

BAULKHAM HILLS HIGH SCHOOL

2016

YEAR 12 TRIAL
HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Black pen is preferred
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- All relevant mathematical reasoning and/or calculations must be shown

Total marks - 100
Section I (Pages 2-6)
10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section

Section II (Pages 7-16)
90 marks
Attempt Questions 11-16
Allow about 2 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 to 10 .

1 The graph shown below could have the equation

(A) $\frac{(x-6)^{2}}{16}-\frac{y^{2}}{9}=-1$
(B) $\frac{(x-6)^{2}}{9}-\frac{y^{2}}{16}=-1$
(C) $\frac{(x-6)^{2}}{4}-\frac{y^{2}}{3}=-1$
(D) $\frac{(x-6)^{2}}{3}-\frac{y^{2}}{4}=-1$

2 On an Argand diagram, the points A and B represent the complex numbers $z_{1}=-2 i$ and $z_{2}=1-\sqrt{3} i$. Which of the following statements is true?
(A)

$$
\arg \left(z_{2}\right)^{2}=\arg \left(z_{1}\right)
$$

(B) $\quad \arg \left(\frac{z_{1}}{z_{2}}\right)=\frac{\pi}{6}$
(C)

$$
\arg \left(z_{1} z_{2}\right)=-\frac{5 \pi}{6}
$$

(D) $\quad \arg \left(z_{1}-z_{2}\right)=\frac{3}{2}$

3 Let α, β and γ be the roots of the equation $x^{3}+x^{2}-1=0$. The polynomial equation with roots $2 \alpha, 2 \beta$ and 2γ is:
(A)

$$
x^{3}+2 x^{2}-8=0
$$

(B) $\quad x^{3}+2 x^{2}+8=0$
(C) $8 x^{3}-4 x^{2}+1=0$
(D) $\quad 8 x^{3}+4 x^{2}-1=0$

4 Given that $w^{3}=1$ and that w is complex, the value of $\left(1+w-w^{2}\right)^{3}$ is:
(A) -8
(B) -1
(C) 1
(D) 8

5 The area enclosed by $y=\sqrt{x^{2}-1}$ and the line $x=2$ and the x axis is rotated about the y axis.

The slice at $P(x, y)$ on the curve is perpendicular to the axis of rotation.
The volume δV on the slice of the annulus is
(A) $\quad \pi\left(4-\sqrt{y^{2}+1}\right) \delta y$
(B) $\pi\left(2-\sqrt{y^{2}+1}\right) \delta y$
(C) $\pi\left(1-y^{2}\right) \delta y$
(D) $\quad \pi\left(3-y^{2}\right) \delta y$

6 The graph of $y=f(x)$ is shown below.

Which is the correct graph of $|y|=f(x)$
(A)

(B)

(C)

(D)

7 Find $\int \frac{x^{3} d x}{x^{2}+x+1}$
(A) $\frac{x^{2}}{2}-x+\tan ^{-1} \frac{2 x+1}{\sqrt{3}}+c$
(B) $\frac{x^{2}}{2}-x+\tan ^{-1} \frac{4 x+2}{3}+c$
(C) $\frac{x^{2}}{2}-x+\frac{4}{3} \tan ^{-1} \frac{4 x+2}{3}+c$
(D) $\frac{x^{2}}{2}-x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{2 x+1}{\sqrt{3}}+c$

8 If $e^{x}+e^{y}=1$ then $\frac{d y}{d x}$ is:
(A) $-e^{x-y}$
(B) $\quad e^{x-y}$
(C) e^{y-x}
(D) $\quad-e^{y-x}$

9 A particle of mass $M \mathrm{~kg}$ is projected vertically upwards, from rest, with velocity $V \mathrm{~ms}^{-1}$. The resistive force is $k v^{2}$ Newtons, where k is a positive constant.
The equation of motion which will enable determination of the maximum height reached is:
(A) $-M g-M k v v^{2}=M v \frac{d v}{d x}$
(B) $-M g-k v^{2}=M v \frac{d v}{d x}$
(C) $M g-M k v^{2}=-M v \frac{d v}{d x}$
(D) $M g+k v^{2}=M \frac{d v}{d t}$

10 How many ways are there of choosing 3 different numbers in increasing order from the numbers 1,2 , $3,4, \ldots, 10$ so that no two of the numbers are consecutive?
(A) 20
(B) 48
(C) 56
(D) 72

End of Section I

Section II

90 marks

Attempt questions 11-16

Allow about $\mathbf{2}$ hours $\mathbf{4 5}$ minutes for this section

Answer each question on the appropriate page of your answer booklet
In Questions 11-16, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Answer on the appropriate page
a) Find:
i) $\int \frac{e^{\tan x}}{\cos ^{2} x} d x$

1
ii) $\quad \int \frac{1}{\sqrt{x}(1-\sqrt{x})} d x$
b) If $z=2+i$ and $w=3-i$ find $\frac{z}{w}$ in the form $a+i b$.
c) i) Show that $z=1+i$ is a root of the equation $z^{2}-(3-2 i) z+(5-i)=0$.
ii) Find the other root of the equation.
d) Shade on an Argand diagram the region represented by the complex number z where $\frac{\pi}{4} \leq \arg z \leq \pi, 1 \leq \operatorname{Im}(z) \leq 3$ and $|z| \leq 4$.

