^{2}} \quad v=\frac{x^{2}}{2} 1 \\
& \therefore I=\frac{x^{2}}{2} t^{-1} x-\frac{1}{i} \int \frac{x^{2}}{1+x^{2}} d x \quad 1 \\
& =\frac{x^{2}}{2} \hbar^{-1} x-\frac{1}{2} \int \frac{x^{2}+1-1}{1+x^{2}} d x \\
& =\frac{x^{2}}{2} \pi^{-1} x-\frac{x}{2}+\pi_{2}^{-1} x+\frac{1}{1} \\
& \text { (2) } \text { l }^{a} z \bar{\omega}=(1+2 i)(2+i) \\
& \begin{array}{l}
=(2-2)+(4+1) i \\
=5 i
\end{array} \\
& \text { ii) } \frac{1}{\omega^{2}}=\frac{1}{(2-i)^{2}} \\
& =\frac{1}{3-4 i} \times \frac{3+4 i}{3+4 i} 1 \tag{s}\\
& =\frac{3+4 i}{2 r} \\
& =\frac{3}{2} r+\frac{4}{2 r} i \quad 1
\end{align*}
$$

$$
\begin{aligned}
& \text { c) } \int_{0}^{1} \sqrt{\frac{1+x}{3+x}} \times \frac{\sqrt{1+x}}{\sqrt{1+x}} d x \\
& =\int_{0}^{1} \frac{1+x}{\sqrt{3+4 x+x^{2}}} d \ln ^{1} \\
& =\int_{0}^{1} \frac{1+(2 x+4)-1}{\sqrt{(x+4)^{2}-1}} d x \\
& \left.=\left[\sqrt{x^{2}+4 x+3}\right]_{0}^{1(x+4)^{2}}\right]_{0}^{1}-\left[\ln \left(x+2+\sqrt{a^{2}+4 x+3}\right)\right]_{0}^{1} \\
& =\sqrt{8}-\sqrt{3}-[\ln (3+\sqrt{8})-\ln (2+\sqrt{3})] \\
& =\sqrt{8}-\sqrt{3}+\ln (2+\sqrt{3})-\ln (3+\sqrt{8}) \\
& =\sqrt{8}-\sqrt{3}+\ln \left(\frac{2+\sqrt{3}}{3+\sqrt{8}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \therefore I=\frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{d u}{\sqrt{1-u^{2}}} \\
& =\frac{1}{2}[a=-4]_{0}^{\frac{1}{2}} \frac{1}{2} \tag{3}\\
& =\frac{1}{2}\left[\frac{\pi}{2}-0\right]
\end{align*}
$$

c) if(1-i)-in a noot na is $(1+i)$,

$$
\begin{align*}
\therefore P(x) & =(x-2)(x-(1-i))(x-(1+i)) \\
& =(x-\alpha)\left(x^{2}-2 x+2\right) \tag{3}\\
-2 \alpha & =-2
\end{align*}
$$

$$
\therefore d=+1
$$

\therefore athe thournes are $(1+i)$ and. 1
d)

$$
\text { if } \begin{align*}
3_{1} & =\sqrt{3}+i \\
3_{2} & =(\sqrt{3}+i) \operatorname{ci} 2 \frac{\pi}{3} \\
& =\left(-\frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2}\right)+i\left(\frac{3}{2}-\frac{1}{2}\right) \\
& =-\sqrt{3}+i \quad * \\
3_{3} & =(\sqrt{3}+i) \operatorname{cin}-2 \frac{\pi}{3} \\
& =\left(-\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right)+i\left(-\frac{1}{2}-\frac{3}{2}\right) \tag{2}\\
& =0+2 i \quad,
\end{align*}
$$

\therefore ather 2 anken wor are $(-\sqrt{3}, 2 i$.
e)

$$
\begin{align*}
& (-1+i)=\sqrt{2}\left(-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \\
& =\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin 3 \pi\right) 1 \\
& \text { or }=\sqrt{2} \cos \frac{3 \pi}{4} \text {. } \\
& (-1+i)^{8}=(\sqrt{2})^{8} \text { ai } \frac{3 \pi}{4} v^{2}{ }^{2} 1 \\
& =16\left(n_{0}+i n i o\right) \\
& =16 \tag{3}
\end{align*}
$$

