

BAULKHAM HILLS HIGH SCHOOL

2015 YEAR 12 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for careless or badly arranged work

Total marks – 100

Section I Pages 2 – 6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II Pages 7 – 15

90 marks

- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1 What is the eccentricity of the hyperbola $\frac{y^2}{4} - \frac{x^2}{9} = 1$? (A) $\frac{\sqrt{5}}{3}$ (B) $\frac{\sqrt{5}}{2}$

(C)
$$\frac{\sqrt{13}}{3}$$

(D) $\frac{\sqrt{13}}{2}$

2 The substitution of $x = \sin\theta$ in the integral $\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} dx$ results in (A) $\int_{0}^{\frac{1}{2}} \frac{\sin^{2}\theta}{\cos\theta} d\theta$ (B) $\int_{0}^{\frac{1}{2}} \sin^{2}\theta d\theta$ (C) $\int_{0}^{\frac{\pi}{6}} \frac{\sin^{2}\theta}{\cos\theta} d\theta$ (D) $\int_{0}^{\frac{\pi}{6}} \sin^{2}\theta d\theta$ 3 The Argand diagram below shows the complex number *z*, represented as a vector, along with the unit circle.

Which diagram best illustrates the vectors representing \sqrt{z} ?

- 4 The circle |z 3 2i| = 2 is intersected exactly twice by the line given by
 - (A) |z 3 2i| = |z 5|
 - (B) |z-i| = |z+1|
 - (C) Re(z) = 5
 - (D) Im(z) = 0

5 If $\frac{dy}{dx} = \sqrt{2x^6 + 1}$ and y = 5 when x = 1, then the value of y when x = 4 is given by

(A)
$$\int_{1}^{4} \left(\sqrt{2x^{6} + 1} + 5 \right) dx$$

(B) $\int_{1}^{4} \sqrt{2x^{6} + 1} dx + 5$
(C) $\int_{1}^{4} \left(\sqrt{2x^{6} + 1} - 5 \right) dx$
(D) $\int_{1}^{4} \sqrt{2x^{6} + 1} dx - 5$

6 The graph of $y = \frac{1}{ax^2 + bx + c}$ has asymptotes at x = -5 and x = 3. Given that the graph has one stationary point with a y value of $-\frac{1}{8}$, it follows that

(A) $a = \frac{1}{2}, b = 1, c = -\frac{15}{2}$ (B) $a = \frac{1}{2}, b = -1, c = -\frac{15}{2}$ (C) a = 1, b = 2, c = -15

(D)
$$a = 1, b = -2, c = -15$$

7 The polynomial equation $x^3 - 3x^2 + 2 = 0$ has roots α , β and γ . What is the value of $\alpha^3 + \beta^3 + \gamma^3$?

- (A) 9
- (B) 13
- (C) 21
- (D) 25

8 The base of a solid is the circle $x^2 + y^2 = 4$. Every cross section of the solid taken perpendicular to the *x* axis is a right-angled, isosceles triangle with its hypotenuse lying in the base of the solid.

Which of the following is an expression for the volume of the solid?

(A)
$$\frac{1}{4} \int_{-2}^{2} (4 - x^2) dx$$

(B) $\int_{-2}^{2} (4 - x^2) dx$
(C) $2 \int_{-2}^{2} (4 - x^2) dx$
(D) $4 \int_{-2}^{2} (4 - x^2) dx$

9 A particle of mass 1 kg is projected vertically upwards from ground level with a velocity of u m/s.

The particle is subject to a constant gravitational force and a resistance which is proportional to twice the square of its velocity v m/s, (with k being the constant of proportionality).

Let x be the displacement in metres from the ground after t seconds and let g be the acceleration due to gravity.

Which of the following expressions gives the maximum height reached by the particle?

(A)
$$\int_{u}^{0} \frac{v}{g + 2kv^{2}} dv$$

(B)
$$\int_{u}^{0} \frac{v}{g - 2kv^{2}} dv$$

(C)
$$\int_{0}^{u} \frac{v}{g + 2kv^{2}} dv$$

(D)
$$\int_{0}^{u} \frac{v}{g - 2kv^{2}} dv$$

10 Marudan has 10 jellybeans left in a jar, 5 black, 3 red and 2 yellow. He chooses 2 jellybeans at random and puts them in his pocket.

Later he takes one jellybean out of his pocket and sees that it is black. What is the probability that the jellybean that is left in his pocket is also black?

(A)
$$\frac{2}{9}$$

(B) $\frac{2}{7}$
(C) $\frac{4}{9}$
(D) $\frac{1}{2}$

END OF SECTION I

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours 45 minutes for this section

Answer each question on the appropriate answer sheet. Each answer sheet must show your BOS#. Extra paper is available.

In Questions 11 to 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a separate answer sheet

(a) Evaluate
$$\int_{e}^{e^2} \frac{dx}{x \ln x}$$
 2

Marks

(b) z = p + 2i, where p is a real number, and w = 1 - 2i represent two complex numbers

(i) Find
$$\frac{z}{w}$$
 in the form $a + ib$ where a and b are real.

(ii) Given that
$$\left|\frac{z}{w}\right| = 13$$
, find the possible values of *p*. 2

(c) The roots of the equation
$$2z^3 - 3z^2 + 8z + 5 = 0$$
 are α , β and γ . 2
Given that $\alpha = 1 + 2i$, find β and γ .