Question 11 (continued)

e) The area between the curve $y=\ln (x+1)$, the x axis and the line $x=1$ is rotated about the y axis.

Find the volume of the solid of revolution formed using the method of cylindrical shells. 4

End of Question 11

Question 12 (15 marks) Answer on the appropriate page
(a) If α, β and γ are the roots of the cubic equation $x^{3}+p x+q=0$, find in terms of p and q, the values of
(i) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(ii) $\quad \alpha^{3}+\beta^{3}+\gamma^{3}$
(b) A tangent is drawn at any point $P\left(c t, \frac{c}{t}\right)$ on the hyperbola $x y=c^{2}$. This tangent meets the x axis at Q. Through Q a straight line l is drawn perpendicular to the tangent. The line l cuts the hyperbola in the two points U and V.

(i) Show the equation of the tangent is $x+t^{2} y=2 c t$
(ii) Find the coordinates of Q.
(iii) Find the equation of the line l.
(iv) If M is the midpoint of the interval $U V$, show that the coordinates of M are $\left(c t,-c t^{3}\right) .3$
(v) Hence find the locus of M as the point P varies.
(c) Find $\lim _{x \rightarrow-5} \frac{\sqrt{20-x}-5}{5+x}$ without the aid of a calculator.

Question 13 (15 marks) Answer on the appropriate page
(a) The diagram is a sketch of $y=f(x)$.

Draw separate one third page sketches of the graphs of the following:
(i) $y=\frac{1}{f(x)}$
(ii) $\quad y=f(|x|)$
(iii) $y=\sqrt{f(x)}$
(iv) $\quad y=\ln (f(x))$

Question 13 (continued)
(b) Use the result $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ to evaluate $\int_{0}^{\frac{\pi}{4}} \frac{1-\tan x}{1+\tan x} d x$.
(c) Given that $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$
(i) Show that $I_{n}=\frac{n-1}{n} I_{n-2}$
(ii) If $I_{n}=\frac{105 \pi}{768}$ explain, without finding the value of n, why n must be even.
(iii) Hence find the value of n if $I_{n}=\frac{105 \pi}{768}$. 1

End of Question 13

Question 14 (15 marks) Answer on the appropriate page
(a) Find $\int \frac{(x+1) d x}{(2 x-1)(1-x)}$
(b) (i) If $t=\tan x$ prove that $\tan 4 x=\frac{4 t\left(1-t^{2}\right)}{t^{4}-6 t^{2}+1}$
(ii) If $\tan x \tan 4 x=1$ deduce that $5 t^{4}-10 t^{2}+1=0$
(iii) It is known that both $x=18^{\circ}$ and $x=54^{\circ}$ satisfy the equation $\tan x \tan 4 x=1$. Find the exact value of $\tan 54^{\circ}$.

Question 14 continues on the following page
(c) A regular tetrahedron $T B C D$ has six sides each of length a units. The point H marks the centre of equilateral triangle $B D C$. The line $T X H$ is perpendicular to the plane $B D C$. The plane $P Q R$ is parallel to the plane $B D C$. $T X$ is taken x units from T such that $0<x \leq T H$.

(i) Show that $T H^{2}=\frac{2 a^{2}}{3}$
(ii) Show that the cross sectional area of the slice of $\triangle P Q R$ is $\frac{3 \sqrt{3}}{8} x^{2}$ square units.
(iii) Hence, by considering the typical slice $\triangle P Q R$ of thickness Δx units, show that the volume of the tetrahedron $T B C D$ is $\frac{a^{3} \sqrt{2}}{12}$ cubic units.

End of Question 14

Question 15 (15 marks) Answer on the appropriate page
(a) The letters A, B, C, D, E, F, I and O are arranged in a circle. In how many ways can this be done if at least two of the vowels are together?
(b) A circle has two chords $A B$ and $M N$ intersecting at F. Perpendiculars are drawn to these chords at A and at N intersecting at K. $K F$ produced meets $M B$ at T.

