\qquad

BAULKHAM HILLS HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2007

MATHEMATICS

EXTENSION 2

GENERAL INSTRUCTIONS:

- Reading time - 5 minutes.
- Working time -3 hours.
- Write using blue or black pen.
- \quad Start each question on a new page.
- Write your Student Number at the top of each page.
- Calculators may be used.
- A table of standard integrals is provided.
- ALL necessary working should be shown in every Question.

QUESTION 1 (15 marks)

(a) Simplify $\sin (A-B)+\sin (A+B)$ and hence find $\int \sin 5 x \cos 3 x d x$
(b)

Find real constants A, B, C such that:

$$
\begin{aligned}
& \frac{x^{2}+5 x+2}{\left(x^{2}+1\right)(x+1)} \equiv \frac{\mathrm{Ax}+\mathrm{B}}{x^{2}+1}+\frac{C}{x+1} \\
& \text { and hence find } \quad \int \frac{x^{2}+5 x+2}{\left(x^{2}+1\right)(x+1)} d x
\end{aligned}
$$

(c)

Find $\int \sin ^{-1} x d x$
(d) Find $\int \sqrt{\frac{1+x}{1-x}} d x$
(e) Evaluate $\int_{0}^{1} \mathrm{x}^{5} e^{x^{3}} \mathrm{dx}$

QUESTION 2 (15 marks)
(a) If $z=2 \sqrt{3} i-2$ find:
(i) $|z|$
(ii) $\arg z$
(iii) $\operatorname{Re}(1+2 \mathrm{i})^{-} \bar{Z}$
b) If ω is a complex root of the equation

$$
z^{3}=1
$$

(i) Show that $1+\omega+\omega^{2}=0$
(ii) Find the value of $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{8}\right)$
(c) Find the equation of the locus of z where $|z-2 i|=\operatorname{Im} z$.
(d) Given $z=2-i$, find real values of a and b such that:

$$
\mathrm{az}+\frac{\mathrm{b}}{\mathrm{z}}=1
$$

QUESTION 3 (15 marks)
(a) Sketch the curve:

$$
f(x)=\frac{(\mathrm{x}+1)(\mathrm{x}+3)}{\mathrm{x}} \text { showing the stationary points and asymptotes. }
$$

Hence draw neat half page sketches of:
(i) $\mathrm{y}=\frac{1}{\mathrm{f}(\mathrm{x})}$
(iv) $\mathrm{y}=\log _{\mathrm{e}} \mathrm{f}(\mathrm{x})$
(b)

A trapezium ABCD has parallel sides $\mathrm{AB}=5 \mathrm{~m}$ and $\mathrm{CD}=3 \mathrm{~m}, 2 \mathrm{~m}$ apart. E lies on AD and F lies on BC such that EF is parallel to DC . The distance from EF to DC is hm and $\mathrm{EF}=\mathrm{x}$ show that:

$$
x=3+h .
$$

The diagram is of a waste bin with a rectangular base of side 3 m and 2 m . Its top is also rectangular, parallel to the base with dimensions 5 m and 3 m . The bin has a depth of 2 m , each of its four sides are trapeziums. Find the volume of the bin.

QUESTION 4 (15 marks)
(a) (i) Prove that the normal at point $P\left(c p, \frac{c}{p}\right)$ on the curve $x y=c^{2}$

$$
\text { is } p^{3} x-p y=c\left(p^{4}-1\right)
$$

(ii) The normal at P meets the hyperbola again at point $\mathrm{Q}\left(\mathrm{cq}, \frac{c}{q}\right)$. Prove that

$$
p^{3} q=-1
$$

(iii) The tangent at P meets the y axis at R .

Show that the area of the triangle PQR is:

$$
A=\frac{c^{2}}{2}\left(p^{2}+\frac{1}{p^{2}}\right)^{2}
$$

and hence find the minimum area of this triangle.
(b) (i) Evaluate $\int_{0}^{\frac{\pi}{2}}(\sin t)^{2 k} \cos t d t$
(ii) Noting that $(\cos t)^{2 n+1}=\cos t\left(1-\sin ^{2} t\right)^{n}$ and by using the Binomial Theorem to expand $\left(1-\sin ^{2} t\right)^{n}$ where n is a positive integer, show that

$$
\int_{0}^{\frac{\pi}{2}}(\cos t)^{2 n+1} d t=\sum_{r=0}^{n}(-1)^{r} \frac{1}{2 r+1} \cdot{ }^{n} C_{r}
$$

(iii) Use the result of part (ii) to evaluate

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{7} t d t
$$

QUESTION 5 (15 marks)
(a) The quadratic equation $x^{2}-x+k=0$ where k is a real number has 2 distinct positive roots α and β.

