BAULKHAM HILLS HIGH SCHOOL
2009
TRIAL HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value
- Start a separate piece of paper for each question.
- Put your student number and the question number at the top of each sheet.

Total marks - 120
Attempt Questions 1 - 8
All questions are of equal value
Answer each question on a SEPARATE piece of paper clearly marked Question 1, Question 2, etc. Each piece of paper must show your name.

Question 1 (15 marks) Use a separate piece of paper

Marks

a) Evaluate $\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{x^{2}+1}} d x$
b) Use integration by parts to evaluate $\int_{0}^{1} x \tan ^{-1} x d x$
c) (i) Express $\frac{10+x-x^{2}}{(x+1)\left(x^{2}+3\right)}$ in the form $\frac{A}{x+1}+\frac{B x+C}{x^{2}+3}$
(ii) Hence find $\int \frac{10+x-x^{2}}{(x+1)\left(x^{2}+3\right)} d x$
d) Find $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$
e) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1-\tan x}{1+\tan x} d x$

Question 2 (15 marks) Use a separate piece of paper
a) Let $z=1+2 i$ and $\omega=3+i$. Find $\frac{1}{z \omega}$ in the form $x+i y$.
b) Find the real numbers a and b such that $(a+b i)^{2}=9+40 i$
c) (i) Determine the modulus and argument of $-1+i$2
(ii) Hence find the least positive integer value of n for which $(-1+i)^{n}$ is real. 1
d) If $z=x+i y$, describe the locus of z if $2|z|=z+\bar{z}+4$
e) On an Argand diagram, sketch the region specified by both the conditions

$$
|z+3-4 i| \leq 5 \quad \text { and } \quad \operatorname{Re}(z) \leq 1
$$

You must show the intercepts with the axes, but you do not need to find other points of intersection.
f)

The points A, B and C in the Argand diagram are the vertices of an equilateral triangle described anticlockwise. Show that the complex numbers a, b and c representing A, B and C satisfy;

$$
2 c=(a+b)+i \sqrt{3}(b-a)
$$

Question 3 (15 marks) Use a separate piece of paper
a) The diagram shows the graph of $y=f(x)$.

Draw separate one-third page sketches of the graphs of the following;
(i) $y=f(|x|) \quad 1$
(ii) $y=f(1-x) \quad 1$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=\sqrt{f(x)}$
(v) $y=\ln f(x)$
b)

The solid shape above has a circular base of radius 3 units in the horizontal plane.
Vertical cross-sections perpendicular to the diameter along the x axis are equilateral triangles as shown in the diagram.
(i) A vertical slice of width Δx is positioned as the point $x=a$.

If its volume is denoted by ΔV, show that $\Delta V=\sqrt{3}\left(9-x^{2}\right) \Delta x$
(ii) Hence determine the volume of the solid.
c) If ω is the root of $\omega^{5}-1=0$ with the smallest positive argument, find the quadratic equation with roots $\omega+\omega^{4}$ and $\omega^{2}+\omega^{3}$

Question 4 (15 marks) Use a separate piece of paper

a) Find all roots of the equation $2 x^{3}-5 x^{2}-4 x+12=0$ given that two of the roots are equal.
b) Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b>0$.
(i) Show that the tangent to the ellipse at the point $P(a \cos \theta, b \sin \theta)$ has the equation $b x \cos \theta+a y \sin \theta-a b=0$.
(ii) Prove $b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta=a^{2}\left(1-e^{2} \cos ^{2} \theta\right)$, where e is the eccentricity.
(iii) R and R^{\prime} are the feet of the perpendiculars from the foci S and S^{\prime} on to the tangent at P. Show that $S R \cdot S^{\prime} R^{\prime}=b^{2}$.
c) (i) Prove that $\tan ^{-1} n-\tan ^{-1}(n-1)=\tan ^{-1} \frac{1}{n^{2}-n+1}$, where n is a positive integer. 2
(ii) Hence evaluate $\tan ^{-1} 1+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\ldots+\tan ^{-1} \frac{1}{n^{2}-n+1}$
(iii) Hence find $\sum_{n=1}^{\infty} \tan ^{-1} \frac{1}{n^{2}-n+1}$

Question 5 (15 marks) Use a separate piece of paper

a) The zeros of $x^{3}-3 x^{2}-2 x+4$ are α, β and γ
(i) Find a cubic polynomial whose zeros are α^{2}, β^{2} and $\gamma^{2} 2$
(ii) Hence, or otherwise, find the value of $\alpha^{2}+\beta^{2}+\gamma^{2} 1$
(iii) Determine the value of $\alpha^{3}+\beta^{3}+\gamma^{3} \quad 2$
b) A particle of unit mass is thrown vertically downwards with an initial velocity of u. It experiences a resistive force of magnitude $k v^{2}$ where v is its velocity.

Let V be the terminal velocity of the particle.
(i) Show that $V=\sqrt{\frac{g}{k}}$, where g is the acceleration due to gravity.
(ii) Show that $v^{2}=V^{2}+\left(u^{2}-V^{2}\right) e^{-2 k x}$.
c) A circular flange is formed by rotating the region bounded by the curve $y=\frac{5}{x^{2}+1}$, the x axis and the lines $x=0$ and $x=3$ through one complete revolution about the line $x=10$. All measurements are in centimetres.