(i) Copy or trace into your answer booklet
(ii) Explain why $A K N F$ is a cyclic quadrilateral. $\mathbf{1}$
(iii) Prove that $K T$ is perpendicular to $M B$.
(c) A plane of mass M kilograms on landing experiences a variable resistance force (due to air resistance) of magnitude $B v^{2}$ Newtons, where v is the speed of the plane.

After the brakes are applied the plane experiences a constant resistive force A Newtons (due to the brakes) as well as the variable resistive force $B v^{2}$.
(i) Show that the distance travelled, D_{1}, in slowing from speed V to speed U under the effect of air resistance is given by $D_{1}=\frac{M}{B} \ln \left(\frac{V}{U}\right)$.
(ii) After the brakes are applied with the plane travelling at speed, U, show that the distance, D_{2}, required to come to rest is given by $D_{2}=\frac{M}{2 B} \ln \left(1+\frac{B}{A} U^{2}\right)$.
(iii) Use the above information to estimate the stopping distance for a 100 tonne plane if it slows from $90 \mathrm{~ms}^{-1}$ to $60 \mathrm{~ms}^{-1}$ under a resistive force of magnitude $125 v^{2}$ Newtons and is finally brought to rest with the assistance of constant braking force of magnitude 75000 Newtons.

End of Question 15

Question 16 (15 marks) Answer on the appropriate page
(a) If $x=\cot \theta$ and $y=\sin ^{2} \theta$
(i) Show that $\frac{d y}{d x}=-2 \sin ^{3} \theta \cos \theta$

1
(ii) Prove, by mathematical induction, $\frac{d^{n} y}{d x^{n}}=(-1)^{n} n!\sin ^{n+1} \theta \sin (n+1) \theta$ 3 for all positive integral values of n.
(b) The points A, B and C, represented by the non zero complex numbers z, w and t respectively, are the vertices of a right angled triangle $A B C$ on an Argand diagram.

If $A C$ is the hypotenuse and $A B$ is 3 times the length of $B C$ show that $2 w(z+9 t)=z^{2}+9 t^{2}+10 w^{2}$.
(c) A point $P(a, b)$ lies on the circle $x^{2}+y^{2}-10 x-14 y+73=0$. Prove that

$$
\frac{3}{4}<\frac{3 a+2 b}{4 a+b}<\frac{17}{11}
$$

(d) (i) Show that $\tan ^{-1}(n+1)-\tan ^{-1}(n-1)=\tan ^{-1} \frac{2}{n^{2}}$ where n is a positive integer.
(ii) Hence or otherwise show that for $n \geq 1$,

$$
\sum_{r=1}^{n} \tan ^{-1} \frac{2}{r^{2}}=\frac{3 \pi}{4}+\tan ^{-1} \frac{2 n+1}{1-n-n^{2}}
$$

(iii) Hence write down $\sum_{r=1}^{\infty} \tan ^{-1} \frac{2}{r^{2}}$

End of paper

Extension 22016 Trisl SOLNS BHHS
Section 1 Murtiple choice
(1) Aryofters have gradent $\pm \frac{b}{a}$ ic $\pm \frac{8}{6}$ $\pm \frac{4}{3}$
$\therefore \frac{(x-6)^{2}}{9}-\frac{y^{2}}{16}=-1 \quad$ is equati. $\therefore B$
2.

3. \quad sulb $y=$ 是 indocquati

$$
\begin{aligned}
& \left(\frac{\lambda^{3}}{2}+\left(\frac{\lambda}{2}\right)^{2}-1=0\right. \\
& \frac{\lambda^{3}}{8}+\frac{x^{2}}{4}-1=0 \\
& \lambda^{3}+2 h^{2}-8=0 \therefore A
\end{aligned}
$$

4. $1+w+w^{2}=-1$

$$
\begin{aligned}
\left(i w-w^{2}\right)^{3} & =\left(-w^{2}-w^{2}\right)^{3} \\
& =\left(-2 w^{2}\right)^{3} \\
& =-8 w^{6} \\
& =-8+\left(w^{3}\right)^{2} \\
& =-87(-1)^{2} \\
& =-8 \\
& \therefore A
\end{aligned}
$$

5

$$
\begin{aligned}
\delta v & =\pi\left(2^{2}-x^{2}\right) d y \\
& =\pi\left(4-\left(y^{2}+1\right)\right) \delta y \\
& =\pi\left(3-y^{2}\right) \delta y \\
& \therefore 0
\end{aligned}
$$

6.
7.

$$
\begin{aligned}
& |y|=f(x) \\
& \text { le } y=\text { f(} x \text { for } y \geqslant 0 \\
& y=-f(x) f r \quad y<0 \\
& \int \frac{x^{3}-|1| d x}{x^{2}+x+1}=\int x-1+\frac{1}{\left.\left(x^{1}\right)^{2}\right)^{2}+3 / 4} d x \\
& =\frac{x^{2}}{2}-x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{\pi \sqrt{2}}{\frac{\sqrt{3}}{2}}+c \\
& =\frac{x^{2}}{2}-x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{2 n+1}{\sqrt{3}}+c \\
& \therefore D
\end{aligned}
$$