(d) (i) On an Argand diagram sketch the locus of z represented by
$$|z-3|=3$$
 2

(ii) Explain why
$$\arg(z-3) = 2\arg z$$
 1

Question 11 continues on page 8

<u>Question 11</u> (continued)

(e)

The points A and C represent the complex numbers 1 + i and 7 + 3i respectively.

Find the complex number ω , represented by *B* such that ΔABC is isosceles and right angled at *B*.

(f) (i) Express $(5-i)^2(1+i)$ in the form a + ib where a and b are real.

(ii) Hence, prove that
$$\tan^{-1} \frac{7}{17} + 2\tan^{-1} \frac{1}{5} = \frac{\pi}{4}$$
 2

End of Question 11

Question 12 (15 marks) Use a separate answer sheet

(a) Using the substitution
$$t = \tan \frac{x}{2}$$
, or otherwise, evaluate

$$3$$

$$\frac{\pi}{3}$$

$$\int_{0}^{\frac{\pi}{3}} \frac{dx}{1 - \sin x}$$

(b) Find
$$\int \frac{x+1}{\sqrt{x^2+4x-3}} dx$$
 3

(c) The diagram below is a sketch of the function y = f(x). The lines x = 0, y = 0 and y = 1 are asymptotes.

Draw separate one-third page sketches of the following curves, clearly indicating any important features such as turning points or asymptotes.

$$(i) \quad y = f(4-x) \tag{2}$$

(ii)
$$y = \sqrt{f(x)}$$
 2

(iii)
$$y = e^{f(x)}$$
 2

(d) (i) Show that for
$$a > 0$$
 and $n \neq 0$, $\log_{a^n} x = \frac{1}{n} \log_a x$ 1

(ii) Hence evaluate
$$\log_2 3 + \log_4 3 + \log_{16} 3 + \log_{256} 3 + \dots$$
 2

Question 13 (15 marks) Use a separate answer sheet

(a) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0, has eccentricity $e = \frac{1}{2}$. The point P(2,3) lies on the ellipse.

- (i) Find the values of *a* and *b*. 3
- (ii) Find the foci and the directrices of the ellipse.
- (b) Let α , β and γ be the roots of the cubic equation $x^3 + Ax^2 + Bx + 8 = 0$, where *A* and *B* are real. Furthermore $\alpha^2 + \beta^2 = 0$ and $\beta^2 + \gamma^2 = 0$.

(i)	Explain why β is real and both α and γ are not real.	1
(ii)	Show that α and γ are purely imaginary.	1
(iii)	Find A and B.	2

(c) The arc defined by $y = e^x$, $0 \le x \le 1$, is rotated about the x-axis to form a curved bowl.

(i) Using the method of cylindrical shells, show that the volume V, of the solid that makes the bowl is given by

Find the volume, leaving your answer in exact form.

(ii)

$$V = \pi e^2 - 2\pi \int_{1}^{0} y \ln y \, dy$$

(iii) Use the result in part (ii) to evaluate $\int_{0}^{1} e^{2x} dx$ 1

Marks

1

3

3

Question 14 (15 marks) Use a separate answer sheet

(a) (i) Use De Moivre's Theorem to prove that if $z = \cos\theta + i\sin\theta$, then

$$2\cos n\theta = z^n + \frac{1}{z^n}$$

- (ii) Hence, or otherwise solve the equation $5x^4 11x^3 + 16x^2 11x + 5 = 0$ 3
- (b) In the diagram, the two circles intersect at A and B. P is a point on one circle. PA and PB produced meet the other circle at M and N respectively. NA produced meets the first circle at Q. PQ and NM produced meet at R. The tangent to the second circle meets PR at T.

Copy or trace the diagram into your answer booklet.

(i) Show that QAMR is a cyclic quadrilateral.2(ii) Show that TM = TR3

Question 14 continues on page 12

Marks

1

<u>Question 14</u> (continued)

(c) The tangents to the curve $xy = c^2$ at the points $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$ intersect at *R*. The chord *PQ* passes through the point $A(0, 2c^2)$

(i)	Show that $2cpq = p + q$	1

(ii) Show that the tangent at *P* has the equation $x + p^2 y = 2cp$ 2

(iii) Hence show that *R* has coordinates
$$\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$$
 2

(iv) Hence, or otherwise, find the equation of the locus of *R*. 1

End of Question 14

Question 15 (15 marks) Use a separate answer sheet

Diagram 1 shows the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$. Diagram 2 shows the same curve and its reflection in the *y*-axis.

- (i) What is the equation of the function illustrated in Diagram 2?
- (ii) Show that the area enclosed by the function and the *x*-axis, as illustrated in 2 Diagram 2, is given by $\frac{a^2}{3}$ units².
- (b) The a tent is formed by draping material over a pole. The tent ends up being 3 metres in length and the base of the tent is a trapezium with parallel sides of 3 metres and 2 metres.

Slices are taken perpendicular to the axis of the tent, and it is noted that each slice is similar to the region illustrated in Diagram 2 of part a).

3

Calculate the volume of the tent.

