## BAULKHAM HILLS HIGH SCHOOL

## TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

## 2010

## MATHEMATICS

## EXTENSION 2

## GENERAL INSTRUCTIONS:

- Reading time - 5 minutes.
- Working time -3 hours.
- Write using blue or black pen.
- $\quad$ Start each question on a new page.
- Write your Student Number at the top of each page.
- Calculators may be used.
- A table of standard integrals is provided.
- ALL necessary working should be shown in every question.


## QUESTION 1 (15 marks)

(a) Find each of the following integrals
(i) $\int x^{2}\left(1+2 x^{3}\right)^{-5} d x \quad 2$
(ii) $\int \tan ^{4} x d x$ 3
(iii) $\int \frac{d x}{3+2 \cos x}$
(b) Find $\int \frac{e^{x}+e^{2 x}}{1+e^{2 x}} d x$
(c) (i) Show that $\sin (A+B)+\sin (A-B)=2 \sin A \cos B \quad 1$
(ii) Hence calculate $\int \sin 5 x \cos 4 x d x \quad 2$

QUESTION 2 (15 marks)
(a) For $z_{1}=2-3 i$ and $z_{2}=1+5 i$ find, in the form $a+i b$, the values of
(i) $z_{1}+\bar{z}_{2}$
(ii) $z_{1} z_{2}$
(iii) $\frac{z_{1}}{z_{2}}$
(b) (i) Solve $(x+i y)^{2}=6 i \quad 2$
(ii) Hence or otherwise solve $z^{2}-(1-i) z-2 i=0 \quad 3$
(c) (i) Express $z=1-\sqrt{3} i$ in modulus-argument form 2
(ii) Hence express $z^{6}$ in the form $a+i b \quad 2$

QUESTION 3 (15 marks)
(a) The hyperbola H has the equation $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$

Find (i) its eccentricity
(ii) the coordinates of its foci
(iii) the equations of its directrices
(iv) the equations of its asymptotes
(b) (i) Show that the gradient of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\mathrm{P}(a \cos \theta, b \sin \theta)$ is $\frac{-b \cos \theta}{a \sin \theta}$
(ii) Hence show that the equation of the tangent is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$
(iii) Show that the x -intercept of this tangent is $\left(\frac{a}{\cos \theta}, 0\right)$
(iv) Hence, or otherwise, find the points on the curve $4 x^{2}+3 y^{2}=12$ whose tangent passes through (2,0)

QUESTION 4 (15 marks)
(a) OABC is a square on the Argand diagram and is labeled in an anticlockwise direction. A represents $z=a+i b$ and B represents $4+7 i$.
(i) Find, in terms of $a$ and $b$, the complex number represented by C .
(ii) Hence evaluate $a$ and $b$.
(b) The equation $x^{3}+2 x-1=0$ has roots $\alpha, \beta$ and $\gamma$. Find the equation with roots:

$$
\begin{equation*}
\text { (i) } \frac{1}{\alpha}, \frac{1}{\beta} \text { and } \frac{1}{\gamma} \tag{2}
\end{equation*}
$$

(ii) $\alpha^{2}, \beta^{2}$ and $\gamma^{2}$
(c) (i) Show that 2 is a root of multiplicity 3 for $P(x)=x^{4}-3 x^{3}-6 x^{2}+28 x-24$
(ii) Hence solve $P(x)=0$
(d) Draw on separate argand diagrams the following loci:
(i) $z \bar{z}=3$
(ii) $\quad \arg \left(\frac{z}{z-1}\right)=\frac{\pi}{3}$

## QUESTION 5 (15 marks)

(a) Suppose $x>0, y>0, z>0$
(i) Prove $x^{2}+y^{2}+z^{2} \geq x y+y z+x z$
(ii) Given $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$ prove $x^{3}+y^{3}+z^{3} \geq 3 x y z$
(iii) Hence show $a+b+c \geq 3(a b c)^{\frac{1}{3}}$
(b) Given below is the graph of $f(x)=2-\frac{4}{x^{2}+1}$.


Use the graph of $y=f(x)$ to sketch, on separate axes, the graphs of
(i) $\quad y=|f(x)|$
(ii) $y=[f(x)]^{2}$
(iii) $y^{2}=f(x)$
(iv) $y=\frac{1}{f(x)}$
(c) For the curve $x^{3}+3 x^{2} y-2 y^{3}=16$
(i) Show that $\frac{d y}{d x}=\frac{x^{2}+2 x y}{2 y^{2}-x^{2}}$
(ii) Find the coordinates of the stationary points on the curve

QUESTION 6 (15 marks)
(a) Find, using slices, the volume generated when the area bounded by $y=x^{2}$ and the
line $y=3$ is rotated about the line $y=3$.
(b) Find, using cylindrical shells, the volume obtained by revolving about the $y$-axis the region bounded by the curve $y=\sin x$, for $0 \leq x \leq \pi$, and the $x$-axis.
(c) A solid has a semi-circular base whose equation is $=\sqrt{4-x^{2}}$. Vertical crosssections, perpendicular to the diameter, are right-angled triangles whose height is bounded by the parabola $z=4-x^{2}$.
(i) Draw a neat diagram, including a typical slice, representing this information.
(ii) By slicing at right angles to the x -axis, show that the volume of the solid is given by $\int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}} d x$.
(iii) Hence calculate this volume.