Show that:
(i) $0<k<\frac{1}{4}$
(ii) $\quad \alpha^{2}+\beta^{2}=1-2 k \quad$ and hence deduce that $\alpha^{2}+\beta^{2}>\frac{1}{2}$
(iii) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}>8$
(b) Let α, β and γ be the roots of:
$x^{3}-7 x^{2}+18 x-7=0$
Find the polynomial with roots:
(i) $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$
(ii) $\left(1+\alpha^{2}\right),\left(1+\beta^{2}\right),\left(1+\gamma^{2}\right)$
(c) By considering the stationary values of:

$$
f(x)=x^{3}-3 p x^{2}+4 q \text {, where } \mathrm{p} \text { and } \mathrm{q} \text { are positive real constants, show }
$$

that the equation $f(x)=0$ has 3 real distinct roots if

$$
\begin{equation*}
\mathrm{p}^{3}>\mathrm{q} \tag{3}
\end{equation*}
$$

QUESTION 6 (15 marks)
(a) A particle of mass m is moving vertically in a resisting medium in which the resistance to the motion has a magnitude of $\frac{1}{10} \mathrm{mv}^{2}$ where the particle has speed ums^{-1}. The acceleration due to gravity is $\mathrm{g} \mathrm{ms}^{-2}$.
(i) If the particle falls vertically downwards from rest, show that its acceleration is given by:

$$
\mathrm{a}=\mathrm{g}-\frac{1}{10} \mathrm{v}^{2}
$$

Hence show that its terminal speed $\mathrm{V} \mathrm{ms}^{-1}$ is given by

$$
\begin{equation*}
\mathrm{V}=\sqrt{10 g} \tag{2}
\end{equation*}
$$

(ii) If the particle is projected vertically upwards with speed $V \tan \alpha m s^{-1}$ $\left(0<\alpha<\frac{\pi}{2}\right) \quad$ show that its acceleration ams^{-2} is given by

$$
a=-\left(g+\frac{v^{2}}{10}\right)
$$

Hence show that it reaches a maximum height H metres given by :

$$
\begin{equation*}
H=5 \log _{e} \sec ^{2} \alpha \tag{4}
\end{equation*}
$$

and that it returns to its point of projection with speed

$$
\begin{equation*}
V \sin \alpha m s^{-1} \tag{4}
\end{equation*}
$$

(b) The roots of the equation $4 x^{3}-36 x^{2}+107 x+k=0$ are in arithmetic progression, find:
(i) k
(ii) the roots of the equation.

QUESTION 7 (15 marks)
(a) In the square OABC shown below, the point A represents $4+3 \mathrm{i}$. What complex numbers do the points B and C represent.

(b) (i) Determine the real values of k for which the equation:
$\frac{x^{2}}{19-k}+\frac{y^{2}}{7-k}=1$ defines an ellipse and a hyperbola respectively.
(ii) Sketch the curve corresponding to the value of $\mathrm{k}=3$, showing foci, directrices and where the curve cuts the coordinate axes.
(iii) Describe how the shape of this curve changes as k varies from 3 to 7.
(c)

In $\triangle \mathrm{ABC}, \mathrm{BD}$ bisects $\angle \mathrm{ABC}$ as shown in the diagram.
(i) By considering the area of $\Delta \mathrm{ABC}$, show that

$$
B D=\frac{2 a c \cos x}{a+c}
$$

(ii) Show that : $\quad \cos x=\frac{1}{2} \sqrt{\frac{(a+c)^{2}-b^{2}}{a c}}$
(iii) Hence show that $B D=\frac{\sqrt{a c}}{a+c} \sqrt{(a+c)^{2}-b^{2}}$

QUESTION 8 (15 marks)

(a) If $I_{n}=\int_{1}^{e} x^{3}\left(\log _{e} x\right)^{n} d x$ for $n=0,1,2, \ldots$ show that

$$
I_{n}=\frac{e^{4}}{4}-\frac{n}{4} I_{n-1} \quad \text { and hence find the value of }
$$

$$
\int_{1}^{e} x^{3}\left(\log _{e} x\right)^{2} d x
$$

(b)