(i) Use the method of cylindrical shells to show the volume $V \mathrm{~cm}^{3}$ of the flange is given by $V=10 \pi \int_{0}^{3} \frac{10-x}{x^{2}+1} d x$
(ii) Hence find the volume of the flange to the nearest cm^{3}.
a) (i) Show that the tangent to the rectangular hyperbola $x y=c^{2}$ at the point $T\left(c t, \frac{c}{t}\right)$ has the equation $x+t^{2} y=2 c t$.
(ii) The tangents to the rectangular hyperbola $x y=c^{2}$ at the points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$, intersect at R. Show that R has the coordinates $\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$.
(iii) It is known that P and Q are variable points on the hyperbola which move so that $p q=1$. Find the locus of R and state any restrictions on the values of x for this locus.
b)

In the diagram, the two circles intersect at A and $B . P$ is a point on one circle.
$P A$ and $P B$ produced meet the other circle at M and N respectively. NA produced meets the first circle at $Q . P Q$ and $N M$ produced meet at R. The tangent at M to the second circle meets $P R$ at T.
(Note: on page 10 there is a copy of the above diagram that you can use, please detach and include with your solutions)
(i) Show that $\mathbf{Q A M R}$ is a cyclic quadrilateral
(ii) Show that $T M=T R$
c) The continued surd $\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{\ldots \ldots .}}}}}=L$

Find the exact value of L.
a) The gradient $\frac{d y}{d x}$ of a curve at a point (x, y) satisfies $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$
(i) By differentiating with respect to x, show that either $\frac{d^{2} y}{d x^{2}}=0$ or $2 \frac{d y}{d x}=x$
(ii) Hence show that the curve is either a straight line or a parabola.
b) A circular cone of semi vertical angle θ is fixed with its vertex upwards as shown. A particle P, of mass $2 m \mathrm{~kg}$, is attached to the vertex V by a light inextensible string of length $2 a$ metres.

The particle P rotates with uniform velocity ω radians/second in a horizontal circle on he outside surface of the cone and in contact with it.
(i) Show that the tension (T) in the sting is equal to $2 m\left(g \cos \theta+r \omega^{2} \sin \theta\right)$
(ii) Find the normal force (N) on P sting is equal to $2 m\left(g \sin \theta-r \omega^{2} \cos \theta\right)$
(iii) Show that, for the particle to remain in uniform circular motion on the surface of the cone, then $\omega<\sqrt{\frac{g}{2 a \cos \theta}}$ where g is acceleration due to gravity.
c) (i) Show that $\int_{0}^{\frac{\pi}{4}} \sec x d x=\ln (\sqrt{2}+1)$
(ii) Let $I_{n}=\int_{0}^{\frac{\pi}{4}} \sec ^{n} \theta d \theta$, show that $I_{n}=\frac{1}{n-1}\left((\sqrt{2})^{n-2}+(n-2) I_{n-2}\right)$ for $n \geq 2$
(iii) Hence find I_{3}
a) A three digit number has a hundreds digit of a, a tens digit of b and a units digit of c.
If $a+b+c$ is divisible by 3 , show that the three digit number is divisible by 3 .
b) (i) Use de Moivre's theorem to show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \quad 1$
(ii) Hence solve $8 x^{3}-6 x-1=0 \quad 2$
(iii) Deduce that $\cos \frac{\pi}{9}=\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}$
c) The Fibonacci sequence of numbers, $F_{1}, F_{2, \ldots,}$, is defined by $F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2} \quad$ for $n \geq 3$.
(i) Prove that $F_{2 n+3} F_{2 n+1}-F_{2 n+2}^{2}=-F_{2 n+2} F_{2 n}+F_{2 n+1}^{2}$.
(ii) Prove by induction that $F_{2 n+1} F_{2 n-1}-F_{2 n}^{2}=1$, for all positive integers. 3
(iii) Hence deduce that $F_{2 n}^{2}+1$ is divisible by $F_{2 n+1}$ 1
(iv) Prove that $F_{2 n-1}^{2}+1$ is divisible by $F_{2 n+1}$. 2

End of paper

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
& =\frac{1}{a} \sin a x, a \neq 0 \\
\int \cos a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sin a x d x & \frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & \\
\int \frac{1}{a^{2}+x^{2}} d x \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin -\frac{x}{a} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{array}
$$

NOTE: $\ln x=\log x, \quad x>0$

Question 6 b)

Please detach and include with your solutions.