3b)

$$
\begin{align*}
& a e=4 \\
& \frac{a}{e}=91 \\
& \therefore a^{2}=36 \\
& \quad a=6 \quad e=\frac{2}{3} \\
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& b^{2}=36\left(1-\frac{4}{9}\right) \\
& =36 \cdot \frac{5}{9} \tag{3}\\
& b=\sqrt{20}
\end{align*}
$$

\therefore ellifere in $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$
(4)
a)

c) as $x \rightarrow \infty$

$$
y \rightarrow \frac{a_{0}}{c}=41
$$

cuts yy when $x=0$

$$
\begin{aligned}
10 \quad y & =\frac{c}{a} \\
& =\frac{1}{4}
\end{aligned}
$$

d) ent $z=x+y$

$$
\begin{align*}
\therefore|z-2|^{2} & =(x-2)^{2}+y^{2}=4 \\
\therefore & x^{2}-4 x+y^{2}=0 \\
|z|^{2}+|z-4|^{2} & =x^{2}+y^{2}+(x-4)^{2}+y^{2}+16 \\
& =x^{2}+y^{2}+x^{2}-8 x+16+y^{2}+16 \mid \\
& =4\left(x^{2}-4 x+y^{2}\right)+16 \\
& =16 \quad 1 \quad(2) \tag{2}\\
\therefore|z|^{2}+|z-y|^{2} & =16 \quad \text { 1e a }
\end{align*}
$$

$$
\begin{aligned}
\delta V & =x^{2} \delta y \\
\therefore V & =\int_{0}^{2} x^{2} d y \\
& =\int_{0}^{2} 4 y d y \\
& =\left[24^{2}\right]_{0}^{2} \\
& =8 \text { senents }
\end{aligned}
$$

Y

$$
\begin{array}{lll|l}
& \cdots & 11
\end{array}
$$

subut $x=c p \quad \therefore y^{\prime}=-\frac{1}{p^{2}}$
\therefore quecel of wame $=P^{2}$
aquet of N is $y-\frac{c}{p}=p^{2}(x-c p)^{\frac{1}{*}}$ sulet $y=0$ \& fil Q

$$
\begin{aligned}
2 x y c^{2} & =2\left(\frac{2 c p^{4}-c}{2 p^{3}}\right) \cdot \frac{c}{2 p} \cdot c^{2} \\
& =\frac{2 c^{4} p^{4}-c^{4}}{2 p^{4}}
\end{aligned}
$$

$$
\begin{align*}
c^{4}-84^{4} & =c^{4}-8 \times\left(\frac{c}{2 p}\right)^{4} \\
& =c^{4}-\frac{8 c^{4}}{16 p^{4}} \\
& =\frac{2 c^{4} p^{4}-c^{4}}{2 p^{4}} \tag{6}\\
\therefore 2 x y c^{2} & =c^{4}-8 y^{4} \tag{13}
\end{align*}
$$

(5)
a) I) S inft $(-\operatorname{coc} 0,0)$ or $(a, 0)$!
11) $\begin{aligned} a c & =4 \cos \theta \\ e & =\cos \theta\end{aligned}$

$$
\begin{array}{r}
\therefore-\frac{c}{p}=p^{2}(x-c p) \\
x-c p=-\frac{c}{p^{3}} \\
x=\left(c p-\frac{c}{p} 3\right) \\
\therefore Q \text { in } h t\left(c p-\frac{c}{p^{3}}, 0\right) \\
M \text { in ht }\left(\frac{\left(c p-\frac{c}{p^{3}}\right)+c p}{2}, \frac{c}{2 p}\right) \\
=\left(\frac{2 c p^{4}-c}{2 p^{3}}, \frac{c}{2 p}\right)
\end{array}
$$