In the diagram, the complex numbers $z_{0}, z_{1}, z_{2}, z_{3}$ and z_{4} are represented by the vertices of a regular pentagon with center O and vertices A, B, C, D and E respectively. Given that $z_{0}=2$
(i) Express z_{2} in modulus argument form
(ii) Find the value of $\left(z_{2}\right)^{5}$
(iii) Show that the perimeter of the pentagon is $20 \sin \frac{\pi}{5}$
(c) (i) Use De Moivre's Theorem to find expressions for $\cos 5 \theta$ and $\sin 5 \theta$ and hence show that:

$$
\tan 5 \theta=\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}
$$

(ii) By considering the equation:

$$
x^{5}-5 x^{4}-10 x^{3}+10 x^{2}+5 x-1=0
$$

Prove that $\tan \frac{\pi}{20}+\tan \frac{9 \pi}{20}+\tan \frac{17 \pi}{20}+\tan \frac{33 \pi}{20}=4$

Da)
EXT 2 TRIAL 2007

$$
\begin{aligned}
& \sin (A-B)+\operatorname{Ln}(A+B)=\sin A C B-\sin C A+h A C A+\operatorname{ACB} B= \\
& =2 \operatorname{Li} A C_{\Delta} B \text {. } \\
& \text { ed } A=5 x \quad B=3 x \\
& \therefore \int \min 5 x \cos 3 x=\frac{1}{2} \int \sin 2 x \alpha+\frac{1}{2} \int x \cdot x+x \\
& =-\frac{1}{4} \cos 2 x-\frac{1}{c_{4}} \cos 8 x+c
\end{aligned}
$$

$$
\begin{array}{ll}
\text { b) }(A x+B)(x+1)+c\left(x^{2}+1\right) \equiv x^{2}+r x+2 \\
x=-1 & 2 c=-2 \quad \therefore C=-1 \\
\text { coff cf } x^{2} & A+C=1 \quad \therefore A=2 \\
\text { coutat tin } & B+C=2 \quad \therefore B=3
\end{array}
$$

$$
\begin{aligned}
\therefore I & =\int \frac{2 x+3}{x^{2}+1} d x-\int \frac{d x}{x+1} \\
& =\ln \left(x^{2}+1\right)+3 \operatorname{ta}^{-1} x-\ln (x+1)+c
\end{aligned}
$$

c)

$$
\begin{aligned}
& I=\int \sin ^{-1} x d x \\
& \text { let } u=m^{-1} x \quad v^{\prime}=1 \\
& u^{\prime}-\frac{1}{\sqrt{1-x^{2}}} \quad v=x \\
& \therefore I=x x^{-1} x-\int \frac{x}{\sqrt{1-x^{2}}} d x \\
&=x x^{-1} x+\sqrt{1-x^{2}}+c
\end{aligned}
$$

d)

$$
\begin{aligned}
& \int \sqrt{\frac{1+x}{1-x}} d x \\
& =\int \frac{1+x}{\sqrt{1-x^{2}}} d x \\
& =\int \frac{a^{2} x}{\sqrt{1-x^{2}}}+\int \frac{x d x}{\sqrt{1-x^{2}}} \\
& =x^{-1} x-\sqrt{1-x^{2}}+c
\end{aligned}
$$

(2)
a)

$$
\begin{aligned}
|z| & =\sqrt{(2 \sqrt{3})^{2}+(-2)^{2}} \\
& =\sqrt{12+4}=4
\end{aligned}
$$

11)

$$
\begin{gathered}
x \theta=\frac{\sqrt{3}}{2} \quad \cos \theta=-\frac{1}{2} \\
\therefore \text { arg } z=\frac{\pi}{3}
\end{gathered}
$$

(II)

$$
\begin{aligned}
& \operatorname{Re}(1+2 i)(-2 \sqrt{3} i-2) \\
= & -2+4 \sqrt{3}
\end{aligned}
$$

b) (1) $z^{3}=1$

$$
\begin{gathered}
z^{3}-1=0 \\
(z-1)\left(z^{2}+z+1\right)=0
\end{gathered}
$$

Y wir a conten noet $\omega \neq 1$

$$
\therefore w^{2}+u+1=0 .
$$

11) $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{2}\right)$
and $w^{4}=\omega^{3} \cdot \omega=\omega$

$$
\left.\omega^{\gamma}=\omega^{2}\right)^{2} \cdot \omega^{2}-\omega^{2}
$$

$$
\therefore=(1-\omega)(1-\omega)(1-\omega)\left(1-\omega^{2}\right)
$$

$$
=\left(1-w-w^{2}+w^{3}\right)^{2}
$$

un co $r \omega^{2}=-1 \quad \omega^{3}=1$

$$
\therefore=(1+1+1)^{2}=9 .
$$

c) $|z-2 i|=\operatorname{lm} z$
at $z=x+1 y$

$$
\begin{aligned}
& \therefore \quad \sqrt{x^{2}+(y-2)^{2}}=y \\
& \therefore x^{2}+y^{2}-4 y+4=y^{2} \\
& \therefore \quad x^{2}-4 y+4=0
\end{aligned}
$$