Boulkham Hills Extension Q Trial Solutons 2009

Questron 1
0) $\int_{0}^{\frac{\sqrt{3}}{\sqrt{x^{2}+1}}} d x=\frac{1}{2} \int_{0}^{\sqrt{3}} \frac{2 x}{\sqrt{x^{3}+1}} d x$

$$
\begin{align*}
& =\left[\sqrt{x^{2}+1}\right]_{0}^{\sqrt{3}} \\
& =\sqrt{4}-v 1 \\
& =1 \tag{2}
\end{align*}
$$

b) $\int_{0}^{1} x \tan ^{-1} x d x$

$$
\begin{align*}
& 0 \\
& =\left[\frac{1}{2} x^{2} \tan ^{-1} x\right]_{0}^{i}-\frac{1}{2} \int_{0}^{i d u} \frac{x^{2}}{1+x^{2}} \frac{d x}{i+x^{2}} \\
& =\frac{\pi}{8}-\frac{1}{2} \int_{0}^{1}\left(1-\frac{1}{i+x^{2}}\right) d x \\
& =\frac{\pi}{5}-\frac{1}{2}\left[x-\tan ^{-1} x\right]_{0}^{1} \\
& =\frac{\pi}{8}-\frac{1}{2}+\frac{\pi}{4} \tag{3}\\
& =\frac{\pi}{4}-\frac{1}{2} \quad\left(=\frac{\pi-2}{4}\right)
\end{align*}
$$

$$
\begin{align*}
& \text { c) (i) } A\left(x^{2}+3\right)+(B x+C)(x+i) \\
& =10+x-x^{2} \\
& \frac{x=-1}{4 A=8} \quad \frac{x=0}{3 A+c}=10 \\
& A=2 \\
& c=4 \\
& \frac{x=1}{4 A+2 B+2 c=10} \\
& 2 B=-4 \\
& B=-3 \\
& \therefore \frac{10+x-x^{2}}{(x+i)\left(x^{2}+3\right)}=\frac{2}{x+i}+\frac{4-3 x}{x^{2}+3} \tag{3}\\
& \text { (2) } \int \frac{\left(x+x-x^{2}\right.}{(x+i x+3)}=/\left[\frac{2}{x+1} \div \frac{1-3 \cdot}{x^{2}+3}\right] \\
& =\int\left[\frac{2}{x+1}+\frac{4}{x^{2}}-\frac{3}{2}+\frac{2 x}{x^{2}+3}\right] d x \\
& =\frac{2 \log (x+i)+\frac{4}{\sqrt{3}} \tan \sqrt{3}-\frac{3}{2}-\frac{3}{2} \log \left(x^{2}+3\right)}{i c}
\end{align*}
$$

c) $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}=\int \frac{d x}{\sqrt{16-(x+3)^{2}}}$

$$
\begin{align*}
& \begin{array}{l}
=\sin ^{-1}\left(\frac{x+3}{4}\right)+(2) \\
=\int_{0}^{2} \frac{\cos x-\sin x}{\cos x+\sin x} \cos
\end{array} \tag{2}\\
& \begin{aligned}
\operatorname{c)} \int_{0}^{\frac{\pi}{2}} \frac{1-\tan x}{1+\tan x} \cdot x & =\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{\cos x+\sin x} d x \\
& =[\log (\cos x+\sin x)]_{0}^{\frac{\pi}{2}}
\end{aligned} \\
& \begin{array}{l}
=\log i-\log 1 \\
=-0
\end{array}
\end{align*}
$$

Question 2

$$
\text { a) } \begin{align*}
z w & =(1+2 i)(3+i) \\
& =1+7 i \\
\frac{i}{z w} & =\frac{1 w}{12 \omega i^{2}} \\
& =\frac{1-7 i}{50} \quad\left(=\frac{1}{50}-\frac{7}{50} i\right) \tag{2}
\end{align*}
$$

b) $a^{2}-b^{2}=9$

$$
2 a b=40
$$

$a^{2}-\frac{400}{a^{2}}=9$

$$
b=\frac{2 c}{a}
$$

$$
\begin{align*}
& a^{4}-9 a^{2}-400=0 \\
& \left(a^{2}-25\right)\left(a^{2}+16\right)=0 \\
& a^{2}=25 \text { (r a } 2=-16 \\
& a= \pm 5 \quad \text { no real s/utioss } \\
& \therefore a=5, b=4 \text { or } a=-5, b=-4 \tag{3}
\end{align*}
$$

OR

$$
\begin{array}{rlrl}
a & = \pm \sqrt{\frac{9+\sqrt{9+40 i}}{2}} \quad b & =\frac{40}{2(5)} \\
& = \pm \sqrt{\frac{9+4 i}{2}} & =4 \\
& = \pm 5 \\
a & =5, b=4 \quad \text { or } \quad a=-5, b=-4
\end{array}
$$

c)

$$
\begin{array}{ll}
\text { (i) }\langle-1+i\rangle \\
=\sqrt{1^{2}+i^{2}} & \arg (n i+i) \\
= & =\operatorname{tin}^{-1}\left(\frac{1}{-1}\right) \\
= & \frac{3 \pi}{4}
\end{array}
$$