11)

(5) 1
(1) \sin int (acoso,o) or (ae, o $)^{1}$
(ii)

$$
\begin{aligned}
a e & =a \cos \theta \\
e & =\cos \theta \\
\sin \theta & =\sqrt{1-\cos ^{2} \theta} \quad \\
& =\sqrt{1-e^{2}}
\end{aligned}
$$

(III) 位fid T ment $x=0$
m thenst equ

$$
\begin{aligned}
& \therefore y-b \pi a=-\frac{b \cos a}{a \cos a} x-a \cos a \\
& y=\frac{b \omega^{2} a}{\min ^{2} a}+b \operatorname{since} \\
& =\frac{b\left(\cos ^{2} a+m^{2} a\right)}{m a} \\
& =\frac{b}{m a}
\end{aligned}
$$

Tis lit $\left(0, \frac{b}{\text { mia }}\right)$
tofini K mulet $x=0$ uto

$$
\begin{aligned}
& \text { aquater of samil } \\
& y-b \sin \theta=\frac{a \sin \theta}{b \cos \theta}(x-a \cos \theta) \\
& \therefore \begin{aligned}
y & =b \sin \theta-\frac{a \sin \theta \cdot a \cos \theta}{b \cos \theta} \\
& =b \sin \theta-\frac{a^{2} \sin \theta}{b} \\
& =\frac{b^{2} \sin -a^{2} \sin \theta}{b} \\
& =\sin \frac{\left(b^{2}-a^{2}\right)}{b}
\end{aligned}, 1
\end{aligned}
$$

$\therefore \operatorname{kin}$ it $\left(0 ; \min \frac{b\left(b^{2}-a^{2}\right)}{b}\right) *$
Misht $(0, b \sin \theta) *$
IV) Guen $\triangle T P K$

$$
\begin{aligned}
& =\frac{1}{2} \times T K \times M P \\
& =\frac{1}{2} \times\left(\frac{b}{\operatorname{mi\theta }}-\frac{\left(b^{2}-a^{2}\right)}{b}\right) \times a \cos \theta \\
& =\frac{1}{2}\left(\frac{b^{2}+a^{2} m^{2} \theta-b^{2} m^{2} \theta}{b M \min }\right) a \cos \theta
\end{aligned}
$$

$$
=\frac{\left(b^{2}+a^{2}\left(1-c^{2}\right)-b^{2}\left(1-e^{2}\right)\right) \cdot a e}{2 b \sqrt{1-e^{2}}}
$$

$$
=\frac{\left(b^{2}+a^{2}-a^{2} e^{2}+b^{2}+b^{2} e^{2}\right) a e}{2 b \sqrt{1-e^{2}}} .
$$

$$
=\frac{\left(a^{2}\left(1-e^{2}\right)+e^{2} b^{2}\right) a e}{2 b \sqrt{1-e^{2}}}
$$

Luta $b^{2}=a^{2}\left(1-e^{2}\right)-1$

$$
\begin{align*}
\therefore a_{m}= & \frac{\left(b^{2}+e^{2} b^{2}\right) a e}{2 b \sqrt{1-e^{2}}} \\
& =\frac{b^{2}\left(e^{2}+1\right) \cdot a e}{2 b \sqrt{1-e^{2}}} \\
& =\frac{a b e\left(e^{2}+1\right)}{2 \sqrt{1-e^{2}}} \tag{10}
\end{align*}
$$

b)

$$
y=x^{3}-p x+q
$$

tumn \mid ts unluer $y^{\prime}=0$
l.e $3 x^{2}-p=0$
to haure 2 tumen $N 0_{1}$ $3 x^{2}-p=0$ hus 2nolm 1.e $x^{2}=\mp \sqrt{\frac{p}{3}}$
$\therefore P>0$ anden.
ande $x=+\sqrt{\frac{p}{3}}$

$$
y=\frac{p}{3} \sqrt{\frac{p}{3}}-p \sqrt{\frac{p}{3}}+q
$$

	$=q-\frac{2 p}{3} \sqrt{\frac{p}{3}}$
$\min x$	$=-\sqrt{\frac{p}{3}}$
y	$=-\frac{p}{3} \sqrt{\frac{p}{3}}-p \sqrt{\frac{p}{3}}+q, 1$
	$=q-\frac{4 p}{3} \sqrt{\frac{p}{3}}$
$a s$	$p>0$
$q-2 \frac{p}{3} \sqrt{\frac{p}{3}}$	$<k<q+\frac{2 p}{3} \sqrt{\frac{p}{3}}(4)$
$5 c) p$	
1	1