QUESTION 7 (15 marks)
(a) Use the method of partial fractions to show that $\int_{0}^{1} \frac{6 x+4}{\left(x^{2}+1\right)(x+1)} d x=\frac{5 \pi}{4}-\frac{1}{2} \log _{e} 2$
(b) Let $P(z)=z^{4}+b z^{2}+d$ where $b$ and $d$ are real numbers and $d \neq 0 . P(z)$ has a double zero $\alpha$.
(i) Prove $P^{\prime}(z)$ is odd.
(ii) Prove that $-\alpha$ is also a double zero of $P(z)$.
(c) A mass of 35 kg is dropped from a balloon falling at $30 \mathrm{~m} / \mathrm{s}$. The mass experiences air resistance measuring $70 v$ Newtons, where $v \mathrm{~m} / \mathrm{s}$ is its velocity. Take $g$ as $10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Show that the velocity of the mass $t$ seconds after being dropped, but before hitting the ground, is given by $v=5+25 e^{-2 t}$.
(ii) Describe what happens to the velocity as $t \rightarrow \infty$.
(iii) If the mass was dropped from 400 m above the ground, how close to the ground will it be after 1 minute?

QUESTION 8 (15 marks)
(a) Given $I_{n}=\int_{0}^{1} x^{n} e^{-x} d x$
(i) Calculate $I_{0} \quad 2$
(ii) Prove $I_{n}=n I_{n-1}-\frac{1}{e} \quad 2$
(iii) Hence find $\int_{0}^{1} x^{3} e^{-x} d x \quad 2$
(b) Two particles of equal mass are attached to the ends A and B of a light inextensible string which passes through a small hole at the apex C of a hollow right circular cone fixed with its axis vertical and apex on top. The semi-vertical angle of the cone is $\theta$. The particle at A, where AC is $a$ units, moves in a horizontal circle with constant angular velocity $\omega$ on the smooth surface of the cone, while the other particle at B hangs at rest inside the cone.
(i) Represent this information on a diagram showing relevant forces.
(ii) Show that $\omega^{2}=\frac{g}{a(1+\cos \theta)}$
(iii) Hence, or otherwise, deduce that $\frac{g}{2 \omega^{2}}<a<\frac{g}{\omega^{2}}$
(c) If $x>0$, prove $x-\frac{1}{3} x^{3}<\tan ^{-1} x<x-\frac{1}{3} x^{3}+\frac{1}{3} x^{5}$

SHIH TRIAL $H=$ Mithts
al (ax $(i) I=\int x^{2}\left(i+2 x^{3}\right)^{-5} d x$

$$
\begin{align*}
\text { levce } & =1+2 x^{3} \therefore \frac{d u}{d x}=6 x^{2} \\
\therefore I & =\frac{1}{6} \int u^{-5} d u \\
& =\frac{1}{6} \frac{u^{-4}}{6}+c \\
& =-\frac{1}{24}\left(1+2 x^{3}\right)^{-4}+c
\end{align*}
$$

(i)

$$
\begin{aligned}
I & =\int \tan ^{4} x d x \\
& =\int \tan ^{2} x \tan ^{2} x d x \\
& =\int \tan ^{2} x\left(\sec ^{2} x-1\right) d x-1 \\
& =\int \tan ^{2} x \sec ^{2} x-\tan x d x \\
& =\frac{1}{3} \tan ^{3} x-\int \sec ^{2} x-1 d x_{1} \\
& =\frac{1}{3} \tan ^{3} x-\tan x+x+c
\end{aligned}
$$

(ï)

$$
\begin{align*}
I & =\int \frac{d x}{3+2 \cos x} \\
& =\int \frac{\frac{2 d t}{1+t^{2}}}{3+2\left(\frac{1-t^{2}}{1+t^{2}}\right)}-1 \\
& =\int \frac{2 d t}{3+3 t^{2}+2-2 t^{2}} \\
& =\int \frac{2 d t}{5 t t^{2}}-1 \\
& =\frac{2}{\sqrt{5}} \tan ^{-1}\left(\frac{t}{\sqrt{5}}\right)+c-1 \\
& =\frac{2}{\sqrt{5}} \tan ^{-1}\left(\frac{1}{\sqrt{5}} \tan \frac{x}{2}\right)+c
\end{align*}
$$