- 13 -

Marks

Question 15 continues on page 14

2

3

<u>Question 15</u> (continued)

- (c) In an aerobatics display, Cynthia and Rebel jump from a great height and go through a period of free fall before opening their parachutes. While in free fall at speed v m/s, Cynthia experiences air resistance kv per unit mass, but Rebel, who spread eagles, experiences air resistance $kv + \frac{2k^2}{g}v^2$ per unit mass.
 - (i) Using a force diagram, show that Cynthia's terminal velocity is $\frac{g}{k}$ m/s 2
 - (ii) Find Rebel's terminal velocity.
 - (iii) Cynthia opens her parachute when her speed is $\frac{g}{3k}$ m/s. Find the time she 2 has been in free fall.
- (d) Prove by mathematical induction that for all integers $n \ge 0$

$$\cos \alpha \cos 2\alpha \cos 4\alpha ... \cos 2^n \alpha = \frac{\sin(2^{n+1}\alpha)}{2^{n+1}\sin \alpha}$$

End of Question 15

Marks

Question 16 (15 marks) Use a separate answer sheet

- (a) (i) How many five digit integers use the digits 1 and 2, and no other? 2 (e.g. 11 221, 21 212 but **not** 11 111 or 22 222) 2
 - (ii) How many five digit integers use exactly two different digits? 2

(b) Let
$$I_n = \int_0^1 \sqrt{x} (1-x)^n dx$$
, where *n* is an integer and $n \ge 0$

(i) Show that
$$I_n = \frac{2n}{2n+3} I_{n-1}$$
 3

(ii) Hence evaluate
$$\int_{0}^{1} \sqrt{x} (1-x)^{3} dx$$
 1

(c) The positive integers x, y and z, where x < y, satisfy

$$x^3 + y^3 = kz^3$$

where *k* is a given positive integer.

(i) In the case
$$x + y = k$$
, show that $z^3 = k^2 - 3kx + 3x^2$ 2

(ii) Deduce that
$$\frac{4z^3 - k^2}{3}$$
 is a perfect square 1

(iii) Hence, or otherwise, deduce that
$$\frac{1}{4}k^2 \le z^3 < k^2$$
 2

(iv) Use these results to find a solution of
$$x^3 + y^3 = 20z^3$$
 2

End of paper

BAULKHAM HILLS HIGH SCHOOL YEAR 12 EXTENSION 2 TRIAL HSC 2015 SOLUTIONS

Solution	Marks	Comments
SECTION I		
1. \mathbf{D} - as $y^2 > 0$, focii are located on the y axis, thus $e^2 = \frac{a^2 + b^2}{b^2}$ $= \frac{9+4}{4}$ $= \frac{13}{4}$ $e = \frac{\sqrt{13}}{2}$	1	
2. $\mathbf{D} - \int_{0}^{2} \frac{x^{2}}{\sqrt{1-x^{2}}} dx = \int_{0}^{6} \frac{\sin^{2}\theta}{\sqrt{1-\sin^{2}\theta}} \times \cos\theta d\theta \qquad \begin{aligned} x &= \sin\theta \\ dx &= \cos\theta d\theta \\ \text{when } x &= 0, \ \theta &= 0 \\ x &= \frac{1}{2}, \ \theta &= \frac{\pi}{6} \end{aligned}$	1	
3. $\mathbf{C} - z = r \operatorname{cis} \theta$ $\sqrt{z} = \sqrt{r} \operatorname{cis} \frac{\theta}{2}$ Thus the argument would be halved (eliminating A and B), as $r > 1$ then $\sqrt{r} > 1$ so \mathbf{C}	1	
4. A – Im(z) $ z-3-2i = 2$ $ z-3-2i = z-5 $ Note: • $ z-3-2i = z-5 $ Note:	1	
5. B - $\int_{5}^{y} dy = \int_{1}^{4} \sqrt{2x^{6} + 1} dx$ $y - 5 = \int_{1}^{4} \sqrt{2x^{6} + 1} dx$ $y = \int_{1}^{4} \sqrt{2x^{6} + 1} dx + 5$	1	
6. $\mathbf{A} - ax^2 + bx + c = a(x + 5)(x - 3)$ $= a(x^2 + 2x - 15)$ This parabola will have a stationary point at (-1, - 8) Noting that AOS is the average of the roots $\therefore -8 = a[(-1)^2 + 2(-1) - 15]$ = -16a $a = \frac{1}{2}$ $a = \frac{1}{2}$, $b = 1$, $c = -\frac{15}{2}$ 7. $\mathbf{C} - \Sigma \alpha^3 - 3\Sigma \alpha^2 + 6 = 0$ $\Sigma \alpha = 3$ $\Sigma \alpha^2 = (\Sigma \alpha)^2 - 2\Sigma \alpha \beta$ $\Sigma \alpha^3 - 3(9) + 6 = 0$ $\Sigma \alpha \beta = 0$ $= (-3)^2 - 2(-0)$ $\Sigma \alpha^3 = 21$ $= 9$	1	
7. $\mathbf{C} - \Sigma \alpha^3 - 3\Sigma \alpha^2 + 6 = 0$ $\Sigma \alpha^3 - 3(9) + 6 = 0$ $\Sigma \alpha^3 = 21$ $\Sigma \alpha^2 = (\Sigma \alpha)^2 - 2\Sigma \alpha \beta$ $= (-3)^2 - 2(-0)$ = 9	1	

