

BAULKHAM HILLS HIGH SCHOOL

2018
YEAR 12 TRIAL
HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen.
- NESA-approved calculators may be used
- A reference sheet is provided at the back of this paper.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.
- Marks may be deducted for careless or badly arranged work

Total marks - 100
Exam consists of 11 pages.
This paper consists of TWO sections.

Section 1 - Page 2-4 (10 marks)

Questions 1-10

- Attempt Questions 1-10

Allow about 15 minutes for this section.

Section II - Pages 5-11 (90 marks)

- Attempt questions 11-16

Allow about 2 hours 45 minutes for this section.

Section I - Multiple Choice (10 marks)
 Allow about 15 minutes for this section.

Use the multiple choice page for Question 1 - 10
1 If $(a+b i)^{2}=i$, where a and b are real numbers, then:
(A) $\quad a=-\frac{1}{2}, b=-\frac{1}{2}$
(B) $a=-\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}}$
(C) $\quad a=\frac{1}{\sqrt{2}} \quad, b=\frac{1}{\sqrt{2}}$
(D) $\quad a=\frac{1}{\sqrt{2}} \quad, b=-\frac{1}{\sqrt{2}}$

2 The polynomial $P(x)=x^{3}+3 x^{2}-24 x+28$ has a double root. What is the value of this double root?
(A) -8
(B) -7
(C) 4
(D) 2

3 How many points do the graphs of $\frac{(x+1)^{2}}{9}+\frac{y^{2}}{4}=1$ and $x^{2}-y^{2}=-4$ have in common?
(A) 0
(B) 1
(C) 2
(D) 4

4 Which expression is equal to

$$
\int \frac{d x}{\sqrt{7-6 x-x^{2}}} ?
$$

(A) $\sin ^{-1}\left(\frac{x+3}{2}\right)+c$
(B) $\sin ^{-1}\left(\frac{x+3}{4}\right)+c$
(C) $\sin ^{-1}\left(\frac{x-3}{2}\right)+c$
(D) $\sin ^{-1}\left(\frac{x-3}{4}\right)+c$

5 Given $P(z)=z^{3}+(1+i) z^{2}+(1+i) z+c$ (where c is constant) has a real zero $z=-1$ and another zero $z=\alpha$.

The third root could be:
(A) $z=1-\alpha$
(B) $z=\bar{\alpha}$
(C) $z=-\alpha$
(D) $z=\frac{1}{\alpha}$

Which of the following functions would be neither odd nor even?
(A) $y=x^{2} \sin x$
(B) $y=\sin \left(x^{2}\right)$
(C) $y=(\sin x)^{2}$
(D) $y=x^{2}+\sin x$

7 The point $(2,3)$ lies on the curve $2 x^{2}+4 x y-y^{2}=23$. Find the gradient of the tangent to the curve at this point.
(A) $-\frac{5}{2}$
(B) $-\frac{5}{4}$
(C) -4
(D) -10

8 At time t, the position of a particle moving on the Cartesian plane is given by $x=3 t, y=e^{t}$. Its acceleration is:
(A) Constant in both magnitude and direction.
(B) Constant in magnitude only.
(C) Constant in direction only.
(D) Constant in neither magnitude nor direction.
$9 \quad$ A particle P of mass $m \mathrm{~kg}$ moves at a constant speed v in a circle of radius r, on a smooth horizontal table, while attached to a string. The string is fixed at the top and inclined at angle of θ to the table. Hence particle P is acted upon by three forces: tension T, normal reaction N and weight mg .

Which of the following shows the correct resolution of the forces on P ?
(A) $T \cos \theta+N=m g, T \sin \theta=\frac{m v^{2}}{r}$
(B) $T \cos \theta-N=m g, T \sin \theta=\frac{m v^{2}}{r}$
(C) $T \sin \theta+N=m g, T \cos \theta=\frac{m v^{2}}{r}$
(D) $T \sin \theta-N=m g, T \cos \theta=\frac{m v^{2}}{r}$

The nine points P, Q, R, S, T, U, V, W and X are equally spaced around the circumference of a circle. How many distinct triangles can be formed using three of these points as its vertices, with the condition that the centre of the circle must lie in the interior of each such triangle?