$\Rightarrow$

$$
\begin{aligned}
I & =\int \frac{e^{x}}{1+e^{2 x}} d x+\frac{1}{2} \int \frac{2 e^{2 x}}{1+e^{2 x}} d x \\
& =I_{1}+\frac{1}{2} \ln \left(1+e^{2 x}\right)+c
\end{aligned}
$$

In I, let $u=e^{x} \therefore d u=e^{x} d x$

$$
\begin{aligned}
\therefore I & =\int \frac{d u}{1+u^{2}}+\frac{1}{2} \ln \left(1+e^{2 x}\right)+c \\
= & \operatorname{Tan}^{-1} u+\frac{1}{2} \ln \left(1+e^{2 x}\right)+c \\
& =\operatorname{Tan} e^{-1}+\frac{1}{2} \ln \left(1+e^{2 x}\right)+C^{\prime}(3) \\
\forall L H S= & \sin A \cos B+\cos A \sin B+\sin A \cos B-\cos A \sin B \\
= & 2 \sin A \cos B=R H S \\
I= & \frac{1}{2} \int 2 \sin 5 x \cos A x d x \\
= & \frac{1}{2} \int \sin 9 x+\sin x d x \\
= & \frac{1}{2}\left(-\frac{1}{9} \cos 9 x-\cos x\right)+c
\end{aligned}
$$

$$
\begin{align*}
Q 2(a)(i) z_{1}+\bar{z}_{2} & =2-3 i+1-5 i  \tag{2}\\
{ }_{15} & =3-8 i
\end{align*}
$$

$$
=3-8 i
$$

(ii)

$$
\begin{align*}
z_{1} z_{2} & =(2-3 i)(i+5 i) \\
& =2+10 i-3 i+15 \\
& =17+7 i \tag{2}
\end{align*}
$$

(iic)

$$
\begin{align*}
& \Rightarrow \frac{z_{1}}{z_{2}}=\frac{2-3 i}{1+5} \times \frac{1-5 i}{1-5 i} \\
&=\frac{2-10 i-3 i-15}{1+25} \\
&=-\frac{13-13 i}{26}  \tag{2}\\
&=-\frac{1}{2}-\frac{1}{2} i \\
& \text { (i) } x^{2}-y^{2}+2 i x y=6 i \\
& \therefore x^{2}-y^{2}=0 \text { and } 2 x y=6 \\
& \therefore x^{2}-\frac{9}{x^{2}}=0 \quad \therefore y=\frac{3}{x} \\
& x^{4}=9 \\
& \therefore x^{2}= \pm 3 \quad \text { But } x^{2}>0 \\
& x=3 \\
& x= \pm \sqrt{3}, y= \pm \sqrt{3}
\end{align*}
$$

b) (i)

$$
\begin{equation*}
\therefore z= \pm(\sqrt{3}+\sqrt{3} 2) \tag{2}
\end{equation*}
$$

(ii)

$$
\begin{align*}
z & =\frac{(1-i) \pm \sqrt{(-1-i)]^{2}-4 \times 1 \times-2 i}}{2 \times 1} \\
& =\frac{1-i \pm \sqrt{1-2 i-1+8 i}}{2} \\
& =\frac{1-i \pm \sqrt{6 i}}{2} \\
& =\frac{1-i \pm(\sqrt{3}+\sqrt{3} i)}{2} \\
& =\frac{1+\sqrt{3}+\sqrt{3}-1) i}{2}, \frac{1-\sqrt{3}+(-\sqrt{3}-1) i}{2} \tag{3}
\end{align*}
$$

c)
(ii)
(i) $z=2\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right)=2\left(\cos -\frac{\pi}{3}+i \sin -\frac{\pi}{3}\right)$

$$
\begin{align*}
z^{6} & =\left[2\left(\cos -\frac{\pi}{3}+i \sin -\frac{\pi}{3}\right)\right]^{6} \\
& =2^{6}(\cos -2 \pi+i \sin -2 \pi) \\
& =64(1+0) \\
& =64 \tag{2}
\end{align*}
$$

$Q 3(a)(i) \quad a=2, b=\sqrt{12}=2 \sqrt{3}$
15

$$
\begin{align*}
& b^{2}=a^{2}\left(a^{2}-1\right) \\
& 12=4\left(a^{2}-1\right) \\
& 2^{2}-1=3  \tag{2}\\
& a^{2}=4 \quad 2=2
\end{align*}
$$

(ii)

$$
\begin{equation*}
\text { Foce }=( \pm a e, 0)=( \pm 4,0) \tag{1}
\end{equation*}
$$