Solution	Marks	Comments
SECTION II		
QUESTION 11		
11(a) $\int_{-\infty}^{e} \frac{dx}{x \ln x} = \int_{-\infty}^{2} \frac{du}{u}$ $u = \ln x$ $du = \frac{dx}{x}$ $x = e^{2}, u = 2$ $= \ln 2$	2	 2 marks Correct solution 1 mark Finds the correct primitive function i.e. ln(lnx) Changes the definite integral via a correct substitution
11(b) (i) $\frac{z}{w} = \frac{p+2i}{1-2i} \times \frac{1+2i}{1+2i}$ = $\frac{p+2p}{1+2i-4}$ = $\frac{p-4}{5} + \frac{2(p+1)}{5}i$	1	1 mark• Correct answer
$-L = J_{1}$ $= \ln 2$ $11(b) (i) \frac{z}{w} = \frac{p+2i}{1-2i} \times \frac{1+2i}{1+2i}$ $= \frac{p+2p \ i+2i-4}{5}$ $= \frac{p-4}{5} + \frac{2(p+1)}{5}i$ $11(b) (ii) \left \frac{z}{w}\right = 13$ $\frac{ z }{w } = 13$ $\frac{ z }{5} = 169$ $p^{2} = 841$ $p = \pm \sqrt{841}$	2	 2 marks Correct solution 1 mark Correctly finds the modulus of z, w or ^z/_w
11(c) As the coefficients are real, then complex solutions appear in conjugate pairs i.e. $1 - 2i$ is also a root. $\alpha\beta\gamma = -\frac{5}{2}$ $(1 + 2i)(1 - 2i)\gamma = -\frac{5}{2}$ $5\gamma = -\frac{5}{2}$ $\gamma = -\frac{1}{2}$	2	 2 marks Correct answers 1 mark Uses conjugate root theorem in an attempt to identify the second root Correctly identifies one of the other two roots
11(d) (i) Im(z) z-3 = 3 Re(z)	2	 2 marks Correct solution 1 mark Identifies the locus as a circle
11(d) (ii) $Im(z)$ $\beta \neq \alpha$ $Re(z)$ $ z-3 = 3$ $\alpha = \arg(z-3) \operatorname{and} \beta = \arg z$ $\alpha = 2\beta$ $(\angle \operatorname{at centre} = \angle \operatorname{at circumference on same "arc"})$ $\operatorname{arg}(z-3) = 2\arg z$	1	1 mark • Correct explanation
11(e) $\overrightarrow{BA} = i \overrightarrow{BC}$ (1+i) - B = i[(7+3i) - B] = 7i - 3 - iB (1-i)B = 1 + i + 3 - 7i $B = \frac{4-6i}{1-i} \times \frac{1+i}{1+i}$ $= \frac{10-2i}{2}$ = 5-i	2	 2 marks Correct solution 1 mark Recognises that the rotation of a vector 90° anticlockwise represents the multiplication by <i>i</i>

Solution	Marks	Comments
11(f) (i) $(5-i)^2(1+i) = (25-10i-1)(1+i)$ = $(24-10i)(1+i)$ = $24-10i+24i+10$ = $34+14i$	1	1 mark• Correct answer
11(f) (ii) $\arg[(5-1)^{2}(1+i)] = \arg(34+14i)$ $2\arg(5-i) + \arg(1+i) = \arg(34+14i)$ $2\tan^{-1}\left(-\frac{1}{5}\right) + \frac{\pi}{4} = \tan^{-1}\frac{14}{34}$ $-2\tan^{-1}\frac{1}{5} + \frac{\pi}{4} = \tan^{-1}\frac{7}{17}$ $\tan^{-1}\frac{7}{17} + 2\tan^{-1}\frac{1}{5} = \frac{\pi}{4}$	2	 2 marks Correct solution 1 mark Uses the properties of arguments in a valid attempt to prove the result

Solution	Marks	Comments
QUESTION 12 $12(a) \int_{0}^{\frac{\pi}{3}} \frac{dx}{1-\sin x} = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{1+t^{2}} \qquad t = \tan \frac{x}{2}$ $= \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{1+t^{2}} \qquad dt = \frac{2dt}{1+t^{2}}$ $= \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{1+t^{2}-2t} \qquad \text{when } x = 0, t = 0$ $x = \frac{\pi}{3}, t = \frac{1}{\sqrt{3}}$ $= 2\left[\frac{1}{1-t}\right]_{0}^{\frac{1}{\sqrt{3}}}$ $= 2\left[\frac{\sqrt{3}}{\sqrt{3}-1}-1\right]$ $= \frac{2}{\sqrt{5}}$	3	 3 marks Correct solution 2 marks Obtains the correct primitive in terms of the substituted variable 1 mark Obtains the correct integrand in terms of the substituted variable.
$\frac{\sqrt{3}-1}{12(\mathbf{b}) \int \frac{x+1}{\sqrt{x^2+4x-3}} dx = \frac{1}{2} \int \frac{2x+4}{\sqrt{x^2+4x-3}} dx - \int \frac{dx}{\sqrt{(x+2)^2-7}} = \sqrt{x^2+4x-3} - \ln \left x+2 + \sqrt{x^2+4x-3} \right + c$	3	3 marks • Correct solution 2 marks • Successfully splits the original integral into two new integrals 1 mark • Completes the square in the denominator • Creates $\frac{du}{\sqrt{u}}$ • Correctly uses standard integral for their denominator, after completing the square
12(c) (i) y -2 2 -2 2 -2 2 -2	2	 2 marks Correct graph 1 mark Basic shape correct with most of key features Key Features Reflection in the line x = 2 Vertical asymptote moves to x = 4 Maximum turning point between x= 5 and x= 6 y-values of key features are unchanged
12(c) (ii) 2 -2 2 2 x	2	 2 marks Correct graph 1 mark Basic shape correct with most of key features Key Features <i>x</i>-intercepts become critical points. Horizontal asymptote remains at <i>y</i>= 1 turning point stays with same <i>x</i>-value double root becomes cusp single root becomes vertical tangent