(A) 21
(B) 30
(C) 42
(D) 48

Section II (90 marks)

Allow about 2 hours 45 minutes for this section.

Answer each question on the appropriate page in the writing booklet.

Question 11 (15 marks)

a) For the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, find:
(i) the eccentricity.
(ii) the coordinates of the foci.
b) Let $z=1+i=\sqrt{2} \operatorname{cis} \frac{\pi}{4}$ and $w=\sqrt{3}+i$.
(i) Find $\frac{z}{w}$ in the form form $a+i b$, where a and b are real numbers.
(ii) Express w in modulus-argument form. $\quad \mathbf{1}$
(iii) Hence or otherwise, find the exact value of $\cos \frac{\pi}{12}$.
c) If $|z+\sqrt{3}-i|=1$:
(i) Sketch the locus of z on an Argand diagram.
(ii) Find all possible values for $\arg z$.
(iii) Find the maximum value for $|z|$.
d) $\quad P\left(c p, \frac{c}{p}\right)$ and $Q\left(-c p,-\frac{c}{p}\right)$ are two points lying on the rectangular hyperbola $x y=c^{2}$. The tangent at P meets the line which passes through Q and is parallel to the x-axis at point A, and the tangent also meets the line which passes through Q and is parallel to the y-axis at B.

(i) What is the eccentricity of the hyperbola?
(ii) Given that the equation of the tangent at P is $x+p^{2} y=2 c p$, show that P is the midpoint of $A B$.
(iii) Find the equation of the locus of A.

End of Question 11

Question 12 (15 marks)

a) The diagram below shows the function $y=f(x)$.

| (i) Sketch $y^{2}=f(x)$, indicating important features such as turning points, |
| :--- | :--- | :--- |
| intercepts and asymptotes. |

(ii) On a separate diagram, sketch $y=f(|x|)$.
b) The polynomial equation $x^{3}-3 x-2=0$ has roots α, β and γ.
(i) Find a polynomial equation with roots α^{2}, β^{2} and γ^{2}.
(ii) Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(iii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
c) (i) Find:

$$
\int \frac{e^{x}+e^{2 x}}{1+e^{2 x}} d x
$$

(ii) Evaluate:

$$
\int_{0}^{\frac{\pi}{4}} x \sec ^{2} x d x
$$

Question 13 (15 marks)

a) The Argand diagram below shows a triangle $O P Q$, where points P and Q represent the complex numbers z and w respectively.

(i) Explain why $|z-w| \leq|z|+|w|$.
(ii) The point R represents $z+w$. If $|z-w|=|z+w|$, what type of quadrilateral is $O P R Q$?

Give a reason for your answer.
b) The region bounded by the curve $y=x^{4}+1$, the y-axis, the x-axis and the line $x=1$ is rotated about the line $x=3$.
Use the method of cylindrical shells to find the exact volume of the solid generated.
c) A block of wood is a frustum, 10 cm high. The cross-sections parallel to its ends are rectangles which vary from 5 cm by 8 cm at the bottom, to 3 cm by 4 cm at the top. All of its faces are plane shapes.

The cross-section shown is a rectangle of length $x \mathrm{~cm}$ and width $y \mathrm{~cm}$, at a height $h \mathrm{~cm}$ above the base of the block.
(i) Find an expression for x in terms of h
(ii) Given $y=\frac{25-h}{5}$ (you do NOT need to prove this result), find the volume of the block
d) Evaluate, without the use of a calculator:

$$
\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{2-x}
$$

e) Five girls and three boys are to be seated around a circular table. How many arrangements are possible if at least two boys are sitting next to each other?