8.

$$
e^{n}+e^{y}=1
$$

D.fferentuation wrtr

$$
\begin{aligned}
& e^{x}+\frac{d}{d y} e^{y} \frac{d y}{d x}=0 \\
& e^{x}+e^{y} \frac{d y}{d x}=0 \\
& e^{y} \frac{d y}{d x}=-e^{x} \\
& \frac{d y}{d x}=\frac{-e^{x}}{e^{y}} \\
&=-e^{x-y} \\
& \therefore A
\end{aligned}
$$

$$
\begin{aligned}
& F=m a \\
& m v d v=-m_{g}-h v^{2} \\
& \therefore-B
\end{aligned}
$$

10.

$$
\begin{aligned}
\text { No of ways } & =\text { fotal }-2 \text { corentives logether }+3 \text { conventives together } \\
& ={ }^{10} C_{3}-{ }_{c} \times 8+8 \\
& =120-72+8 \\
& =56 \\
& =C
\end{aligned}
$$

II
a) i)

$$
\text { i) } \begin{aligned}
\int \frac{e^{\tan x} d x}{\cos ^{2} x} & =\int \sec ^{2} x e^{\tan x} d x \\
& =e^{\tan x}+C
\end{aligned}
$$

ii

$$
\begin{aligned}
& \int \frac{2 x 1}{2 \sqrt{x}(1-\sqrt{x}} d x \quad d x=\sqrt{x} \\
& d u=\frac{1}{2} x^{\frac{1}{2}} d x \\
& \int u^{3} \frac{1}{2 \sqrt{x}} d x \\
& =\int \frac{2}{1-a} d u \\
& 5=2 \cdot \ln (1-4)+c \\
& s-2 \ln (1-\sqrt{x})+c
\end{aligned}
$$

N

$$
O R=\ln \frac{1}{(1-\sqrt{R})^{2}}+C
$$

b)

$$
\begin{aligned}
& \frac{z}{4} \\
= & \frac{2+i}{3-i} \\
= & \frac{2+i}{3-i} 3+i \\
= & \frac{6-165 i}{9+1} \\
= & \frac{5}{10}+\frac{5}{10} i \\
= & \frac{1}{2}+\frac{i}{2}
\end{aligned}
$$

(2) carnet aniver
(1) comedty mintikin by anjughte to mine dea..rets rad.

11
(i)

$$
\begin{aligned}
\text { (}(1) & =(4 i)^{2}-(3-2 i)(1+i)+5-i \\
& =2 i-(3+2-i)+5-i \\
& =51 i-5-i \\
& =0
\end{aligned}
$$

$$
\therefore \text { Hi is a not. }
$$

(ii) Sura of $1+i+\alpha=32 i$
$\alpha=2-3 i$
(2) orrat solutacs
(1) cidulates ficis (\%)

$11 e$

$$
\begin{aligned}
& =\pi\left(\ln 2-\int_{0}^{1} \frac{k^{2}-1}{n+i}+\frac{1}{n+1} d x\right) \\
& =\pi\left(\ln 2-\int_{0}^{1} x-1+\frac{1}{x+i} d x\right. \\
& =\pi\left(\ln 2-\left[k^{2}-x+\ln (x+i)\right]_{0}^{1}\right)^{V} \\
& =\pi \ln 2-\pi\left[\left(\frac{1}{2}-1+\ln 2\right)-(0-0 t \ln 1)\right] \\
& =\frac{\pi}{L} \text { unds }^{3} .
\end{aligned}
$$

12
a)

$$
\text { (i) } \begin{aligned}
& \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \\
= & \frac{\beta \gamma}{\alpha \beta \gamma}+\frac{\alpha \gamma}{\alpha \beta \gamma}+\frac{\alpha \beta}{\alpha \beta \gamma} \\
= & \frac{\alpha \beta+\beta \gamma \beta \alpha \gamma}{\alpha \beta \gamma} \\
= & \frac{-\beta}{q}
\end{aligned}
$$

ii) $\alpha^{3}+p \alpha+q=0$ since α, β, γ we outs (2)corred ansurer

$$
\left.\begin{array}{rl}
p^{3}+p p+q & =0 \\
\gamma^{3}+p \gamma+q=0
\end{array}\right\}
$$

(2) Eorreet aniwer
(1) fides sum in pais, purbed
(i) expresks as $\frac{\text { s.m } n \text { npirs }}{\text { puodud }}$