Solution QUESTION 13	Marks	Comments
13(a) (i) $e^2 = \frac{a^2 - b^2}{a^2}$ $\frac{1}{4} = \frac{a^2 - b^2}{a^2}$ $a^2 = 4a^2 - 4b^2$ $b^2 = \frac{3}{4}a^2$ 13(b) $e^2 = \frac{a^2 - b^2}{a^2}$ $\frac{4}{a^2} + \frac{9}{b^2} = 1$ $\frac{4}{a^2} + \frac{12}{a^2} = 1$ $a^2 = 16$ $\therefore a = 4, b = 2\sqrt{3}$	3	 3 marks Correct solution 2 marks Finds the value of <i>a</i> or <i>b</i> 1 mark Creates simultaneous equations that could be used to find values
13(a) (ii) focii: $(\pm ae, 0) = \left(4 \times \frac{1}{2}, 0\right)$ directrices: $x = \pm \frac{a}{e}$ = $(\pm 2, 0)$ $x = \pm 4 \times 2$ $x = \pm 8$	1	1 mark • Correct answer
13(b) (i) $\alpha^2 + 2\beta^2 + \gamma^2 = 0$, as $x = 0$ is not a root, then all of the roots cannot be real other wise this sum would have to be >0. As the coefficients are real, there must be an even number of complex roots, so the only possibility is two complex roots, which would be conjugates. However; $\alpha^2 = -\beta^2$ and $\gamma^2 = -\beta^2 \Rightarrow \alpha^2 = \gamma^2$ $\alpha = \pm \gamma$, meaning if α is real, then so is β , yet there is only one real root Thus β is real and both α and γ are not real	1	1 mark • Valid explanation
13(b) (ii) $\alpha^2 = \gamma^2$ $\alpha = \pm \gamma$ As they are conjugates, this is only possible if the real part is zero. i.e. α and γ are purely imaginary	1	1 mark• Valid explanation
13(b) (iii) Let $\alpha = ki$, $\beta = m$, $\gamma = -ki$ $ki + m - ki = -A$ $kim - kim - k^2i^2 = B$ $m = -A$ $B = k^2$ $-k^2mi^2 = -8$ $k^2m = -8$ $a^2 + \beta^2 = 0$ $k^2i^2 + m^2 = 0$ $m^2 = k^2$ \therefore $m^3 = -8$ $m = -2$, $k = \pm 2$ Thus $A = 2$ and $B = 4$	2	 2 marks Correct solution 1 mark Evaluates A or B Identifies the roots of the equation
13(c) (i) 13(c) (i)	3	 3 marks Correct solution 2 marks Uses the method of cylindrical shells correctly 1 mark Correctly establishes the area of the crosssectional face or equivalent. Finds the volume of the surrounding cylinder

Solution	Marks	Comments
13(c) (ii) $V = \pi e^2 - 2\pi \left\{ \frac{1}{2} y^2 \ln y \right\}_1^e - \frac{1}{2} \int_1^e y dy \qquad u = \ln y \qquad v = \frac{1}{2} y^2$ $= \pi e^2 - 2\pi \left\{ \frac{1}{2} e^2 - \frac{1}{4} \left[y^2 \right]_1^e \right\} \qquad du = \frac{dy}{y} \qquad dv = y dy$ $= \pi e^2 - 2\pi \left\{ \frac{1}{2} e^2 - \frac{1}{4} e^2 + \frac{1}{4} \right\}$ $= \pi e^2 - \pi e^2 + \frac{\pi}{2} e^2 - \frac{\pi}{2}$ $= \frac{\pi}{2} (e^2 - 1) units^3$	3	 3 marks Correct solution 2 marks Uses integration by parts to find the value of the integral, or equivalent 1 mark Attempts to use integration by parts, or equivalent merit
13(c) (iii) Had we sliced perpendicular to the rotation instead of parallel $V = \pi \int_{0}^{1} e^{2x} dx$ $\pi \int_{0}^{1} e^{2x} dx = \frac{\pi}{2} (e^{2} - 1)$ $\therefore \int_{0}^{1} e^{2x} dx = \frac{1}{2} (e^{2} - 1)$	1	 1 mark • Establishes result using their answer to part (ii)