(2)
(ii) $(-1+i)^{n}=\sqrt{n}$ cis $\frac{3 \pi n}{4}$ for a rexi mumber cirgumen+ most be dinguithoe tif it
le $\frac{3 \pi n}{4}=k \pi$ kinteger

$$
\begin{align*}
\frac{3}{4} n & =k_{n} \\
& n=4 \tag{1}
\end{align*}
$$

-1) $x / \geq /=2+\frac{2}{z}+4$
$2 \sqrt{x^{2}+y}=-2 x+4$
$\sqrt{x^{2}+y^{2}}=x+2$
$x^{2}+y^{2}=-x^{2}+4 x+4$
$y^{2}=4 x+4$
$2(x+1)$

$$
\begin{equation*}
y^{2}=4(x+i) \tag{3}
\end{equation*}
$$

$\therefore \frac{\text { locus is ine porsob=ici }}{y^{2}=4(x+1)}$
e)

f)

$$
\begin{aligned}
c-a & =\operatorname{cis} \frac{\pi}{3}(b-a) \\
& =\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)(b-a) \\
2 c-2 a & =(b-a)+i \sqrt{3}(b-a) \\
2 c & =(a+b)+i \sqrt{3}(b-a)
\end{aligned}
$$

Question 3

(v)

$$
\begin{aligned}
A(x) & =\frac{1}{2}(2 y)(\sqrt{3} y) \\
& =\sqrt{3} y^{2}
\end{aligned}
$$

$$
=\sqrt{3} y^{-2}
$$

$$
\begin{equation*}
=\sqrt{3}\left(9-x^{2}\right) \tag{2}
\end{equation*}
$$

$$
\Delta V=\sqrt{3}\left(9-x^{2}\right) \Delta x
$$

(ii)

$$
\begin{align*}
V & =\lim _{\Delta x \rightarrow 0} \sum_{x=-3}^{3} \sqrt{3}\left(9-x^{2}\right) \Delta x \\
& =2 \sqrt{3} \int_{0}^{1}\left(9-x^{2}\right) d x \\
& =2 \sqrt{3}\left[9 x-\frac{1}{3} x^{3}\right]_{0}^{3} \\
& =2 \sqrt{3}(18) \\
& =36 \sqrt{3} \text { units } \tag{2}
\end{align*}
$$

$$
z^{5}-1=0
$$ i. Wir $^{2}+\omega^{3}+\omega^{4}=0$ (sum =riocis)

$$
\begin{aligned}
\alpha_{1}^{3}+ & =w+w^{4}+w^{2}+w^{3} \\
& =-1 \\
\alpha_{1}^{3} & =\left(\omega^{2}+w^{4}\right)\left(w^{2}+w^{3}\right) \\
& =w^{3}+w^{4}+w^{7} \\
& =w^{3}+w^{4}+w^{4}\left(\because \omega^{5}=1\right) \\
& =-1
\end{aligned}
$$

$$
x^{2}-(x+\beta) x+\infty=0
$$

$$
x^{2}+x-1=5
$$

Question 4

$$
\begin{aligned}
\text { ? }
\end{aligned} \begin{aligned}
P^{\prime}(x)=2 x^{3} & -5 x^{2}-4 x+12 \\
& =6 x^{2}-10 x-4 \\
& =2(3 x+1 x x-2)
\end{aligned}
$$

\therefore. obubler root is either $x=-\frac{1}{3}$ or $x=2$
$P(2)=0 \quad \therefore x=2$ is double root

$$
\begin{aligned}
& 2 x^{3}-5 x^{2}-4 x+12 \\
& =(x-2)^{2}(2 x-3)
\end{aligned}
$$

\therefore roots are 2,2 and $\frac{3}{2}$
b)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d^{2}}{d x}=0 \\
& \frac{d}{d x}=-\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

$$
d t P, \frac{d^{i} y}{d x c}=\frac{-a b^{-\frac{1}{2}} \cos \theta}{a^{2} b \sin \theta}
$$

$$
=-\frac{\tan \theta}{a \sin \theta}
$$

$$
\begin{aligned}
& y-b \sin \theta=-\frac{a \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
& \frac{y}{a} \sin \theta-a b \sin ^{2} \theta=-b x \cos \theta+a b \cos \theta
\end{aligned}
$$

$a y \sin \theta-a b \sin \theta=-b x \cos \theta+a b a \cos \theta$

$$
b x \cos \theta+a y=\sin \theta-a b\left(\sin ^{2} \theta+\cos \theta\right)=0
$$

$$
b x \cos \theta+a y \sin \theta-a b=0
$$

(ii) $b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta$

$$
\begin{aligned}
& =\alpha^{2}\left(1-\theta^{2}\right)\left(-3^{2} \theta+\alpha^{2} \sin ^{2} \theta\right. \\
& =\alpha^{2}\left(\cos ^{3} \theta-\sin ^{2} \theta+\sin ^{2} \theta\right) \\
& =\alpha^{2}\left(1-e^{2} \theta-2 \theta\right)
\end{aligned}
$$