12b (iii) $m_{l}=t^{2}$
(1) Comed silkten'

$$
\begin{aligned}
& \Delta q u l \\
& y-c=p^{2}(n-2 c t) \\
& y=f^{2} n-2 c t^{3}
\end{aligned}
$$

(3) corred adateri
(2) findie or y vabue
(1) fids quadrak oq.
$\operatorname{sum} t$ woth $x_{1} \sqrt{2}=\frac{2 c t^{3}}{t^{2}}$

$$
=\operatorname{Lct}
$$

$$
\begin{aligned}
\therefore \text { mepartm, } & =\frac{2 c t}{2} \\
& =c t
\end{aligned}
$$

$$
\operatorname{sub} \operatorname{in}(1) y=t^{2}(t)-2 t^{3}
$$

$$
\therefore M \text { is }\left(c t,-c^{t^{\frac{3}{3}}}\right) \text {. }
$$

v)

$$
\begin{aligned}
x=c t \Rightarrow t & =t \\
y=-c p^{3} \Rightarrow y & =-c \frac{x^{3}}{c^{3}} \\
y & =\frac{-n^{3}}{c^{2}}
\end{aligned}
$$

(2) corret lions
(1) athenpts tochmande pannotô
c)

$$
\begin{aligned}
\lim _{k \rightarrow-5} \frac{\sqrt{20-x}-5}{5+n} & =\lim _{x \rightarrow-5} \frac{(\sqrt{20-x}-5)(\sqrt{10-x}+5)}{(\sqrt{10-x}+5)(5+i n)} \\
& =\lim _{k \rightarrow-5} \frac{20-x-25}{(\sqrt{10-x}+5)(5+x)} \\
& =\lim _{x \rightarrow-5} \frac{-(5 x)^{\prime}}{(\sqrt{20-x}+5)(5-1 x)} \\
& =\frac{-1}{10}
\end{aligned}
$$

(2) comed answer
(1) ratum ibs unmestor

$$
\begin{align*}
& \text { (iv) } \\
& y=f^{2} 2-2 c f^{3} \tag{1}\\
& r y=c^{2} \\
& \text { (1) } n \quad l y=b^{2} n^{2}-2 C l^{3} n \\
& \text { sub icce } c^{2}=t^{2} k^{2}-2 c t^{3} x \\
& t^{2} n^{2}-2 c^{3} h-c^{2}=0
\end{align*}
$$

a)
(i)
(2) cored anguer
(3) ided fin asgiplte codi 1 cored baneh wilh af kad
 is $y=\frac{1}{x} \operatorname{or}(a, 1) \operatorname{cor}(21)$ er (e, e)

1
(ii)
(2) coned arner
(1) basic shere whatut, itreends

(1) Icorad bamet with vestial ta yent cored slupe what weeticel tanget
(1) Were dandwer
(1) oue comend banch with (zi) ared (e, I

Bb)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \frac{1-\tan x}{1+\tan x} d x=\int_{0}^{\frac{\pi}{4}} \frac{1-\tan \left(⿷_{4}-x\right)}{11 \tan \left(\frac{\pi}{4}-x\right)} d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \frac{1 \tan x-(1-\tan x)}{1+\tan x+\tan x} d x \\
& =\int_{0}^{\pi / 4} \frac{x \tan x}{x} d x \\
& =-[\ln (\cos n)]_{0}^{\frac{\pi}{4}} \\
& =-\left(\ln \frac{1}{\sqrt{2}}-\ln \cos 0\right) \\
& =\ln \sqrt{2} \text { th } 1 \\
& =\ln \sqrt{2} \text { or } \frac{\ln 2}{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \text { (i) } \\
& \text { (i) } I_{n}=\int_{0}^{\pi} \cos ^{\pi} n d x \\
& =\int_{0}^{0} \cos x \cos ^{n-1} x d x \\
& =\left[\sin x \cos ^{n-1} n\right]_{0}^{\frac{1}{2}}-\int_{0}^{1 / 2} \sin x \cdot(n-1) \cos ^{n-2} x \cdot-\sin x d x \\
& =\left(\sin ^{\pi} \frac{\pi}{2} \cos ^{-1} \frac{1}{2}-\sin \alpha \cos _{0}^{n+}\right)_{0}^{0} t(n-1)_{0}^{\pi / 2}\left(1-\cos ^{2} n\right) \cos ^{n-2} n d x \\
& I_{n}=0-0+(n-1) \int_{0}^{\frac{\pi}{4}} \cos ^{n-2} x-\cos ^{2} x d n \\
& \begin{array}{l}
I_{n}=(n-1) I_{n-2}-(n-1) I_{n} \\
I_{n}(1+n-1)=(n-1) I_{n-2}
\end{array} \\
& I_{n}=\frac{n-1}{n} I_{n-2}
\end{aligned}
$$