	So	lution	Marks	Comments
		QUESTION 14		1
14(a) (i)	$z^n + \frac{1}{z^n} = (\operatorname{cis} \theta)^n + (\operatorname{cis} \theta)^{-n}$			1 mark• Correct solution
	$= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$		1	
	$= \cos n\theta + i\sin n\theta + \cos(-$	$n\theta$) + $i\sin(-n\theta)$	1	
	$= \cos n\theta + i\sin n\theta + \cos n\theta$			
	- 2000mB			
14(a) (ii)	$\frac{-2\cos n\theta}{5x^4 - 11x^3 + 16x^2} - \frac{5x^2 - 11x + 16x^2}{5x^2 - 11x + 16}$	-11x + 5 = 0 11 + 5 = 0		3 marks • Correct solution
	$5\left(x^2 + \frac{1}{x^2}\right) - 11\left(x - \frac{1}{x^2}\right)$	$\left(\frac{1}{x}\right) + 16 = 0$ $\cos\theta + 16 = 0$ $\cos\theta + 8 = 0$ $\cos\theta + 8 = 0$ $\cos\theta + 3 = 0$ $\cos\theta - 1 = 0$	3	 2 marks Correctly finding values for cosθ Correct solution for incorrect values of cosθ 1 mark Correctly finding the equation 10cos2θ - 22cosθ + 16 = 0 or equivalent
14(b) (i)	$\therefore x = \frac{3}{5} \pm \frac{4}{5}i \text{or} x = \frac{3}{5} \pm \frac{4}{5}i \text{or} x = \frac{3}{5} \pm \frac{4}{5}i \text{or} x = \frac{3}{5}i x$	<pre>(exterior ∠ cyclic quadrilateral = opposite interior ∠) (in cyclic quadrilateral ABPQ) the opposite interior ∠ RMA</pre>	2	2 marks • Correct solution 1 mark • Significant progress towards correct
	i.e. QAMR is a cyclic quadrilater			solution
	$\angle TMR = \angle SMN$ $\angle SMN = \angle MAN$ $\angle MAN = \angle PAQ$ $\angle PAQ = \angle TRM$ $\therefore \angle TRM = \angle TMR$ $\Delta TRM \text{ is isosceles}$ $TM = TR$	(vertically opposite \angle 's =) (alternate segment theorem) (vertically opposite \angle 's =) (exterior \angle cyclic quadrilateral = opposite interior \angle) (2 = \angle 's) (= sides in isosceles \triangle)	3	 3 marks Correct solution 2 marks Correct solution with poor reasoning Significant progress towards a correct solution 1 mark Progress towards a correct solution involving some relevant logic
14(c) (i)	$\frac{\frac{c}{p-q} - \frac{m_{PQ}}{c} = \frac{m_{PA}}{c}}{\frac{p-q}{q-p}} = \frac{p}{\frac{cp-0}{p^2}}$ $\frac{\frac{1-2cp}{pq(p-q)}}{\frac{1-2cp}{p^2}} - \frac{1}{pq} = \frac{1-2cp}{p^2}$ $-\frac{1}{pq} = \frac{1-2cp}{p^2}$ $-\frac{p}{q-2cpq} = \frac{1-2cp}{q}$ $-\frac{p}{q-2cpq} = \frac{1-2cp}{q}$		1	1 mark • Correct solution

	Solution	Marks	Comments
14(c) (ii)	$y = \frac{c^2}{x}$ $\frac{dy}{dx} = -\frac{c^2}{x^2}$ $\frac{dy}{dx} = -\frac{c^2}{x^2}$ $y - \frac{c}{p} = -\frac{1}{p^2}(x - cp)$ $p^2 y - cp = -x + cp$ $x + p^2 y = 2cp$ when $x = 2p$, $\frac{dy}{dx} = -\frac{c^2}{c^2 p^2}$ $= -\frac{1}{p^2}$ ∴ required slope $= -\frac{1}{p^2}$	2	 2 marks Substitutes into point-slope formula and arrives at the required result 1 mark Finds the required slope
14(c) (iii)	$x + p^{2}y = 2cp$ $x + q^{2}y = 2cq$ $(p^{2} - q^{2})y = 2c(p - q)$ $y = \frac{2c(p - q)}{(p + q)(p - q)}$ $y = \frac{2c}{p + q}$ $x = 2cp - \frac{2cp^{2}}{p + q}$ $x = 2c \left(\frac{p(p + q) - p^{2}}{p + q}\right)$ $x = \frac{2c(p^{2} + pq - p^{2})}{(p + q)}$ $x = \frac{2cpq}{p + q}$ $x = \frac{2cpq}{p + q}$ $x + q^{2}y = \frac{2cpq}{p + q} + \frac{2cp^{2}}{p + q}$ $x + q^{2}y = \frac{2cpq}{p + q} + \frac{2cq^{2}}{p + q}$ $= \frac{2cp(q + p)}{p + q}$ $= 2cp$ $x + q^{2}y = \frac{2cpq}{p + q} + \frac{2cq^{2}}{p + q}$ $x + q^{2}y = \frac{2cpq}{p + q} + \frac{2cq^{2}}{p + q}$ $x + q^{2}y = \frac{2cq(p + q)}{p + q}$ $= 2cp$ $x + q^{2}y = \frac{2cq(p + q)}{p + q}$ $x + q^{2}y = \frac{2cq}{p + q}$	2	 2 marks Correct solution 1 mark Successfully finds the <i>x</i> or <i>y</i> coordinate using a valid method. Successfully substitutes <i>R</i> into one of the tangents. Attempts to substitute <i>R</i> into both tangents
14(c) (iv) ∴	$x = \frac{2cpq}{p+q}$ $x = \frac{p+q}{p+q}$ $x = 1$ locus of <i>R</i> is $x = 1$, however as tangents cannot meet inside the hyperbola or on the <i>x</i> axis, the locus is restricted to $y < c^2$, $y \neq 0$	1	 1 mark Correct answer Note: no penalty for ignoring restriction on locus.