d)

$$
z=2-i
$$

$$
a z+\frac{b}{z}=1
$$

$$
\therefore a(2-i)+\frac{b}{2-i}=1
$$

$$
x \sin \log (2-i)
$$

$$
a(2-i)^{2}+b=2-i
$$

$$
a(3-4 i)+b=2-i
$$

$$
\therefore(3 a+b-2)+i(-4 a+1)=0
$$

$$
\therefore a=\frac{1}{4}
$$

$$
\frac{3}{4}+b-2=0
$$

$$
\therefore b=\frac{5}{4} x
$$

Or $\quad a(2-i)+\frac{b}{2-i} \frac{2+i}{2+i}=1$

$$
\begin{gathered}
a+2 a-a i+\frac{2 b+c b}{5}=1 \\
(10 a+2 b-5)+i(b-5 a)=0 \\
10 a+2 h=5 \\
b-5 a=0 \\
\therefore b=\frac{5}{4} \quad a=\frac{1}{4}
\end{gathered}
$$

4a.) 1

$$
\begin{aligned}
& y=c^{2} x^{-1} \\
& y^{1}=\frac{-c^{2}}{x^{2}}=-\frac{1}{p^{2}}
\end{aligned}
$$

\therefore quad of x anal is p^{2}
$\therefore N \Rightarrow \quad y-\frac{c}{p}=p^{2}(x-c p)$

$$
\therefore p^{3} x-p y=c\left(p^{4}-1\right)
$$

ii) Suht $x=<q \quad y=\frac{c}{\xi} \Rightarrow u$

$$
\begin{aligned}
& \therefore \quad c p^{3} q-\frac{p}{q}=c p^{4}-c \\
& \therefore p^{3} q^{2}-p=p^{4} q-q \\
& p^{3} q^{2}-p^{4} q=p-q \\
& p^{3} q(q-p)=(p-q) \\
& \therefore p^{3} q=-1
\end{aligned}
$$

111) Enth oftengat \sim i

$$
\text { wadet } \begin{aligned}
x+p y & =2 a p \\
x-0 \quad \therefore y & =\frac{2 c}{p}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & R\left(0, \frac{2 c}{p}\right) \\
& P\left(c p, \frac{c}{p}\right) \\
& Q\left(\frac{-c}{p^{s}},-c p^{3}\right)
\end{aligned}
$$

Ares of $\triangle P Q R=\frac{1}{2} P R \times Q R$

$=\frac{c^{2}}{2} \sqrt{\hat{p}^{2}+\frac{1}{p^{2}}} \cdot \sqrt{\left(\frac{\left.p+\frac{1}{p}\right)^{2}+\left(\frac{1}{p}+p^{3}\right)^{2}}{c}\right.}$

$$
=\frac{c^{2}}{2} \sqrt{\frac{\left(p^{4}+1\right)}{p^{2}}} \cdot \sqrt{\left(\frac{p^{4}+1}{p^{3}}\right)^{2}+\left(\frac{p^{4}+1}{p}\right)^{2}}
$$

$$
\begin{aligned}
& =\frac{c^{2}}{2} \sqrt{\left(\frac{\left.p^{4}+1\right)}{p^{2}}\right.} \cdot \sqrt{\left.p^{4}+1\right)^{2}\left(\frac{1}{p^{6}}+\frac{1}{p^{2}}\right)} \\
& =\frac{c^{2}}{2} \frac{\sqrt{p^{4}+1}}{p} \ddot{p}^{\left(p^{4}+1\right)} \sqrt{\frac{p^{4}+1}{p^{c}}} \\
& =\frac{c^{2}}{2} \frac{\left(p^{4}+1\right)^{2}}{p^{4}} \\
& =\frac{c^{2}}{2}\left(\frac{p^{4}+1}{p^{2}}\right)^{2} \\
A & =\frac{c^{2}}{2}\left(p^{2}+\frac{1}{p^{2}}\right)^{2} \\
\frac{d A}{d p^{2}} & =\frac{c^{2}}{2}\left(p^{2}\left(\frac{1}{p^{2}}\right)\left(1-\frac{1}{p^{4}}\right)\right. \\
& =c u h \quad p=\mp 1 \\
\therefore A & =\frac{c^{2}}{2} \cdot 2^{2}=2 c^{2} .
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}}(\ln t)^{p-2} \cos t d t \\
& =\left[\frac{(\operatorname{mit})^{2 b+1}}{2 k+1}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{2 h+}, \\
& \int_{0}^{\frac{\pi}{2}}(\cos t)^{n+1} d t=\int_{0}^{\frac{1}{2 n}+1} \cot \left(1-m^{2} t\right)^{\lambda} d t \\
& =\int n_{0}^{n} \cos t-\zeta_{1} \operatorname{coth}^{2} t+\cdots+\left(-1 \Gamma_{4}\right. \\
& =\frac{1}{2 r o+1}-r_{1} \frac{1}{2 x+1}+r_{2} \frac{1}{2 k+1} \cdots . \\
& =\sum_{r=0}^{n}(-1)^{r} \frac{1}{2 r+1} \cdot{ }^{n} C_{r} \text {. } \\
& \int_{0}^{\frac{\pi}{2}} \cos ^{2} t d t \longrightarrow n=3 \quad \text { (not } 7 \text {, }
\end{aligned}
$$