(3) corred answer
(D) arreetly ine gates $\tan x$
(1) applés giveriade and fan expansuri.
(2) cored puof (1) correcth, apples , Negrabiui by parts
B
chi）

$$
\begin{aligned}
I_{0} & =\int_{0}^{\frac{\pi}{2}}(\cos x)^{0} d x \\
& =\int_{0}^{2} 1 d x \\
& =[\pi]_{0}^{2} \\
& =\frac{\pi}{2}-0 \\
& =\frac{\pi}{2}
\end{aligned}
$$

Since $I_{n}=\frac{n-1}{n} I_{n-2}$ fo all which dope bog amulipl of 2 will conan Io（or 昗）re for all even poidiven．
 It or（：and and IT）
13．C（iii）

$$
\begin{aligned}
I_{2} & =\frac{1}{2} I \\
& =\frac{\pi}{4} \\
I_{4} & =\frac{3}{4} \frac{\pi}{4} \\
& =\frac{3 \pi}{16} \\
I_{6} & =\frac{5}{6} \frac{3 \pi}{6} \\
& =\frac{9 \pi}{46} \\
I_{8} & =\frac{1}{8} \frac{15 \pi}{96} \\
& =\frac{105 \pi}{768} \\
\therefore n & =8
\end{aligned}
$$

14
a)

$$
\text { let } \begin{aligned}
\frac{x+1}{(2 x-1)(1-x)} & =\frac{a}{2 x-1}+\frac{b}{1-x} \\
x+1 & \equiv a(1-x)+b(2 x-1)
\end{aligned}
$$

$$
l d x=1 \quad 2=b
$$

$$
\operatorname{let} x=4 \quad \frac{3}{2}=\frac{a}{2}
$$

$$
a=3
$$

$$
\begin{aligned}
\int \frac{\lambda+1 d x}{(2 n-1)(1-x)} & \equiv \int \frac{3}{2 n-1}+\frac{2}{1-x} d x \\
& =\frac{3}{2} \ln |2 n-1|-2 \ln [1-x \mid+C
\end{aligned}
$$

b) i)

$$
\begin{aligned}
\tan 4 x & =\frac{2 \tan 2 x}{1-\tan ^{2} 2 x} \\
& =\frac{2 \frac{2 t}{1-t^{2}}}{1-\left(\frac{2 t}{1-t^{2}}\right)^{2}} \\
& =\frac{4 t\left(1-f^{2}\right)}{\left(1-t^{2}\right)^{2}-4 t^{2}} \\
& =\frac{4 t\left(1-f^{2}\right)}{1-2 t^{2}+1^{4}-4 t^{2}} \\
& =\frac{4 t\left(1-t^{2}\right)}{1^{4}-6 t^{2}+1}
\end{aligned}
$$

wher $t=\tan a$
(2) u red solution
(1) uses do bub angle to find expesion is 1
(1) frods expreseon for $\sin 40$ and cos 4θ and maker some proyerss
(1) Conrect solution
(3) wreat answer
(2) fids coreed value of a and b ard altempts io inilgate uning $\log _{3}$
(2) finds incumat ubies of a.ad 6 and comadtl , atyode using the valus fual.
(1) fint a andb
(ignoere absolte values)
...
b. $x 1) ~ t \tan 4 n=\frac{4 f^{2}\left(1-1^{\prime \prime}\right)}{b^{4}-6 t^{2}+1}$
biii)

$$
\begin{aligned}
& t^{2}=\frac{10 \pm \sqrt{100-4 \times 5}}{10} \quad(\quad \text { (3) worre0 } \\
&=\frac{10 \pm \sqrt{80}}{10} \\
&=\frac{10 \pm 4 \sqrt{5}}{10} \\
& t^{2}=\frac{5 \pm 2 \sqrt{5}}{5} \\
& t=\sqrt{\frac{5 \pm 2 \sqrt{5}}{5}}(\text { (1) finds } \\
& \text { since }\left(\operatorname{lan} 54^{\circ}>0 \Rightarrow 1>0\right) \\
& \tan 18>0
\end{aligned}
$$

(3) Wrret solutan
(2) fiels correct expression fot
(1) finds expersion for b^{2}

Pen $\triangle P R Q=3 \times A_{\triangle W R E}$

$$
\begin{aligned}
& =3 \times \frac{1}{2}\left(\frac{n}{\sqrt{2}}\right)^{2} \sin 120^{\circ} \\
& =\frac{3 x^{2}}{4}+\frac{\sqrt{3}}{2} \\
& =\frac{3 \sqrt{3}}{8} x^{2}
\end{aligned}
$$

iii) Area slice $\frac{3 \sqrt{3} x^{2}}{8}$

Volure of slue $\Delta V=\frac{3 \sqrt{3} x^{2}}{8} \Delta x$
(2) Concet ethita:
(1) dbthins corred Volune $=\lim _{\Delta x \rightarrow 0} \sum_{x=0}^{\frac{a \sqrt{2}}{B}} \frac{8}{\frac{\sqrt{3}}{8}} x^{2} \Delta x$ integral.