(ii) Dir. are $x= \pm \frac{a}{e}=\frac{x= \pm 1}{(1)}$
(iv) Asym, are $y= \pm \frac{b x}{a}$

$$
\therefore y= \pm \frac{2 \sqrt{3}}{2} x-\frac{y= \pm \sqrt{3} x}{(1)}
$$

(b) (i, Biff-Impl.

$$
\begin{align*}
\frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}} & =0 \\
\frac{2 y y^{\prime}}{b^{2}} & =-\frac{2 x}{a^{2}} \\
y^{\prime} & =-\frac{b^{2} x}{a^{2} y}-1 \\
\therefore n_{a \cos \theta}= & \frac{-b^{2} a \cos \theta}{a^{2} b \sin \theta}=\frac{-b \cos \theta}{a \sin \theta} \tag{2}
\end{align*}
$$

(ii) Tangent is

$$
\begin{aligned}
& y-b \sin \theta=-b \cos \theta(x-a \cos \theta) \\
& a y \sin \theta-a b \sin ^{2} \theta=-b x \cos x+a b \cos ^{2} \theta \\
& b x \cos \theta+a y \sin \theta=a b\left(\sin ^{2} \theta+\cos ^{2} \theta\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{b x \cos \theta}{a b}+\frac{a y \sin \theta}{a b}=\frac{a b}{a b} \\
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 \\
x-\operatorname{lnt} w h e y=0 \\
\therefore \frac{x \cos \theta}{a}=1 \\
x=\frac{a}{\cos \theta}
\end{gathered}
$$

$\therefore x$-int is $\left(\frac{a}{\cos \theta}, 0\right)$
(1)
(iv) $4 x^{2}+3 y^{2}=12$

$$
\frac{x^{2}}{3}+\frac{y^{2}}{4}=1
$$

$\therefore a=\sqrt{3}, b=2$
since $a \cos \theta=2, \cos \theta=\frac{2}{\sqrt{3}}$
$\therefore \theta=\frac{\pi}{6}$ or $\frac{-\pi}{6}$ in $Q_{1}$ curd $Q_{4}$
$\therefore$ Points of contact are:
$P(a \cos \theta, b \sin \theta)$

$$
\begin{aligned}
\therefore P_{1} & =\left(\sqrt{3} \cos \frac{\pi}{6}, 2 \sin \frac{\pi}{6}\right)=\left(\left(\frac{1}{2}, 1\right)-1\right. \\
P_{2} & \left.=\left(\sqrt{3} \cos \frac{-\pi}{6}, 2 \sin -\frac{\pi}{6}\right)=\frac{\left(5 \frac{1}{2},-1\right)}{4}\right)
\end{aligned}
$$

$$
\sin _{i}(a)(i) w_{c}=(a+i b) \times i-1
$$

$$
=-b+a i-1
$$

(ii) $-b+a i+a+i b=4+7 i$

$$
(a-b)+(b+a) i=4+7 i
$$

$$
\therefore a-b=4
$$

$$
b+a=7
$$

$$
\therefore 2 a=11 \text { and } 2 b=-3
$$

$$
\begin{equation*}
a=5 \frac{1}{2} \quad a_{-}=1 \frac{1}{2}-1 \tag{4}
\end{equation*}
$$

b) (i) Ear is of the form

$$
\begin{align*}
& \left(\frac{1}{x}\right)^{3}+2\left(\frac{1}{x}\right)-1=0 \\
& 1+2 x^{2}-x^{3}=0 \\
& \text { or } x^{3}-2 x^{2}-1=0 \tag{2}
\end{align*}
$$

(ii) Ear is of the form

$$
(\sqrt{x})^{3}+2 \sqrt{x}-1=0
$$

$$
\sqrt{x}(x+2)=1
$$

Sq. book sides

$$
\begin{gather*}
x(x+2)^{2}=1 \\
x\left(x^{2}+4 x+4\right)=1 \\
x^{3}+4 x^{2}+4 x-1=0 \tag{2}
\end{gather*}
$$

c) (i)

$$
\begin{aligned}
\lambda P(x) & =x^{4}-3 x^{3}-6 x^{2}+28 x-24 \\
P^{\prime}(x) & =4 x^{3}-9 x^{2}-12 x+28 \\
P^{\prime \prime}(x) & =12 x^{2}-18 x-12 \\
& =6\left(2 x^{2}-3 x-2\right) \\
& =6(2 x+1)(x-2) \\
& =0 \text { when } x=-\frac{i}{2} \text { on } 2
\end{aligned}
$$