(

$$
S R \cdot S^{\prime} R^{\prime}=\frac{\left|c^{2} b^{2}-a^{2} b^{2} c^{2} \cos \theta\right|}{b^{2} \cos { }^{2} \theta+a^{2} \sin ^{2} s}
$$

$$
=\frac{a^{2} b^{2} \mid 1-b^{2} \cos \theta+a^{2} \sin ^{2}}{a^{2}\left(1-e^{2} \theta 1\right.}
$$

$$
\begin{equation*}
=b^{2} \tag{3}
\end{equation*}
$$

NO RE: $\cos ^{2}<1, \quad \sin ^{2} 0<1$

$$
\therefore \because 1-e^{2}-0 s^{2} \omega>\infty .
$$

$$
\begin{aligned}
& S K=\frac{a b e \cos 0+0-a b}{\sqrt{0}+\sin ^{2}+\operatorname{cin}^{2}} \\
& =\frac{-1-\operatorname{sos} \theta-\cos ^{2} \theta-1}{b^{2} \cos ^{2} \theta+\cos ^{2} \operatorname{cin}^{2} \theta}
\end{aligned}
$$

c) (i) let

$$
\begin{aligned}
& x=\tan ^{-i} m \\
& \beta=\operatorname{kn}^{-1}(m-1)
\end{aligned}
$$

$$
\tan (x+\beta)=\frac{\tan x-\tan \beta}{i+\tan x \tan \beta}
$$

$$
=\frac{n-(n-1)}{i+n(n-1)}
$$

$$
\begin{aligned}
& =\frac{1}{n^{2}-n^{2}+1} \\
& \tan ^{-1}\left(\frac{1}{n^{2}+n+1}\right)
\end{aligned}
$$

$i \tan ^{-1} n-\tan ^{-1}(n-1)=\tan ^{-1}\left(\frac{1}{n^{2}-n+1}\right)$
(ii) $\tan ^{-1} 1+\tan ^{-1} \frac{1}{3}+\ldots+\tan ^{-1} \frac{1}{n^{2}+1}$

$$
\begin{aligned}
& n=1 ; \tan ^{-1}=\tan ^{-1} 1-\tan ^{-1} 0 \\
& n=2 ; \tan ^{-1} \frac{1}{3}=\tan ^{-1} 2-\tan ^{-1} 1 \\
& n=3 ; \tan ^{-1} \frac{1}{7}=\tan ^{-1} 3-\tan ^{-1} 2
\end{aligned}
$$

$$
\begin{align*}
& \tan ^{\prime} 1+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\ldots+\tan ^{-1} \frac{1}{n^{2}+1+1} \\
& =\tan ^{\prime} 1-\tan ^{-1} 0+\tan ^{-1} 2-\tan ^{-1} 1+\tan ^{-1} 3 \\
& -\tan ^{-1} 21 \ldots+\tan ^{-1} n-\tan ^{-1}(n-1) \\
& =\tan ^{-1} n-\tan ^{-1} 0 \\
& =\tan ^{-1} n \tag{2}
\end{align*}
$$

(iii) $\sum_{n=1}^{\infty} \tan ^{-1} \frac{1}{n^{2}-n+1}$
$=\lim _{n \rightarrow \infty} \tan ^{-1} n$

$$
\begin{equation*}
=\frac{\pi}{2} \tag{i}
\end{equation*}
$$

Question 5
a) $x^{3}-3 x^{2}-2 x+4$
lot $y=x^{2}$

$$
\begin{align*}
& x-y^{\frac{1}{2}} \\
& 4^{\frac{3}{2}}-3 y-2 y^{\frac{1}{2}}+4=6 \\
& -1^{2}(y-2)=y^{3}-4 \\
& 4^{2}-y^{2}-4+y^{2}+4-1=y_{4}^{2}-24 y+16 \\
& -y^{2}-16 \\
& 4^{3}-13 y^{2}+28+1-16=0 \tag{2}
\end{align*}
$$

\therefore polynomial $15 y^{3-13} y^{2}+28 y-10$
(ii) $x^{2}+\beta^{2}+x^{2}=13$

$$
\begin{align*}
\text { (iii) } & x^{3}-3 x^{2}-2 \& x+12=0 \tag{5}\\
& =3 x^{2}+24 x-12 \\
& =3(13)+2(3)-12 \\
& =33
\end{align*}
$$

b)

$$
\begin{align*}
& \uparrow k v^{2} \\
& m \ddot{x} \downarrow \downarrow_{\downarrow} \downarrow m g \\
& \max _{m=1}=m g-k v^{2} \\
& \dot{x}=g-k v^{2} \\
& \text { when } \ddot{x}=0 \\
& \therefore O=g-k v^{2} \\
& V^{2}=\frac{g}{k} \\
& V=\sqrt{\frac{9}{k}} \tag{2}
\end{align*}
$$

terminal velocity cars
(iii)

$$
\text { ii) } \begin{aligned}
v \frac{d v}{d x} & =g-k v^{2} \\
\frac{d v}{d x} & =\frac{g-k v^{2}}{v} \\
\frac{d x}{d v} & =\frac{v}{g-k v^{2}} \\
\int_{0}^{d x} & =-\frac{1}{2 k} \frac{-2 k v}{g-k v^{2}} \\
x & =-\frac{1}{2 k}\left[\log \left(g-k v^{2}\right)\right]_{u}^{v} \\
-2 k x & =\log \left(3 u v^{2}\right)-\log \left(g-k u^{2}\right) \\
& =\log \left(\frac{g-k v^{2}}{G-k u^{2}}\right) \\
e^{-2 k x} & =\frac{g-k v^{2}}{g-k u^{2}} \\
g-k v^{2} & =\left(g-k u^{2}\right) e^{-2 k x} \\
k v^{2} & =g+\left(k u^{2}-g\right) e^{-2 k x} \\
v^{2} & g^{2 k}+\left(u^{2}-\frac{g}{k}\right) e^{-2 k x} \\
v^{2} & =v^{2}+\left(k^{2}-v^{2}\right) e^{-2 k}
\end{aligned}
$$