Solution OUESTION 15	Marks	Comments
QUESTION 15 15(a) (i) A reflection in the <i>y</i> -axis would be represented by $y = f(x)$ So the function in Diagram 2 is $\sqrt{ x } + \sqrt{y} = \sqrt{a}$	1	1 mark • Correct answer
15(a) (ii) $A = 2 \int_{0}^{a} (\sqrt{a} - \sqrt{x})^{2} dx$ $= 2 \int_{0}^{a} (a - 2\sqrt{a}\sqrt{x} + x) dx$ $= 2 \Big[ax - \frac{4}{3}\sqrt{a}x\sqrt{x} + \frac{1}{2}x^{2} \Big]_{0}^{a}$ $= 2 \Big[a^{2} - \frac{4}{3}a^{2} + \frac{1}{2}a^{2} \Big]$ $= \frac{a^{2}}{3}$	2	 2 marks Correct solution 1 mark Establishes the correct integral required to find the desired result.
15(b) $ \begin{array}{c} 15(b) \\ (3,1) \\ 2m \\ (3,1) \\ 2m \\ (3,1) \\ 2m \\ (3,1) \\ 2m \\ 2m$	3	 3 marks Correct solution 2 marks Establishes an integral that would find the correct volume Finds a volume from an integral that used the formula from part (a) 1 mark Finds the area of the cross-sectional face Establishes an integral using the formula from part (a)
15(c) (i) $m\ddot{x} = mg - mkv$ $\ddot{x} = g - kv$ Terminal velocity occurs when $\ddot{x} = 0$ $0 = g - kv$ $v = \frac{g}{k}$ $m\ddot{x}$ mg	2	 2 marks Correct solution 1 mark Acknowledges the condition for terminal velocity Correct force diagram <i>Note: force diagram</i> <i>does not have to have</i> <i>resultant force drawn</i>

Solution	Marks	Comments
15(c) (ii) $m\ddot{x} = mg - m\left(kv + \frac{2k^2}{g}v^2\right)$ $\ddot{x} = g - kv - \frac{2k^2}{g}v^2$ Terminal velocity occurs when $\ddot{x} = 0$ $\frac{2k^2}{g}v^2 + kv - g = 0$ $2k^2v^2 + gkv - g^2 = 0$ $(2kv - g)(kv + g) = 0$ $v = \frac{g}{2k} \text{ or } v = -\frac{g}{k}$ But $v > 0$, $\therefore v = \frac{g}{2k}$	2	 2 marks Correct solution 1 mark • Establishes a quadratic that will lead to a correct answer.
15(c) (iii) $ \frac{dv}{dt} = g - kv $ $ T = -\frac{1}{k} \left[\ln(g - kv) \right]_{0}^{\frac{g}{3k}} $ $ T = -\frac{1}{k} \ln \frac{3}{2} $	2	 2 marks Correct solution 1 mark • Correct integrand in terms of v
15(d) When $n = 0$; LHS = LHS = $\cos 2^{0} \alpha$ = $\cos \alpha$ RHS = $\frac{\sin 2\alpha}{2\sin \alpha}$ = $\frac{2\sin \alpha}{2\sin \alpha}$ = $\frac{2\sin \alpha}{2\sin \alpha}$ = $\cos \alpha$: LHS=RHS Hence the result is true for $n = 1$ Assume the result is true for $n = k$ where k is an integer i.e. $\cos \alpha \cos 2\alpha \cos 4\alpha \dots \cos 2^{k} \alpha = \frac{\sin(2^{k+1}\alpha)}{2^{k+1}\sin \alpha}$ Prove the result is true for $n = k + 1$ i.e. $\cos \alpha \cos 2\alpha \cos 4\alpha \dots \cos 2^{k+1} \alpha = \frac{\sin(2^{k+2}\alpha)}{2^{k+2}\sin \alpha}$ PROOF: $\cos \alpha \cos 2\alpha \cos 4\alpha \dots \cos 2^{k+1} \alpha = \cos \alpha \cos 2\alpha \cos 4\alpha \dots \cos 2^{k} \alpha \cos 2^{k+1} \alpha$ $= \frac{\sin(2^{k+1}\alpha)}{2^{k+1}\sin \alpha} \times \cos 2^{k+1}\alpha$ $= \frac{\sin(2 \times 2^{k-1}\alpha)}{2^{k+1}\sin \alpha}$ $= \frac{\sin(2 \times 2^{k-1}\alpha)}{2 \times 2^{k+1}\sin \alpha}$ $= \frac{\sin(2^{k+2}\alpha)}{2^{k+2}\sin \alpha}$ Hence the result is true for $n = k + 1$, if it is true for $n = k$ Since the result is true for $n = 1$, then it is true for all positive integers by induction.	3	 There are 4 key parts of the induction; Proving the result true for n = 0 Clearly stating the assumption and what is to be proven Using the assumption in the proof Correctly proving the required statement 3 marks Successfully does all of the 4 key parts 2 marks Successfully does 3 of the 4 key parts 1 mark Successfully does 2 of the 4 key parts