$P\left(\frac{1}{2}\right)=\frac{1}{16}+\frac{3}{8}-\frac{3}{2}-14-24=-39 \frac{1}{16} \neq 0$

$$
\begin{equation*}
P(2)=16-24-24+56-24=0-1 \tag{z}
\end{equation*}
$$

$\therefore x=2$ is a root of multiplicity 3
(ii) $P(x)=(x-2)^{3}(a x+b)$

Costco of $x^{4}=1-a=1$
constr term $=-24 \cdots-86=-24$ $b=3 \quad 1$

$$
\begin{equation*}
\therefore P(x)=(x-2)^{3}(x+3) \therefore x=2,-3 \tag{2}
\end{equation*}
$$

d) (i) $z \overline{2}=3 \therefore x^{2}+y^{2}=3$

Circle, centre $(0,0)$, padus $\sqrt{3}$

(ii) $\operatorname{Arg} z-\operatorname{Arg}(z-1)=\frac{\pi}{3}$


$$
\begin{gathered}
\text { Q } 5(a)(c)(x-y)^{2} \geq 0 \text { for all } x, y \\
x^{2}-2 x y+y^{2} \geq 0 \\
x^{2}+y^{2} \geq 2 x y
\end{gathered}
$$

Also

$$
\begin{aligned}
& y^{2}+z^{2} \geq 2 y z \\
& y^{2}+x^{2} \geq 2 z x
\end{aligned}
$$

Adding: $2\left(x^{2}+y^{2}+z^{2}\right) \geq 2(x y+y z+x z)$

$$
\therefore x^{2}+y^{2}+z^{2} \geq x y+y z+x z
$$

(ia)

$$
\begin{array}{r}
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z) \\
x\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right) \\
\geqslant(x+y+z)(x y+y z+x z-x y-y z-z x)
\end{array}
$$

(frompartis)

$$
\geq(x+y+z) \in 0
$$

$$
\geq 0
$$

$$
\therefore x^{3}+y^{3}+z^{3} \geqslant 3 x y z
$$

(in) In( $\because i)$
let $x^{3}=a, y^{3}=b, z^{3}=c$

$$
\begin{aligned}
\therefore c+b+c & \geq 3 a^{\frac{1}{3}} b^{-\frac{1}{3}} c^{\frac{1}{3}}-1 \\
& \geqslant 3 a b c^{\frac{1}{3}}
\end{aligned}
$$

$(4)$
b) (i) $y=|f(x)|$

(ii) $y=[f(x)]^{2}$

(iii) $y^{2}=f(x)$

$$
\therefore y= \pm \sqrt{f(x)}
$$


(iv)
$y=\frac{1}{f(2 c)}$

c)
(i) $x^{3}+3 x^{2} y-2 y^{3}=16$

Diff. imp.

$$
\begin{align*}
& \text { ff. imp } \\
& 3 x^{2}+6 x y+3 x^{2} y^{\prime}-6 y^{2} \cdot y^{\prime}=0 \\
& y^{\prime}\left(6 y^{2}-3 x^{2}\right)=3 x^{2}+6 x y \\
& \therefore y^{\prime}=\frac{3\left(x^{2}+2 x y\right)}{3\left(2 y^{2}-x^{2}\right)}  \tag{1}\\
&=\frac{x^{2}+2 x y}{2 y^{2}-x^{2}}(1
\end{align*}
$$

(ii) st pts when $y^{\prime}=0$

$$
\begin{array}{r}
x^{2}+2 x y=0 \\
x(x+2 y)=0 \\
\therefore x=0, y=-2 \\
\text { or } x=-24 \\
\therefore(-2 y)^{3}+3(-24)^{2} y-2 y^{3}=16 \\
-8 y^{3}+12 y^{3}-2 y^{3}=16 \\
2 y^{3}=16 \\
y=2 \\
\therefore x=-4
\end{array}
$$

$\therefore$ St. pts are $(-4,2)$ and $(0,-2)$

26 (c)

volootsice dv $=\pi r^{2} h$
$=\pi(3-4)^{2} \sigma_{x}$

$$
\begin{aligned}
& =\pi(3-4) \partial x \\
& =\pi\left(3-x^{2}\right)^{2} \sqrt{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total.vol. }, v=\lim _{d x \rightarrow 0} \sum_{x=-3}^{x-3} \pi\left(3>x^{2}\right)^{2} d x \\
& =2 \pi \int_{0}^{\sqrt{3}}\left(3-x^{2}\right)^{2} d x-1 \\
& =2 \pi \int_{0}^{0} 9-6 x^{2}+x^{4} d x \\
& =2 \pi\left[9 x-2 x^{3}+\frac{x^{5}}{5}\right]_{0}^{\sqrt{3}} \\
& =2 \pi\left[9 \sqrt{3}-6 \sqrt{3}+\frac{9 \sqrt{3}}{5}\right] \\
& =\frac{2 \pi}{5}[45 \sqrt{3}-30 \sqrt{3}+9 \sqrt{3}] \\
& =\frac{48 \pi \sqrt{3}}{5} u^{3}-1(4)
\end{aligned}
$$