c)

$$
\begin{aligned}
A(x) & =2 \pi(10-x) y \\
& =\frac{10 \pi(10-x)}{x^{2}+1} \\
i v & =\frac{10 \pi(10-x)}{x^{2}+1} \Delta x
\end{aligned}
$$

$$
\begin{align*}
V & =\lim _{\Delta x \rightarrow 0} \sum_{x=0}^{3} \frac{10 \pi(i 0-x)}{x^{2}+1} \Delta x \\
& =10 \pi \int_{0}^{3} \frac{10-x}{x^{2}+1} d x \tag{3}
\end{align*}
$$

(ii) $V=10 \pi \int_{0}^{3}\left[\frac{10}{x^{2}+1}-\frac{1}{2} \cdot \frac{2 x}{x^{2}+1}\right] d x$ $=10 \pi\left[10 \tan ^{-1} x-\frac{1}{2} \log \left(x^{2}+1\right)\right]_{0}^{3}$
$=10 \pi\left(10 \tan ^{-1} 3-\frac{1}{2} \lg 10-0\right)$
$=356.2303502$
$=356 \mathrm{~cm}^{3}$ (to mevorest cm^{3})

Question 6

$$
\text { a) } \begin{align*}
& x y=c^{2} \\
& y=\frac{c^{2}}{x} \\
& \frac{d y}{c x}=\frac{-c^{2}}{x^{2}} \quad \frac{c y}{c x}=\frac{-c^{2}}{c^{2} t^{2}} \\
&=\frac{-1}{t^{2}} \\
& y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t) \\
& x^{2} y-c t=-x+c t \\
& x+t^{2} y=2 c t
\end{align*}
$$

(ii)

$$
\begin{aligned}
& x+e^{2} y=2 \dot{p} \\
& \frac{x+q^{2} y=2 c(y}{\left.(p-q)^{2}\right) y=2(p(-k)} \\
& y=\frac{2 c(p-q}{6 p-q](p+q)} \\
& y=\frac{2 c}{\rho+q} \\
& x+\frac{2 c p^{2}}{p+q}=2 c p \\
& x=\frac{2 c p^{2}+2 c p q-2 c p^{2}}{p+q} \\
& =\frac{2 c p q}{p+q} \\
& \therefore R \quad \text { is }\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right) 3
\end{aligned}
$$

(iii) $p q=1$

$$
x=\frac{2 c}{p+q}=y
$$

but if $p q=1$, then Pand Q must be onthe sarme broch or the hype-bola.
Thurs the tongents can ony meet in the same quadront os the bronoh they lie on.

Also tongents camet meet inside. 'Rype-bob.

$$
\begin{gathered}
\therefore \frac{\text { locis is the ine }}{y=x \text { in the doncin }} \\
\frac{-6<x<0 \text { and }}{0<x<c}
\end{gathered}
$$

b)

(i) $\angle 2 M A=\angle A B N \quad$ (exterior \angle cycic quacirikberi)
$\angle A B N=\angle R Q N$ (exiterion \angle cyclic quaidrilabal B.A\&P)

$$
\therefore \angle F Q N=\angle R M A
$$

$\therefore \quad$ CPAMAR is syclic quadritatenal
as exterc- $1=$ eppostle

$$
\text { interior } \leq
$$

(ii) $\operatorname{set} \angle \operatorname{TMA}=x$ $\angle M N A=x$
(alterakie seyment thm)
let \angle RMT $=$ is
$\therefore \angle R M A=\alpha+\beta \quad$ (comman \angle)
$\angle R M A=\angle M N A+\angle M A N$ (exterior $\angle, \triangle M A N$)
$\alpha+\beta=\alpha+\angle M A N$
$\angle M A N=B$
$\angle M A N=\angle Q R M$ Lexterior \angle eycic quadribleal AQRM)
$\therefore \angle Q R M=B=\angle R M T$
Δ RMT is isosceeles $(z:=\angle ' s)$
$\therefore T M=T R \quad l=$ sides in sosceles Δ (emt)
C) $L=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{2}}}}}$.
$L^{2}=6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{2}}}}$
$L^{2}=6+L$
$\angle^{2}-\angle-6=0$
$(<-3 x(<+2)=0$
$L=3$ or $\angle=-2$
But $\angle>0$

$$
\begin{equation*}
\therefore \angle 1=3 \tag{2}
\end{equation*}
$$

Question 7
a) (i) $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$

$$
\begin{aligned}
& 2\left(\frac{d^{2}}{d x}\right)\left(\frac{d^{2}}{c^{2}}\right)-(x)\left(\frac{d^{2} y}{x^{2}}\right)=\left(\frac{d y}{d x}\right)(1)+\frac{d y}{d x}=0 \\
& 2 \frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}-x \frac{d^{2} y}{d x^{2}}=0 \\
& \frac{d y}{d x^{2}}\left(2 \frac{d y}{d x}-x\right)=
\end{aligned}
$$

$$
\frac{d^{2} y}{c^{2}}=0 \quad \text { or } \quad 2 \frac{d y}{d^{2}}=x
$$

(ii)

$$
\begin{array}{ll}
\frac{c^{2} y}{c x^{2}}=0 & \text { ox } \\
\frac{d y}{c x}=\frac{x}{2}=c & y=\frac{1}{4} x^{2}+c \\
y=c x+k &
\end{array}
$$

\therefore the curve is citine a Straight lire ar a parsbela
b) (i)

look at forces $\| l$ and 1 to surface.