$\therefore \tau=1-\frac{3 C_{1}}{3}+\frac{3 C_{2}}{5}-\frac{3 C_{3}}{7}$

Q5
(a) $\quad x^{2}-x+k=0$
$\alpha+\beta=1, \alpha \beta=k$
$\alpha, \beta>\delta \therefore k^{\prime}>0$
α, β are real, distinict $\therefore \Delta>0$
$\stackrel{\rightharpoonup}{4}>k$

$$
\begin{aligned}
& \text { s.p when } f^{\prime}(x)=0 \quad 3 x(x-2 p)=0 \\
& x=0,2 p
\end{aligned}
$$

(i) $\therefore 0<k<\frac{1}{4}$
(ii) $\begin{aligned} \alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\ & =1-2 k\end{aligned}$

Since $0<k<\frac{1}{4}$

$$
\begin{aligned}
& 0>-2 k>-\frac{1}{2} \\
& 1>1-2 k>1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=4 q>0 \text { since } q>0 \\
& f(2 p)=(2 p)^{3}-3 p(2 p)^{2}+4 q \\
&=4 q-4 p^{3} \\
& \text { for } 3 \text { real distinct reots } \\
& \text { prosuct } 4 \text { y values }<0 \\
& \therefore 4 q-4 p^{3}<0 \text { since } 4 q>0
\end{aligned}
$$

$$
\therefore \quad \alpha^{2}+\beta^{2}=1-2 k>\frac{1}{2}
$$

(iii) $k<\frac{1}{4}, \frac{1}{k}>4$

$$
\frac{1}{k^{2}}>4^{2} \text {, ie } \frac{1}{\alpha^{2} \beta^{2}}>16 \mathrm{~V}
$$

$$
\begin{aligned}
& i_{m g}^{t_{0} m v^{2}} \quad \therefore g-\frac{1}{10} m v^{2}=m a \\
& \therefore \quad a=g-\frac{1}{10} v^{2}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}>\frac{1}{2} \times 16 \\
>8
\end{gathered}
$$

$$
\begin{gathered}
\text { trmanemalouty ulian } a=0 \\
\therefore \quad V^{2}=10 g
\end{gathered}
$$

(b) (i) Let $y=\frac{1}{x}, x=\frac{1}{y}$

$$
\begin{aligned}
& V^{2}=\log \\
& V=\sqrt{10 g}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { Eq i }\left(\frac{1}{y}\right)^{3}-7\left(\frac{1}{y}\right)^{2}+18\left(\frac{1}{y}\right)-7=0 \\
& \quad 1-7 y+18 y^{2}-7 y^{3}=0 \\
& \text { or } \quad 7 x^{3}-18 x^{2}+7 x-1=0
\end{aligned}
$$

(ii) Let $\begin{aligned} y & =1+x^{2} \\ x^{2} & =y-1\end{aligned}$

$$
\begin{aligned}
\text { ii) } \begin{aligned}
\text { Let } y & =1+x^{2} \\
x^{2} & =y-1 \\
\sqrt{y-1}(y-1)-7(y-1)+18 \sqrt{y-1}-7 & =0
\end{aligned}
\end{aligned}
$$