b)


$$
\begin{align*}
& V_{\text {ol }}^{\text {sheil }}=\mathrm{in} . c_{1, c c} \times \text { height } \times \text { thick. } \\
& =2 \pi x \text { y } \begin{array}{c}
\delta x \\
x=\pi
\end{array} \\
& \text { Vol. }=\lim _{\partial x \rightarrow 0} \sum_{x=0}^{x=\pi} 2 \pi x y \delta x \\
& =2 \pi \int_{0}^{\pi} x \sin x d x \\
& =2 \pi\left[u v-S v u^{\circ}\right] \\
& =2 \pi\left\{\left[-x \cos \frac{\left.1]_{0}^{\pi}-\int_{0}^{\pi} \cos x d x\right]-1}{\pi}\right.\right. \\
& =2 \pi\left[-\pi \cos \pi+[\sin x]_{0}^{\pi}\right\} \\
& =2 \pi[\pi-0] \\
& =2 \pi^{2} \omega^{3} \tag{4}
\end{align*}
$$

- (i)

-(1)
(ii)

$$
\begin{aligned}
\text { Vol shice } & =\left(\frac{1}{2} b h\right) H \\
& =\frac{1}{2} y z \sqrt{x} \\
& =\frac{1}{2} \sqrt{4-x^{2}}\left(4-x^{2}\right) \sqrt{x} \\
& =\frac{1}{2}\left(4-x^{2}\right)^{\frac{3}{2}} \sqrt{x}-1
\end{aligned}
$$

$$
\begin{aligned}
\text { Vol } & =\lim _{d x 0} \sum_{x=-2}^{x} \frac{1}{2}\left(4-x^{2}\right)^{\frac{3}{x}} d x \\
& =2 \int_{0}^{2} \frac{1}{2}\left(4-x^{2}\right)^{\frac{3}{2}} d x-1 \\
& =\int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}} d x
\end{aligned}
$$

(iie) $V=\int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}} d x$
$\cot x=2 \sin \theta \therefore d x=26, \theta d \theta$
When $x=0, \theta=0$
When $x=z, \theta=\frac{\pi}{2}$
$\therefore V=\int_{0}^{\frac{\pi}{2}}\left(4-4 \sin ^{2} \theta\right)^{\frac{3}{2}}-2 \cos \theta d \theta$
$=\int_{0}^{0} \frac{\pi}{\frac{\pi}{2}} 8\left(1-\sin ^{2} \theta\right)^{\frac{3}{2}}-2 \cos \theta d \theta$
$=16 \int_{0}^{\frac{\pi}{2}} \cos ^{3} \theta \cdot 6 \theta d \theta$
$=16 \int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta-1$
$=16 \int^{\frac{1}{2}}\left[\frac{1}{2}(i+\cos 2 \theta)\right]^{-2} d \theta$
$=4 \int_{0}^{\pi} \frac{\pi}{2} 1+2 \cos 2 \theta+\cos ^{3} 2 \theta d \theta$
$=4[\theta+\sin 2 \theta]_{0}^{\frac{\pi}{2}}+4 \int_{0}^{\frac{\pi}{2}} \frac{\pi}{2}(1+\cos 4 \theta)$
$=4 \times \frac{\pi}{2}+2\left[\theta+\frac{1}{4} \operatorname{Sin} 4 \theta\right]_{0}^{\frac{\pi}{2}}$
$=2 \pi+\pi-0$
$=3 \pi u^{3}$

Q7. (c) $6 t \frac{6 x+4}{\left(x^{2}+1\right)(x+1)}=\frac{a x+b}{x^{2}+1}+\frac{c}{x+1}$

$$
\therefore 6 x+4=(a x+b)(x+1)+c\left(x^{2}+1\right)-1
$$

If $x=-1,-2=c \times 2 \therefore c=-1 ;$
If $x=0, \quad 4=b+c$ an $\quad b=5\}-1$
Eq-cooff of $x^{2}$

$$
\begin{align*}
& \therefore I=\int_{0}^{1} \frac{x+5}{x^{2}+1}-\frac{1}{x+1} d x \\
& =\int_{0}^{1} \frac{x}{x^{2}+1} d x+\int_{0}^{\frac{1}{x^{2}+1}} d x-\int_{0}^{1} \frac{d x}{x+1} \\
& =\frac{1}{2}\left[\ln \left(x^{2}+1\right)\right]_{0}^{1}+5\left[\tan ^{-1} x\right]_{0}^{1}-[\ln (x+1)] \\
& =\frac{1}{2}(\ln 2-\ln 1)+5\left(\tan ^{-1}-\tan ^{-1} 0\right) \\
& =\frac{1}{2} \ln 2-\ln 2-\ln 2+5 x \frac{\pi}{4} \\
& =\frac{5 \pi}{4}-\frac{1}{2} \ln 2
\end{align*}
$$

b) (i)

$$
\begin{align*}
P(z) & =z^{4}+b z^{2}+d \\
P(z) & =4 z^{3}+2 b z \\
P^{\prime}(-z) & =(-z)^{3}+2 b(-z) \\
& =-4 z^{3}-2 b z \\
& =-\left(4 z^{3}+2 b z\right) \\
& =-P^{( }(z)
\end{align*}
$$