(6) a)

$$
\text { a) } \begin{aligned}
P(x) & =x^{4}+a x^{2}+b x \\
x^{2}+1 & =(x+i)(x-i) \\
\therefore P(L) & =i^{4}+a i^{2}+b i \\
& =1-a+b i
\end{aligned}
$$

lut $P(i)=c+2$

$$
\begin{aligned}
\therefore 1-u & =2 \\
b i & =i \\
\therefore a & =-1 \quad b=11
\end{aligned}
$$

(3)

$$
\text { 11) } \begin{aligned}
(\alpha-1)(\beta-1)(\gamma-1) & =\alpha \beta \gamma-\Sigma \alpha \beta+\leqslant \alpha-11 \\
& =-q-p-1
\end{aligned}
$$

a.) $m a=m g-\frac{m g v}{T}$,

$$
\therefore a=g\left(1-\frac{V}{T}\right)
$$

tunal uelouts suthe $a=0$ se $\frac{\nu}{T}=1$

$$
\therefore \nu=T
$$

\therefore Tis tinnad relonts. *
uhm frogected upranendes weth mithen nelowts U we at $t=0, x=0, v=u$

$$
\begin{aligned}
m a & =-m g-\frac{m g V}{T} \\
a & =-g\left(\frac{T+V}{T}\right)
\end{aligned}
$$

$$
\therefore v \frac{d v}{d r}=-y\left(\frac{T+v}{T}\right)
$$

2b)
$7(x)=2 x^{3}-x^{2}-37 x+36=0$

$$
\therefore\left(\frac{T V}{T \tau v}\right) \frac{d v}{d x}=-g
$$

$$
\begin{array}{ll}
\text { ullan } v=u \quad x=0 \\
\therefore & c=T(u-T \ln (T+u))
\end{array}
$$

$P(l)=2-1-3>+3 c=0$ b
by chuiven otter nouts are

$$
\therefore-\int \frac{W}{T+W} d w=f g d x
$$ $-\frac{9}{2}, 4$.

for $P(x)=2 x^{2}-7 x+k \quad \frac{1}{y}$

$$
T \int \frac{v+T-T}{T+v} d v=-g x+c
$$

$P(1), P\left(\frac{9}{2}\right), P(4)=0$
$P(1)=2-7+k=0 \quad \therefore k=51$

$$
\begin{aligned}
T(v-\tau \ln (\tau+v)) & =-y x+c \\
x-u & =0
\end{aligned}
$$

$P(+4)=32-2 t+k=0 \quad \therefore k=-41$
$P\left(\frac{-9}{2}\right)=\frac{81}{2}+\frac{63}{2}+h=0 \quad \therefore h=-71$

$$
\therefore x=\frac{T(u-T \ln (T+u)-v+T \ln (T+u)}{g}
$$

$$
\begin{aligned}
& \text { at man haglt } V=0 \\
& \therefore H=T\left(\frac{u-T \ln (T+u)+T \ln T}{g}\right) \\
& \quad=\frac{T}{g}\left(u+T \ln \left(\frac{T}{u+T}\right)\right) \\
& H=\frac{u T}{g}+\frac{T^{2}}{g} \ln \left(\frac{T}{u+T}\right)
\end{aligned}
$$

$$
\text { Curtat ter in }=\left(Y_{0}\right)^{2}+\left({ }_{n} C_{1}\right)^{2}+\left(Y_{2}\right)^{2} \ldots\left(n_{n}\right)^{2}
$$