(ii) Upwands $\uparrow+$

$$
\text { (11) } \begin{aligned}
& \text { Upwands } \uparrow+ \\
& l_{10 m v^{2}} \quad \therefore\left(m g+\frac{1}{10} m v^{2}\right)=m a \\
& \therefore a=-\left(g+\frac{v^{2}}{10}\right)
\end{aligned}
$$

tormal valowty ulion $a=0$
$\therefore V^{2}=10 \mathrm{~g}$
Qb ${ }^{\text {Q ouncwand }} \psi+$
$0^{v \frac{d v}{d x}=-\left(g_{4}+\frac{v^{2}}{10}\right)}$
$-\int_{v+20}^{0} \frac{10 v}{\log +v^{2}} d v=\int=\int\left(\int_{10}^{0} d x\right.$

$$
\sqrt{y-1}(y+17)=7 y
$$

$\therefore H=\left[5 \ln \left(10 g+v^{2}\right)\right]_{0} c=$

$$
\begin{aligned}
& (y-1)\left(y^{2}+34 y+289\right)=49 y^{2} \\
& y^{3}+34 y^{2}+289 y-y^{2}+34 y-289=491 y^{2}
\end{aligned}
$$

$$
(y-1)\left(y^{2}+34 y+289\right)=49 y^{2}
$$

$=5 \ln \left(10 g+v^{2} \tan ^{2} \alpha\right)-5 \ln$
11-

$$
H=5 \ln \left(1+\tan ^{2} \alpha\right)=5 \ln \sec ^{2} \alpha
$$

for downerd, let speed at pt of pracifn

$$
\begin{aligned}
& \begin{array}{l}
u v \frac{d v}{d x}=g-\frac{1}{10} v^{2} \\
\int_{0}^{1} \frac{10 v}{\log -v^{2}} d v=\int_{0}^{H} d x \\
{\left[-5 \ln \left(10 g-v^{2}\right)\right]_{0}^{V}=H}
\end{array} \\
& 5 \ln 10 g-5 \ln \left(\log -u^{2}\right)=H \\
& 5 \ln \sec ^{2} x=5 \ln \frac{\log }{\log -u^{2}} \\
& \log -u^{2}=\frac{\log }{\operatorname{sic}^{2} \alpha}=\log \cos ^{2} \alpha \\
& u^{2}=\log \left(1-\cos ^{2} \alpha\right) \\
& =\log \sin ^{2} \alpha \\
& =V^{2} \sin ^{2} \alpha \\
& u=V \sin \alpha
\end{aligned}
$$

(b) $4 x^{3}-36 x^{2}+107 x+k=0$

Let roxto be $a-d, a, a+l$

$$
\text { Sum }=3 a=\frac{36}{4} \quad \therefore a=3 V
$$

3 is a root

$$
\left.\begin{array}{c}
\therefore 4(3)^{3}-36(3)^{2}+107(3)+k=0 \\
K=-105 \\
x-3 \sqrt{\frac{4 x^{2}-24 x+35}{4 x^{3}-36 x^{2}+107 x-105}} \frac{4 x^{3}-12 x^{2}}{-24 x^{2}+107 x} \\
\frac{-24 x^{2}+72 x}{35 x-105} \\
35 x-105
\end{array}\right] .
$$

$$
\begin{aligned}
& \therefore \quad(x-3)\left(4 x^{2}-24 x+35\right)= \\
& (x-3)(2 x-7)(2 x-5) \\
& x=\frac{5}{2}, 3, \frac{7}{2}
\end{aligned}
$$

béa)

$$
\delta r
$$

$$
\begin{aligned}
& x=-5 \ln \left(\log -v^{2}\right)+c \\
& c=5 \ln (\log) \\
& x=5 \ln \frac{\log }{\log -v^{2}}
\end{aligned}
$$

$$
5 \ln \sec ^{2} \alpha=5 \ln \frac{\log }{\log -v^{2}}
$$

$$
\sec ^{2} \alpha=\frac{\log }{\log -v^{2}}
$$

$\log -v^{2}=\log \cos { }^{2} \alpha$

$$
\begin{aligned}
v^{2} & =\log \left(1-\cos ^{2} \alpha\right) \\
& =v^{2} \sin ^{2} \alpha
\end{aligned}
$$

$$
\begin{gathered}
3 a=\frac{36}{4} \quad a=3 \\
a^{2}-a d+a^{2}+a d+a^{2}-d^{2}=\frac{107}{4} \\
3 a^{2}-d^{2}=\frac{107}{4} \\
d^{2}=27-\frac{107}{4}=\frac{1}{4} \\
x \quad d= \pm \frac{1}{2} \\
\therefore \text { Robtrane } \quad 3 \cdot \frac{1}{2}, 3,3+\frac{1}{2} \\
-\frac{k}{4}=\frac{5}{2} \times 3 \times \frac{7}{2} \quad k=-105
\end{gathered}
$$