$\therefore P^{\prime}(2)$ is odd.
(2)
(i)

$$
\begin{align*}
P(-\alpha) & =(-\alpha)^{4}+b(-\alpha)^{2}+d \\
& =\alpha^{4}+b \alpha^{2}+d \\
& =P(\alpha) \\
& =0
\end{align*}
$$

$\therefore-\alpha$ is also a zero of $P(z)$ let $\beta=$ the fourth root.

$$
\begin{gather*}
\Delta x=\alpha+\alpha+-\alpha+\beta=-\frac{b}{c}=0 \\
\quad \therefore \beta=-\alpha
\end{gather*}
$$

$\therefore-\quad-\alpha$ is a ctouble root of itz $(2)$
(e) ifesutt.Force, ma $=m g-m k v$

$$
\begin{align*}
35 a & =350-20 v \\
a & =10-20 \\
\therefore \frac{d t}{t u} & =\frac{1}{10-2 v} \\
t & =\frac{1}{2} \ln (10-2 v)+c-1 \\
2 t & =-\ln (10-2 v)+2 c \\
\ln (10-2 v) & =2 c-2 t \\
10-2 v & =e^{2 c-2 t}=A e^{-2 t} \\
2 v & =10-A e^{-2 t} \\
w & =5-\frac{A}{2} e^{-2 t}-1 \\
\text { Whant }=0, v & =30 \\
\therefore 30 & =5-\frac{A}{2} \\
A & =-50 \\
\therefore v & =5+25 e^{-2 t} \tag{3}
\end{align*}
$$

(ii) As $t \rightarrow \infty, e^{-2 t} \rightarrow 0$

$$
\begin{equation*}
\therefore v \rightarrow 5 \mathrm{~ms}^{-1} \tag{1}
\end{equation*}
$$

(iie)

$$
\begin{align*}
& \frac{d x}{d t}=5+25 e^{-2 t} \\
& x=5 t-\frac{25}{2} e^{-2 t}+c
\end{align*}
$$

When $t=0, x=0 \therefore c=\frac{25}{2}$

$$
\therefore x=5 t-\frac{25}{2} e^{-2 t}+\frac{25}{2}
$$

$$
\begin{align*}
\text { When } t= & 60 \\
x & =300-\frac{25}{2} e^{-120}+\frac{25}{2} \\
& =312 \frac{1}{2}-\frac{25}{2} e^{-120}-1 \\
& \div 312.5 \\
\therefore \text { Height } & =400-312.5 \\
& =82.5 \mathrm{~m}
\end{align*}
$$

乏 $8(0)^{\prime}(i)$

$$
\begin{align*}
I_{n} & =\int_{0}^{1} x c^{n} e^{-x} d x \\
I_{0} & =\int_{0}^{1} x^{0} e^{-x} d x \\
& =\int_{0}^{1} e^{-x} d x \\
& =\left[e^{-x}\right]_{0}^{1} \\
& =-e^{-1}--e^{0} \\
& =1-e^{-1}-1 \tag{2}
\end{align*}
$$

年

$$
I_{n}=\int_{0}^{1} x^{n} e^{-x} d x
$$

Let $u=x^{n} \therefore u^{\prime}=n x^{n-1}$
let $v^{\prime}=e^{-x} \therefore v=-e^{-x}-1$

$$
\begin{align*}
I_{n} & =u v-\int v u^{\prime} \\
& =\left[-x^{n} e^{-x}\right]_{0}^{1}+n \int_{0}^{1} x^{n-1} e^{-x} d x  \tag{2}\\
& =-e^{-1}+n I_{n-1}
\end{align*}
$$

$$
\therefore \frac{9}{2 w^{2}}<a<\frac{9}{w^{2}}
$$

$$
I_{n}=n I_{n-1}-\frac{1}{e}
$$

(2)
(i)

$$
\begin{align*}
I_{3} & =\int_{0}^{1} x^{3} e^{-x} d x \\
& =3 I_{2}-\frac{1}{e} \\
& =3\left[2 I_{1}-\frac{1}{e}\right]-\frac{1}{e} \\
& =6 I_{1}-\frac{4}{e} \\
& =6\left[I_{0}-\frac{1}{e}\right]-\frac{4}{e} \\
& =6 I_{0}-\frac{10}{e} \\
& =6\left[1-e^{-1}\right]-\frac{10}{e} \\
& =6-\frac{16}{e}
\end{align*}
$$