End of Question 13

Question 14 (15 marks)

a) Given $\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}$, prove by mathematical induction that

$$
\begin{equation*}
S_{n}=\sum_{r=1}^{n} \frac{1}{r^{2}} \leq 2-\frac{1}{n} \tag{3}
\end{equation*}
$$

for all positive integers n.
(You may also use the result that $\frac{1}{(n+1)^{2}}<\frac{1}{n(n+1)}$ when $n>0$, without further proof.)
b) Given that

$$
I_{n}=\int_{\pi / 6}^{\pi / 4} \cot ^{n} x d x \quad \text { for all positive integers } n \text { : }
$$

(i) Show that $I_{1}=\frac{1}{2} \log _{\mathrm{e}} 2$.
(ii) Show that

$$
I_{n-2}+I_{n}=\frac{1}{n-1}\left[(\sqrt{3})^{n-1}-1\right] \text { for } n=2,3,4 \ldots \ldots
$$

(iii) Evaluate I_{5}.
c) A car of mass $m \mathrm{~kg}$ is travelling around a circular banked track of radius r metres. It experiences a normal reaction force N perpendicular to the track and a frictional force F parallel to the track. The track is banked at an angle θ to the horizontal and the acceleration due to gravity is $g \mathrm{~m} / \mathrm{s}^{2}$.

By resolving forces vertically and horizontally it can be shown that

$$
N \cos \theta-F \sin \theta=m g \text { and } F \cos \theta+N \sin \theta=\frac{m v^{2}}{r} \quad(\text { DO NOT PROVE THESE) }
$$

(i) Find an expression for $F^{2}+N^{2}$ in terms of m, g, v and r.
(ii) If the car is traveling at $72 \mathrm{~km} / \mathrm{h}$ and the ratio $F: N=6: 1$, show that $N=\frac{m}{\sqrt{37}} \cdot \sqrt{g^{2}+\frac{160000}{r^{2}}}$
(iii) The driver wishes to travel around the track so that there is no frictional force acting on the car. If the radius f the banked track is 300 m , find the speed at which the car should travel, given that $\theta=5^{\circ}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Question 15 (15 marks)

a) In the diagram below, P is a point on the circle which is drawn through the vertices of $\triangle A B C$. From P , perpendiculars are drawn, meeting AB at F and AC at G . FG produced meets BC produced at H .

Copy or trace the diagram into your answer booklet.
(i) Prove that $\angle P G H=\angle P A F$.
(ii) Prove that $P H \perp B C$
b) Find $\int \frac{d x}{3-\cos x}$
c) The ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (where $a>b$) has eccentricity 0.4 and it intersects the x-axis at the points A and A^{\prime}. The distance from one of the foci to point A is 1 . What are the possible values of a ?

Question 15 continues on the next page

d) The diagram shows the graph of a function $y=f(x)$.

Carefully sketch the following curves on separate diagrams:
(i) $y=\log _{\mathrm{e}} f(x)$
(ii) $y=f(2-x)$
(iii) $|y|=f(x)$

Question 16 (15 marks)

a) A particle of mass $m \mathrm{~kg}$ falls from rest in a resistive medium. Its velocity at time t seconds is $v \mathrm{~m} / \mathrm{s}$ and it approaches a terminal velocity of $R \mathrm{~m} / \mathrm{s}$. The resistive force upon it is $m k v$ newtons.
(i) Show that the acceleration of the particle is given by $\ddot{x}=k(R-v)$
(ii) Show that the time taken for the particle to reach 50% of its terminal velocity is
$\frac{1}{k} \log _{\mathrm{e}} 2$ seconds.
(iii) Find the distance fallen during this this time.
b) Use the identity:

$$
(1+x)^{2 n+1}(1-x)^{2 n}=(1+x)\left(1-x^{2}\right)^{2 n}
$$

to find a simpler expression for:

$$
\binom{2 n+1}{0}\binom{2 n}{0}-\binom{2 n+1}{1}\binom{2 n}{1}+\cdots+\binom{2 n+1}{2 n}\binom{2 n}{2 n}
$$

c) (i) If $\tan x \tan (\theta-x)=k$, prove that

$$
\frac{1+k}{1-k}=\frac{\cos (2 x-\theta)}{\cos \theta}
$$

(ii) Hence or otherwise, find all solutions for

$$
\tan x \tan \left(\frac{\pi}{3}-x\right)=2+\sqrt{3}
$$

End of Examination

Xi. Trial 2018 Solutions.
Section I.