$$
\begin{aligned}
& =\frac{3 \sqrt{3}}{8} \int_{0}^{\frac{a \sqrt{2}}{\sqrt{3}}} x^{2} d x \\
& =\frac{3 \sqrt{3}}{8}\left[\frac{x^{5}}{3}\right]_{0}^{\frac{a \sqrt{2}}{\sqrt{3}}} \\
& =\frac{8 \sqrt{8}}{4}\left(\frac{a^{3} x \sqrt{2}}{3 \times 3 \sqrt{3}}-0\right)
\end{aligned}
$$

Uolume $=\frac{a^{3} \sqrt{2}}{12}$ units.

15a) AE1O BCOF
(2) sorred annuer
as of wrys = tod a rangerents -vawels all sepraded

$$
\begin{aligned}
& =7!-3!+4! \\
& =4896
\end{aligned}
$$

(2)ablalletes winel epanated
or (2) sugntuad ningess
(1) finds tobla a rangeeds
b) i) opposite anges in kNTA <re supplenentang. (1)coned reason
ii) $\angle A K F: \angle A N F$ (anflen shacing on eme chod sis RNFA)
(3) wored
$\angle A N F=\angle A B M$ (andes stading an hme chod $A M=$ 'n'ANBM)
(2) powes Okk.
$\angle K F^{F} A=\angle B F T$ (vertially spoovite $\angle \prime$ ')
(2) Paves OkF
shllb BFT
$\triangle R \in A \| D B E T$ ($A A$)

$\therefore B \Pi L \angle T$
ci)

$$
\begin{aligned}
& f=m a \\
& m \ddot{\lambda}=-B_{v} \\
& \ddot{r}=\frac{-B}{m} v^{2} \\
& v \frac{d v}{d r}=-\frac{B}{m} v^{2} \\
& \frac{d v}{d h}=-\frac{B}{m} v \\
& \frac{d x}{d v}=-\frac{m}{B} \frac{1}{v} \\
& \int_{0}^{D_{1}} d r=-\frac{m}{B} \int_{v}^{u} \frac{1}{v} d v \\
& {[M]_{0}^{0}=-\frac{m}{B}[\ln v]_{v}^{u}} \\
& D_{1}-0=\frac{m}{B}[\ln v]_{u}^{v} \\
& \left.D_{1}=\frac{m}{B} \ln v-\ln u\right) \\
& \therefore D_{1}=\frac{m}{b} \ln \frac{v}{u}
\end{aligned}
$$

(3) cored solutuen.
(2)expresies as owred. indegral

Ofisis $\frac{v d v}{d x}$ intins of
(ii)

$$
\begin{aligned}
& v \frac{d v}{d k}=-\frac{1}{m}\left(A+B v^{2}\right) \\
& \frac{d v}{d n}=-\frac{1}{m}\left(\frac{A i V^{2}}{v}\right) \\
& \frac{d n}{d v}=-m\left(\frac{v}{A+B v^{2}}\right) \\
& \int_{0}^{D_{2}} d r=-m \int_{u}^{0} \frac{v d v}{A+B v^{2}} \\
& {[B]_{0}^{0}=\frac{-m}{2 B}\left[\ln \left(A+B L^{2}\right)\right]_{u}^{0}} \\
& D_{2}-0=-\frac{M}{2 B}\left(\ln A-\ln \left(A+B C^{2}\right)\right) \\
& D_{2}=\frac{M}{2 B} \ln \left(\frac{A B u^{2}}{A}\right) \\
& =\frac{m}{2 B} \ln \left(1+\frac{B u^{2}}{A}\right) \\
& \text { (3) correct soluties: } \\
& \text { (2) fints } \frac{d x}{d v} \text { and wratly } \\
& \text { (1) experses } \frac{d n}{d v} \text { intrmus of }
\end{aligned}
$$

iii) distance $=D_{1}+D_{2}$

16ai $x=\cot \theta \quad y=\sin ^{2} \theta$
(1) wrech

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d y}{\frac{a}{x}}}{\frac{d x}{d \theta}} \\
& =\frac{2 \sin 6 \cos \theta}{-\cos ^{2} \theta} \\
& =-2 \sin ^{3} \theta \cos \theta
\end{aligned}
$$