$\left.{ }^{b}\right)^{(L)} \subset$

$$
\begin{equation*}
=\frac{1-x^{2}+\frac{5}{3} x^{4}+x^{2}-x^{4}+\frac{5}{x} x^{-6}-1}{1+x^{2}} \tag{2}
\end{equation*}
$$

$$
=\frac{\frac{2}{3} x^{4}+\frac{5}{3} x^{6}}{1+x^{2}}>0 \text { for } x>0
$$

Hatar.

$$
\begin{equation*}
\therefore \frac{1}{1+x^{2}}<1-x^{2}+\frac{5}{3} x^{4}=1 \tag{1}
\end{equation*}
$$

Cant.fore, $m r \omega^{2}=T \sin \theta-R \cos \theta$ ver.
AB $m g=T \cos \theta+R \sin \theta--(2)$

$$
\begin{aligned}
& m g=T \\
R \operatorname{In}(2) m g & =m g \cos \theta+R \sin \theta \\
R & =\frac{m g(1-\cos \theta)}{\operatorname{Sin} \theta} \theta
\end{aligned}
$$

In (1) $m \cdot a \sin \theta \omega r^{2}=m g \sin \theta-R \cos \theta$ maw $^{2} \sin \theta=m g \sin \theta-\frac{m g(1-\cos \theta)}{\sin \theta} \cdot \cos \theta$ $a \omega^{2} \sin ^{2} \theta=g \sin ^{2} \theta-g(1-\cos \theta) \cos \theta$ $\begin{aligned} \sin ^{2} \theta\left(g-a \omega^{2}\right) & =g \cos \theta(1-\cos \theta) \\ g-a \omega^{2} & =g \cos \theta(1-\cos \theta)\end{aligned}$

$$
\begin{aligned}
q-a \cdot \omega & =\frac{q \cos \theta(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)}
\end{aligned}
$$

$$
\begin{aligned}
a \omega^{2} & =9-\frac{9 \cos \theta}{1+\cos \theta} \\
& =\frac{q+g \cos \theta-g \cos \theta}{1+\cos \theta} / 2 \Rightarrow \therefore w^{2}=\frac{9}{1+\cos \theta}
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\frac{m g(i-\cos \theta)}{\sin \theta}>0 \\
1-\cos \theta>0 \\
\cos \theta<1 \\
\therefore 0^{\circ}<\theta<90^{\circ}
\end{gathered}
$$

$\omega$ wen $\theta=0^{\circ}, \omega^{2}=\frac{9}{a(1+1)}=\frac{9}{2 a}$

$$
\therefore a=\frac{a}{2 w^{2}}-1
$$

When $\theta=90^{\circ}, \omega^{2}=\frac{9}{a(1+0)}=\frac{9}{a}$

$$
\therefore c=\frac{9}{w^{2}}-1
$$

c)

$$
\begin{aligned}
& \frac{d}{d x}\left(x-\frac{1}{3} x^{3}\right)=1-x^{2} \\
& \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \frac{d}{d x}\left(x-\frac{1}{3} x^{3}+\frac{1}{3} x^{5}\right)=1-x^{2}+\frac{5}{3} x^{4}-1
\end{aligned}
$$

$$
\begin{gathered}
\text { Now, } \frac{1}{1+x^{2}}-\left(1-x^{2}\right)=\frac{1-\left(1-x^{4}\right)}{1+x^{2}}=\frac{x^{4}}{1+x^{2}} \\
>0 \text { - } x>0 \\
\therefore 1-x^{2}<\frac{1}{1+x^{2}}
\end{gathered}
$$

Also

$$
1-x^{2}+\frac{5}{3} x^{4}-\frac{1}{1+x^{2}}=\frac{\left(1+x^{2}\right)\left(1-x^{2}+\frac{5}{3} x^{4}\right)-1}{1+x^{2}}
$$

$$
\therefore 1-x^{2}<\frac{1}{1+x^{2}}<1-x^{2}+\frac{5}{3} x^{4}
$$

Intograturg each exp. qives: -1 $\int_{0}^{x} 1-x^{2} d x<\int_{0}^{x+1} \frac{1}{1+x^{2}} d x<\int_{0}^{x} 1-x^{2}+\frac{5}{3} x^{4} d x$ $\left[x-\frac{x^{3}}{3}\right]_{0}^{x}<\left[\tan ^{-1} x\right]_{0}^{x}<\left[x-\frac{1}{3} x^{3}+\frac{1}{3} x^{5}\right]_{0}^{x}$ se.
$\qquad$