Solution	Marks	Comments
QUESTION 16		1
16(a) (i) all numbers between 10 000 and 100 000 contain 5 digits, so we could have Four 1's and a $2 = {}^{5}C_{4}$ Three 1's and two 2's $= {}^{5}C_{3}$ Two 1's and three 2's $= {}^{5}C_{2}$ A 1 and four 2's $= {}^{5}C_{1}$ Total numbers $= {}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4}$ $= 2{}^{5} - 2$ = 30	2	 2 marks Correct answer 1 mark Breaks the problem into logical cases Finds the amount of numbers for at least one case
16(a) (ii) There are ${}^{9}C_{2}$ pairings of two digits, not including 0 Total numbers (not using 0) = ${}^{9}C_{2} \times 30$ = 1080 If 0 is included, it cannot occupy the first spot Total numbers (using 0) = 9 × (${}^{4}C_{0} + {}^{4}C_{1} + {}^{4}C_{2} + {}^{4}C_{3}$) = 9 × (${}^{2}4 - 1$) = 135 Total numbers = 1080 + 135 = 1215	2	 2 marks Correct answer 1 mark Splits the problem into valid cases, and correctly finds one of these cases.
$I_{n} = \int_{0}^{1} \sqrt{x} (1-x)^{n} dx$ $= \left[\frac{2}{3}x\sqrt{x}(1-x)^{n}\right]_{0}^{1} + \frac{2n}{3}\int_{0}^{1}x\sqrt{x}(1-x)^{n-1} dx$ $= -\frac{2n}{3}\int_{0}^{1}(1-x)\sqrt{x}(1-x)^{n-1} dx + \frac{2n}{3}\int_{0}^{1}\sqrt{x}(1-x)^{n-1} dx$ $= -\frac{2n}{3}I_{n} + \frac{2n}{3}I_{n-1}$ $3I_{n} = -2nI_{n} + 2nI_{n-1}$ $(2n+3)I_{n} = 2nI_{n-1}$ $I_{n} = \frac{2n}{2n+3}I_{n-1}$	3	 3 marks Correct solution 2 marks Substantial progress towards a solution using logical techniques 1 mark Attempts to create the reduction formula by using integration by parts, or similar merit.
16(b) (ii) $I_3 = \frac{6}{9}I_2$ $= \frac{2}{3} \times \frac{4}{7} \times I_1$ $= \frac{2}{3} \times \frac{4}{7} \times \frac{2}{5}I_0$ $= \frac{16}{105} \int_{-1}^{1} \sqrt{x} dx$ $= \frac{16}{105} \times \frac{2}{3} [x\sqrt{x}]_0^1$ $= \frac{32}{315}$	1	1 mark • Correct uses formula to reduce down to $\frac{16}{105} \int_{0}^{1} \sqrt{x} dx$

Solution	Marks	Comments
Solution 16(c) (i) $x^{3} + y^{3} = kz^{3}$ $(x + y)(x^{2} - xy + y^{2}) = (x + y)z^{3}$ $z^{3} = x^{2} - xy + y^{2}$ $= x^{2} - x(k - x) + (k - x)^{2}$ $= x^{2} - kx + x^{2} + k^{2} - 2kx + x^{2}$ $= k^{2} - 3kx + 3x^{2}$ 16(c) (ii) $\frac{4z^{3} - k^{2}}{3} = \frac{3k^{2} - 12kx + 12x^{2}}{3}$	<u>Marks</u> 2 1	Comments2 marks• Correct solution1 mark• Uses $x + y = k$ and the sum of two cubes in an attempt to show the given result, or equivalent merit.1 mark• Correct solution
$3 3 3 3 = k^2 - 4kx + 4x^2 = (k - 2x)^2 ext{ which is a perfect square}$ $16(c) (iii) \frac{4z^3 - k^2}{3} \ge 0 z^3 = k^2 - 3x(k - x) as k > x then (k - x) > 0 4z^3 - k^2 \ge 0 x^2 - 3x(k - x) = 0 4z^3 \ge k^2 i.e. z^3 < k^2 i.e. z^3 i.e. z^3 < k^2 i.e. z^3 i.e$	2	2 marks • Correct solution 1 mark • shows $z^3 \ge \frac{k^2}{4}$ • shows $z^3 < k^2$
$z^{3} \ge \frac{k}{4}$ thus $\frac{k^{2}}{4} \le z^{3} < k^{2}$ 16(c) (iv) If $k = 20, 100 \le z^{3} < 400$ $\therefore z$ is either 5, 6 or 7 thus $z = 7$ $\left(\frac{4z^{3} - 400}{3} = 324 = 18^{2}\right)$ Further $20 - 2x = 18$ 2x = 2 x = 1 $\therefore x = 1, y = 19, z = 7$	2	 shows z³ < k² 2 marks Correct solution 1 mark Finds z