$$
=\sum_{r=0}^{n}\left(c_{r}\right)^{2} \quad 1
$$

$$
\begin{aligned}
& \text { 7C) }(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}=\left((1+x)\left(1+\frac{1}{x}\right)\right)^{n} \\
& =\left(1+\frac{1}{x}+x+1\right)^{n} \\
& =\left(x^{x}+2+\frac{1}{x}\right)^{n} \\
& =\left(\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}\right)^{n} \frac{1}{2} \\
& =\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2 n}
\end{aligned}
$$

$$
\begin{aligned}
& x\left(r_{0}+{ }_{1} C_{1} x^{-1}+r_{2} x^{-2} \ldots \xi_{n^{n}}{ }^{-1}\right.
\end{aligned}
$$

$$
\left.\left.\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2 n}=2 c_{0}(\sqrt{2})^{2 n}\right)^{2 n} C_{r}(\sqrt{2 n})^{2 n-r}(\sqrt{\sqrt{n}})^{r}\right)
$$

$$
\begin{array}{lll}
& \dot{e}^{1 e}{ }^{2 n} c_{n} & (4) \\
\therefore & \sum_{r=0}^{n}\left({ }^{n} C_{r}\right)^{2}={ }^{2 n} C_{n} & 16 \\
\hline
\end{array}
$$

for unitut ton

$$
\begin{gathered}
2 n-r-r=0 \\
n=r
\end{gathered}
$$

$$
\begin{aligned}
& \text { (8) }(\cos \theta+\sin \theta)^{5}=\cos \theta+\sin 5 \theta \\
& \therefore \cos 5 \theta=\operatorname{Re}(\cos \theta+\sin \theta)^{r} \\
& \cos \theta=\cos ^{5} \theta+10 \cos ^{3} \theta A^{2} \theta i^{2}+5 \cos \theta \cdot \operatorname{cin}^{4} c^{c} c^{c} \\
& =\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos ^{2} \theta\left(1-\cos ^{2} \alpha\right)^{2} \\
& =\cos ^{5} \theta-10 \cos ^{3} \theta+10 \cos ^{5} \theta+5 \cos \theta-104^{3} \theta+t h \\
& =16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \cdot x^{2} \\
& 16 x^{2}-20 x^{2}+5 x=01 \\
& \operatorname{let}^{2} x=\cos \theta \\
& \therefore \text { nolutut equat cos } 50=0 \\
& 5 \omega=\frac{\pi}{2}, 3 \frac{\pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}, \frac{4 \pi}{2} \text { i } \\
& \theta=\frac{\pi}{10}, \frac{3 \pi}{10}, \frac{\pi}{2}, \frac{7 \pi}{10}, \frac{9 \pi}{10} \\
& \therefore x=\cos \frac{\pi}{10}, \cos \frac{3 \pi}{10}, \cos \frac{\pi}{2} \cos \frac{\pi}{10}, \cos \frac{9 \pi}{10}-1 \\
& x=\cos \frac{\pi}{10}, \cos \frac{3 \pi}{10}, 0,-\cos 3 \frac{3 \pi}{10}, \cos \frac{\pi}{10} \\
& \text { nolung alyduncialy } \\
& 16 x^{5}-20 x^{3}+5 x=0 \\
& x\left(16 x^{4}-20 x^{2}+5\right)=0 \quad 1 \\
& \therefore x=0 \text { or } x^{2}=\frac{20 \mp \sqrt{400-320}}{32} \\
& =\frac{5 \pm \sqrt[32]{8}}{8} \\
& \therefore x=0, \mp \sqrt{\frac{5 \mp \sqrt{5}}{8}} .1 \\
& \text { (i): } \cos \frac{3 \pi}{10}=\sqrt{\frac{5-\sqrt{5}}{8}} \quad \perp \\
& \text { (i) } \cos \frac{\pi}{6}=\sqrt{\frac{5+\sqrt{5}}{8}}
\end{aligned}
$$