$F \|$ to $\operatorname{surface}=2 r r \omega^{2} \sin \theta$

(ii) $F .1$ to sirtexe $=2 \mathrm{mru}^{2} \cos \theta$

$$
\begin{aligned}
& \stackrel{2 m g \sin \theta}{\longrightarrow} N \\
& 2 m g \sin \theta-N=2 m r \omega^{2} \cos \theta \\
& N=2 m g \sin \theta-2 m r \omega^{2} \cos \theta \\
& w=2 m\left(g \sin \theta-r \omega \omega^{2} \cos \theta\right)
\end{aligned}
$$

(us) particle will rose contact with surface when $N=O$ te

$$
\begin{gathered}
2 m\left(g \sin \theta-r \cos ^{2} \cos \theta\right)=0 \\
g \sin \theta-r \omega^{2} \cos \theta=0 \\
\omega^{2}=\frac{g \sin \theta}{-\cos \theta}
\end{gathered}
$$

$b+\frac{r}{2 a}=\sin \theta$

$$
r=2 a \sin \theta
$$

$$
\begin{aligned}
& \omega^{2}=\frac{9}{2 a \cos \theta} \\
& \omega=\frac{9}{2 a c-c^{2}}
\end{aligned}
$$

- particle will remain in contact wien

$$
\begin{equation*}
\omega<\sqrt{\frac{9}{2 a \cos \theta}} \tag{2}
\end{equation*}
$$

c)

$$
\begin{align*}
& \text { (i) } \int_{0}^{\frac{\pi}{4}} \sec x \operatorname{ch} x \\
& =[\log (\sec x+\operatorname{ten} x)]_{0}^{\frac{\pi}{4}} \\
& = \\
& =\frac{\log (\sqrt{2}+1)-0}{\frac{\log (\sqrt{2}+1)}{\pi}} \tag{1}
\end{align*}
$$

$$
\begin{array}{ll}
\text { (ii) } I_{n}=\int_{0}^{\frac{\pi}{4}} \sec ^{n} \theta d \theta \\
u=\sec ^{n-2} \theta
\end{array} \quad v=\tan \theta
$$

$$
\begin{aligned}
d u & =(n-2) \sec ^{n-3} \theta \cdot \sec \theta \tan \theta d \theta \quad d v=\sec ^{2} \theta d \theta \\
& =(n-2) \sec ^{n-2} \theta \cdot \tan \theta d \theta
\end{aligned}
$$

$$
I_{n}=\left[\sec ^{n-2} \theta \cdot \tan \theta\right]_{0}^{\frac{\pi}{4}}-(n-2) \int_{0}^{\frac{\pi}{4}} \sec ^{n-2} \theta \tan ^{2} \theta d \theta
$$

$$
=(\sqrt{2})^{n-2}-(n-2) \int_{0}^{0} \sec ^{\frac{\pi}{4}} \frac{\pi}{4} \theta\left(\sec ^{2} \theta-1\right) \operatorname{ci\theta } \theta
$$

$$
=(\sqrt{2})^{n-2}-(n-2) \int_{0}^{0}\left(\sec ^{n} \theta-\sec ^{n-2} \theta\right) d \theta
$$

$$
=(\sqrt{2})^{n-2}-(n-2) I_{n}+(n-2) I_{n-2}
$$

$$
(n-1) I_{n}=(\sqrt{2})^{n-2}+(n-2) I_{n-2}
$$

$$
\begin{equation*}
I_{n}=\frac{1}{n-1}\left((\sqrt{2})^{1-2}+(n-2) I_{n-2}\right) \tag{3}
\end{equation*}
$$

(iii) $I_{3}=\frac{1}{2}\left(\sqrt{2}+I_{1}\right)$

$$
=\frac{\sqrt{2}}{2}+\frac{1}{2} \int_{0}^{\frac{1}{4}} \sec \theta d \theta
$$

$$
\begin{equation*}
=\frac{1}{2}\left(\sqrt{2}+\log ^{0}(\sqrt{2}+1)\right) \tag{in}
\end{equation*}
$$

Question 8
a)

$$
\begin{align*}
& 100 a+10 b+c \\
= & 99 a+9 b+a+b+c \\
= & 3(33 a+3 b)+(a+b+c) \tag{2}
\end{align*}
$$

but $a+b+c$ is divisible by 3 .
\therefore number is divisible by 3
b) $(\operatorname{cis} \theta)^{3}=c^{3}+3 i c^{2} s-3 c s^{2}-i c^{3}$

$$
\operatorname{cis} 30=
$$

equating real ports

$$
\begin{align*}
\cos 3 \theta & =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta \\
& =4 \cos 3 \theta-3 \cos \theta \tag{1}
\end{align*}
$$