1) $C_{\text {nep }}$ hy $i(4$ 43i)
\therefore Cupfunts $-3+4 i v$

$$
\text { Bupory }(-3+4 i)(4+5 i)
$$

$$
=1+7 i
$$

b) 1) for eliep
$19-k>0$ and $7-k>0$

$$
k<19 \quad k<7
$$

$\therefore k<7$ upuman shofer
bor hy 19-k>0 and $7-k<0$
$k<19 \quad k>7$
N

$$
\begin{array}{cc}
\therefore \quad 7<k<14 \\
19-k<0 & 7-k>0 \\
k>19 & k<07
\end{array}
$$

sexach
$\therefore \quad 7<k<19$ uphuti a lopuluen
(i) $k=3 \Rightarrow$

$$
\begin{array}{ll}
\frac{x^{2}}{16}+\frac{4^{2}}{4}=1 \\
a=4 \quad b=2 & b^{2}=a^{2}\left(1-e^{2}\right) \\
& 4=16\left(1-e^{2}\right) \\
& e=\frac{\sqrt{3}}{2}
\end{array}
$$

$$
x=\frac{-8}{3} \sqrt{3}
$$

$$
\text { c) } 1) A \in G A=\frac{1}{2} \cdot a \cdot c \sin 2 x
$$

Aso $A R E A=\frac{1}{2} C \cdot B D \sin x+\frac{1}{2} a P D \operatorname{si}$

$$
=\frac{B D \sin x}{2}(a+c)
$$

$$
\begin{gathered}
\therefore B O \operatorname{cis}_{2} \frac{(a+c)}{2}=\frac{1}{x} a c \cdot 2 \not 2 / x \cos \\
\therefore B D=\frac{2 a c \cos x}{a+c}
\end{gathered}
$$

$$
\text { ii) } \begin{aligned}
\cos 2 x & =\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
\therefore 2 \cos ^{2} x-1 & =\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
\cos ^{2} x & =\frac{1}{2}\left(\frac{a^{2}+c^{2}-b^{2}}{2 a c}+1\right. \\
& =\frac{a^{2}+c^{2}-b^{2}+2 a c}{4 a c} \\
& =\frac{\left(a^{2}+2 a c+c^{2}\right)-b^{2}}{4 a c} \\
& =\frac{(a+c)^{2}-b^{2}}{4 a c} \\
\therefore \cos x & =\frac{1}{2} \sqrt{\frac{(a+c)^{2}-b^{2}}{a c}}
\end{aligned}
$$

(II)

$$
\begin{aligned}
B D & =\frac{2 a c}{a+c}+\cos \\
& =\frac{2 a c}{a+c} \cdot \frac{1}{r} \sqrt{\frac{(a+c)^{2}-1}{a c}} \\
& =\frac{\sqrt{a c} \sqrt{(a+c)^{2}-b}}{a+c}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8ce) } I_{n}=\int_{1}^{e} x^{3}(\ln x)^{4} d x \\
& \text { et } n=(\ln x)^{n} \quad v^{\prime} \\
&=x^{3} \\
& u^{\prime}=n \frac{(\ln x)^{n-1}}{2} \quad v \\
&=\frac{x^{4}}{4} \\
& \therefore I_{n}=\left[\frac{x^{4}}{4}(\ln x)^{n}\right]_{1}^{e}-\frac{n}{4} \int_{1}^{e} x^{3}(\ln x)^{n-1} c_{n} \\
&=\frac{e^{4}}{4}-0-\frac{n}{4} I_{n-1}
\end{aligned}
$$

$$
\therefore I_{n}=\frac{e^{4}}{4}-\frac{n}{4} I_{n-1}
$$

$$
\int_{i}^{e} x^{3}(\ln x)^{2} d x=I_{2}
$$

$$
I_{2}=\frac{e^{4}}{4}-\frac{2}{4} I_{1}
$$

$$
I_{1}=\frac{e^{4}}{4}-\frac{1}{4} I_{0}
$$

$$
I_{0}=\int_{1}^{e} 2^{3} d x
$$

$$
=\left[\frac{\lambda^{y}}{4}\right]_{1}^{e}
$$

$$
=\left(\frac{e^{4}-1}{4}\right)
$$

$$
I_{1}=\frac{e^{4}}{4}-\frac{\left(e^{4}-1\right)}{16}
$$

$$
I_{2}=\frac{e^{4}}{4}-\frac{1}{2}\left[\frac{e^{4}}{4}-\left(\frac{\left.e^{4}-1\right)}{16}\right]\right.
$$