(i) $\operatorname{ted} n=1$

Ris

$$
\begin{aligned}
& =(-1)^{1} 1!\sin ^{2} \theta \sin 2 \theta \\
& =-2 \sin \theta \cos \theta \sin ^{2} \theta \\
& =-2 \sin ^{3} \theta \cos \theta \\
& =\text { LBS }
\end{aligned}
$$

\therefore True for $n=1$
(3) corred slation
(2) proves tre for $n=1$
nes chowin rube when dfferatutery assumploin
(1) proves true for n
(1) weschain whe when dffeentiotery asemploi
Assume the for $\hat{k}=k$

$$
\frac{d^{k} y}{d n^{k}}=(-1)^{k} k!\sin ^{k \pi 1} \theta \sin (k+1) \theta
$$

for n=kll we wich to pave

$$
\begin{aligned}
& \frac{d^{k+1} y}{d x^{k+1}}=(-1)^{k+1}(k+1)!\sin ^{k+k} \theta \sin (k+2) \theta \\
& \frac{d^{k+1} y}{d x^{k+1}}=\frac{d(-1)^{k}(k)!\sin ^{k \theta} \theta \sin (k+1) \epsilon}{d \theta} \times \frac{d \theta}{d x} \\
& =(-1)^{k} k!\left(\sin (k+1) \theta(k+1) \sin ^{k} \theta \cos \theta+\sin ^{k+1} \theta(k+1) \cos (k+1) \theta\right)\left(-\sin ^{2} \theta\right. \\
& =(-1)^{k} k k^{\prime}(k+1) \sin ^{k} \theta \quad(\sin (k+1) \cos \theta+\sin \theta \cos (k+i)=\theta)(-1) \sin ^{2} \theta \\
& =(-1)^{k+1}(k+1)!\sin ^{k+2} \theta \sin ((k+\theta \theta)+6) \\
& =(-1)^{k+1}(k+1)!\sin ^{k+2} \theta \sin ^{(k+2)} \theta \text { as raid. }
\end{aligned}
$$

\therefore If tave for $n=1$, it tue for nelui. But is tare for $n=1, \therefore$ tive for $n=2,3,4$ and so on for all $n \geqslant 1$.

166

$$
\begin{aligned}
& \overrightarrow{B C}=b-w \\
& \overrightarrow{A B}=3 i(t-w)=z-w \\
& \quad|3 i(t-w)|=|z-w|
\end{aligned}
$$

16.

(3) Correct schutur
(2) Sgantriat pegress
(1) expecses $\overrightarrow{A B}$ in bans of \vec{X} (or vie veria)
$\rightarrow(z)$

$$
9 i^{2}\left(b^{2}-2 w+1 w^{2}\right)=z^{2}-2 w z+w^{2}
$$

$$
-9 t^{2}+18 w t-9 w^{2}=z^{2}-2 w z 1 w^{2}
$$

$$
2 w z+18 w t=z^{2}+9 f^{2}+10 w^{2} .
$$

$$
2 w(z .19 t)=z^{2}+91^{2}+10 w^{2}
$$

$16 d$
((1)

$$
\text { Let } \begin{aligned}
\tan ^{-1}(n+1) & =\alpha \quad \tan \alpha=n+1 \\
\tan ^{-1}(n-1) & =\beta \quad \tan \beta=n-1 \\
\tan (\alpha-\beta) & =\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \cdots \\
& =\frac{(n+1)-(n-1)}{1+(n+1)(n-1)} \\
& =\frac{2}{1+n^{2}-1} \\
\tan (\alpha-\beta) & =\frac{2}{n^{2}} \\
\alpha-\beta & =\tan ^{-1} \frac{2}{n^{2}} \\
\therefore \tan ^{-1}(n+1) & -\tan ^{-1}(n-1)
\end{aligned}
$$

(ii) $\sum_{r=1}^{n} \tan ^{-1} \frac{2}{r^{2}}$

$$
\begin{aligned}
= & {\left[\tan ^{-1} 2-\tan ^{-1} 0\right]+\left[\tan ^{-1} 3-\tan ^{-1} \phi\right]+\left[\tan -14-\tan ^{-1} 2\right] } \\
& +\ldots+\left[\tan ^{-1}(n-2)-\tan ^{-1}(n-4)\right]+\left[\tan ^{-1}(n-1)-\tan ^{-1}(n-3)\right] \\
& +\left[\tan ^{-1} n-\tan ^{-1}(n-2)\right]+\left[\tan ^{-1}(n+1)-\tan ^{-1}(n-1)\right]
\end{aligned}
$$

(2) correct sole
(1) progress towards soln $[$ uses $\tan (\alpha-\beta)]$.

$$
=-\tan ^{-1} 0-\tan ^{-1} 1+\tan ^{-1} n+\tan ^{-1}(n+1)
$$