(ii)

$$
\begin{align*}
& \text { (ii) } 8 x^{3}-6 x-1=0 \\
& 2\left(4 x^{3}-3 x\right)-1=0 \\
& 1=x=\cos \theta \\
& 2 \cos 3 \theta-1=0 \\
& \cos 3 \theta=\frac{1}{2} \\
& 3 \theta=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3} \\
& \theta=\frac{\pi}{9}, \frac{5 \pi}{9}, \frac{7 \pi}{9} \\
& \therefore x=\cos \frac{\pi}{9}, \cos \frac{5 \pi}{9}, \cos \frac{7 \pi}{9} \tag{2}
\end{align*}
$$

(iii)

$$
\begin{align*}
& \cos \frac{\pi}{9}+\cos \frac{5 \pi}{9}+\cos \frac{7 \pi}{9}=0 \\
& \cos \frac{\pi}{9}=-\cos \frac{5 \pi}{9}-\cos \frac{7 \pi}{9} \\
& \text { but } \begin{aligned}
\cos \frac{5 \pi}{9} & =\cos \left(\pi-\frac{4 \pi}{9}\right) \\
& =-\cos \frac{4 \pi}{7} \\
\cos \frac{7 \pi}{9} & =\cos \left(\pi \frac{\pi \pi}{9}\right) \\
& =-\cos \frac{7 \pi}{9} \\
\cos \frac{\pi}{9} & =\cos \frac{4 \pi}{9}+\cos \frac{3 \pi}{9}
\end{aligned}
\end{align*}
$$

c)

$$
\begin{align*}
& \text { (}\left(\text {) } F_{2 n+3} F_{2 n+1}-F_{2 n+2}^{2}\right. \\
& =\left(F_{2 n+2}+F_{2 n+1}\right) F_{2 n+1}-F_{3 n+2}^{2} \\
& =F_{2 n+1} F_{2 n+2}+F_{2 n+1}^{2}-F_{2 n+2}^{2} \\
& =F_{2 n+1}^{2}-F_{2 n+2}\left(-F_{2 n+1}+F_{2 n+2}\right) \\
& =F_{2_{n+1}}^{2}-F_{3 n+2}\left(F_{2 n+1}+F_{2 n+1}+F_{2 n}\right) \\
& =F_{2 n+1}^{2}-F_{2 n+2} F_{2 n} \tag{2}
\end{align*}
$$

(ii) Prove true fer $n=B$

$$
\begin{aligned}
L H S & =F_{3} F_{1}-F_{2}^{2} \\
& =2(i)-1^{2} \\
& =1
\end{aligned}
$$

Hance -ire resit is true for $n=1$
Assume the result is true for $n=k$ where is is a positive integer
$1 _F_{2 k+1} F_{2 k-1}-i_{i_{k}}{ }^{2}=1$
Prove true for $n=k+1$
ie prove

$$
F_{2 k+3} F_{2 k+1}-F_{2 k+2}^{2}=1
$$

Precut:

$$
\begin{aligned}
& F_{2 k+3} F_{2 k+1}-F_{2 k+2}^{2} \\
= & \left(F_{2 k+2}+F_{2 k+1}\right) F_{2 k+1}-F_{2 k+2}^{2} \\
= & \left(F_{2 k+i}-F_{2 k+2}\right) F_{2 k+2}+F_{2 k+1}^{2} \\
= & \left(F_{2 k+1}-F_{2 k+1}-F_{2 k}\right)\left(F_{2 k+1}+F_{2 k}\right)+F_{2 k+1}^{2} \\
= & F_{2 k+1}^{2}-F_{2 k} F_{2 k+1}-F_{2 k}^{2} \\
= & F_{2 k+1}\left(F_{2 k+1}-F_{2 k}\right)-F_{2 k}^{2} \\
= & F_{2 k+1}\left(F_{2 k}+F_{2 k+1}-F_{2 k}\right)-F_{2 k}^{2} \\
= & F_{2 k+1} F_{2 k-1}-F_{2 k}^{2} \\
= & 1
\end{aligned}
$$

Hence the result is true for $n=k+1$ if if is the for $n=k$
Since the result istrue for $n=1 ;$ then it is trevefor ah pesinve integral values of n, by inctucitien
(iii) $F_{2 n+1} F_{2 n-1}-i_{2 n}^{2}=1$

$$
\begin{equation*}
\therefore F_{2 n}{ }^{2}+1=F_{2 m+1} F_{2 n-1} \tag{1}
\end{equation*}
$$ which is divisible by $F_{2 n+1}$

(iv) $F_{2 n-1}^{2}+1$

$$
\begin{aligned}
& =\left(F_{2 m+1}-F_{2 m}\right)^{2}+1 \\
& =F_{2 n+1}^{2}-2 F_{2 n+1} F_{2 m}+F_{2 n}^{2}+1 \\
& =F_{2 n+1}^{2}-2 F_{2 n+1} F_{2 m}+F_{2 n+1} F_{2 n+3}
\end{aligned}
$$

$$
=F_{2 n+1}\left(F_{2 n+1}-2 F_{2 n}+F_{2 n+3}\right)
$$

which is divisible by F Feints 2