$$
=\frac{e^{4}}{4}-\frac{e^{4}}{8}+\frac{e^{4}}{32}-\frac{1}{32}
$$

$$
=\frac{5 e^{x}-1}{32}
$$

8b) 1) $z_{2}=2 \operatorname{cis} \frac{4 \pi}{5}$
11) $\begin{aligned}\left(z_{2}\right)^{5} & =2^{5} \quad \frac{70 \pi}{5} \\ & =32 .\end{aligned}$

$$
=32 .
$$

(II) in $\triangle O B A$

sentunt $O F \perp B A$

$$
\angle F O A=\frac{1}{2} \cdot \frac{2 \pi}{5}=\frac{\pi}{5}
$$

$$
\sin \frac{\pi}{5}=\frac{F A}{\sigma \pi}=\frac{F A}{2}
$$

$$
\therefore \quad F A=2 \mu \frac{\pi}{5}
$$

$$
B A=2 F A=4 \pi i \frac{\pi}{5}
$$

$$
\begin{aligned}
\therefore \text { pementh of hotogn } & =5 \times 4 \mu \frac{\pi}{5} \\
& =20 \mathrm{~m} \frac{\pi}{3} .
\end{aligned}
$$

C By ReM, Th

$$
\begin{aligned}
(\cos \theta+1 m) & =(\operatorname{cotima})^{5} \\
& =(c+10)^{5} \\
& =c^{5}+5 i^{4} s+10 i^{2} c^{3} s^{2}+10 i^{3} c^{2} s^{3}+5 i^{4} c s^{2}+c^{5} s^{5} \\
& =\left(c^{5}-10 c^{3} 0^{2}+5 c s^{4}\right)+i\left(5 c^{4} p-10 c^{2} s^{3}+s^{5}\right) \\
\therefore \cos 5 \theta & =\cos ^{5} \theta-10 \cos ^{3} \theta \operatorname{m}^{2} \theta+50 \operatorname{s}^{4} c \theta .
\end{aligned}
$$

$$
h=r \theta=5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \operatorname{m}^{3} \theta+u^{5} \theta .
$$

$$
\therefore A_{-5} \theta=\frac{5 \cos ^{4} \theta \sin \theta-10 \cos ^{3} \theta^{3} \theta+m^{5} \theta}{\cos ^{5} \theta-10 \cos ^{3} \theta \operatorname{m}^{2} \theta+5 \cos \theta m^{4} \theta}
$$

$\div++b$ in care

$$
\begin{aligned}
& \therefore \tan =\frac{5 \operatorname{ta} \theta-10 \operatorname{h}^{3} \theta+\operatorname{ta}^{5} \theta}{1-10 \tan ^{2} a+5 \operatorname{ta}^{4} \theta} . \\
& x^{5}-5 x^{4}-10 x^{3}+10 x^{2}+5 x-1=0 \\
& x^{5}-10 x^{3}+5 x=1-10 x^{2}+5 x^{4} \\
& \therefore \quad \frac{x^{5}-10 x^{3}+5 x}{1-10 x^{2}+5 x^{4}}=1
\end{aligned}
$$

et $x=\operatorname{tav} \therefore$ th $5 \theta=1$

$$
\begin{gathered}
5 \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{13 \pi}{4}, \frac{17 \pi}{4} \\
\theta=\frac{\pi}{20}, \frac{5 \pi}{20}, \frac{9 \pi}{20}, \frac{13 \pi}{20}, \frac{17 \pi}{20} \\
\therefore x=A \frac{\pi}{20}, \hbar \frac{\pi}{4}, k \frac{9 \pi}{20}, \hbar \frac{3 \pi}{20}, k \frac{17 \pi}{20}
\end{gathered}
$$

$\min \tan _{\frac{\pi}{4}}=\operatorname{ta} \frac{3 \pi}{20}=\frac{\hbar 33 \pi}{20}$

$$
\therefore x=\hbar \frac{\pi}{i=1}, \frac{h 9 \pi}{20}, \hbar\left(\frac{7 \pi}{20}, A \frac{33 \pi}{20}, 1\right.
$$

form halyumel $\leq \alpha=5$

$$
\begin{aligned}
& \therefore h \frac{\pi}{20}+h \frac{5 \pi}{20}+h\left(\frac{h 17 \pi}{20}+h \frac{33 \pi}{20}+1=r\right. \\
& \therefore 1
\end{aligned}
$$