$$
\text { 1. } \begin{align*}
(a+b i)^{2} & =a^{2}-b^{2}+2 i a b \\
& =0+i \\
\therefore a^{2}-b^{2} & =0-a l l \\
2 a b & =1 \quad \therefore a b=\frac{1}{2} \tag{c}
\end{align*}
$$

2. $\quad P(x)$ has double root $>$ in common $P^{\prime}(x)$ ha a single coot

$$
\begin{aligned}
p^{\prime}(x) & =3 x^{2}+(x-24 \\
& =3\left(x^{2}+2 x-8\right) \\
& =3(x+8)(x-2) \\
x & =-8 \quad \text { or } \quad x=2
\end{aligned}
$$

Test: $-512+122+192$ Test: $8+12-48+28$
$\neq \theta$

$$
\begin{equation*}
\therefore x=2 \text { on y } \tag{D}
\end{equation*}
$$

3.

\rightarrow Opts in common

$$
4 \frac{d x}{\sqrt{7-6 x-x^{2}}}=\int \frac{d x}{\sqrt{16-(x+3)^{2}}}\left[\begin{array}{l}
7-6 x-x^{2} \tag{A}\\
=16-\left(x^{2}+6 x+9\right)
\end{array}\right]
$$

$$
\Rightarrow \quad=\sin ^{-1}\left(\frac{x+3}{4}\right)+c
$$

$$
\begin{aligned}
& \text { 5 Sun of roots }=-(1+i) \\
& \text { Product of roots }=-1 \\
& A:-1+\alpha+1-\alpha=0 \neq-(1+i) \\
& B-1+\alpha+\bar{\alpha}=-1+2 \operatorname{Re}(\alpha) \neq-(1+i) \\
& B-\alpha=-1 \neq-(1+i)
\end{aligned}
$$

D. $-1+\alpha+\frac{1}{\alpha}=-1+i$ is possible, and product $=-1$.
(even + odd = mither)
7.

$$
\begin{align*}
& 4 x+4 x \cdot \frac{d y}{d x}+y \cdot 4-2 y \cdot \frac{d y}{d x}=0 \\
& \frac{d y}{d x}(4 x-2 y)=-4(x+y) \\
& \frac{d y}{d x}=\frac{-4(x+y)}{4 x-2 y}=\frac{-4(5)}{8-6}=-10 \tag{D}
\end{align*}
$$

8.e $x=3 t \quad \dot{x}=3 \quad \ddot{x}=0 \leftarrow$ constant

$$
y=e^{t} \quad \dot{y}=e^{t} \quad \ddot{y}=e^{t} \leftarrow \text { varies, but }>0
$$

9. Constant direction (direction of y) but varying magnitude
10. C
11. List all Δs containing veter f.

$$
\begin{array}{lll}
P \times T & & \\
P W T & P W S & \\
P V T & P V S & P V R \\
P U T & P U S & P V R \quad P U Q
\end{array}
$$

$\therefore 10$ gush Δ 's through P.
Nus if we list with $\Delta<$ with P, Q,R,S... x as vertices, we have $9 \times 10=90 \Delta s$.
But each Δ will be counted 3 times
(eye $P \times T$ will also be counted $a s{ }_{a} X P$ and $I \times P$)

$$
\begin{equation*}
\therefore \frac{9 \times 10}{3}=30 \tag{B}
\end{equation*}
$$

Part II

Question 11
a) (i) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

$$
\begin{align*}
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& \frac{9}{16}=e^{2}-1 \\
& e^{2}=\frac{25}{16} \quad \therefore e=\frac{5}{4} \tag{1}
\end{align*}
$$

(ii) Foci $(\pm a e, 0)=(\pm 5,0)$
b) (i)

$$
\begin{align*}
\frac{z}{w} & =\frac{1+i}{\sqrt{3}+i} \times \frac{\sqrt{3} \cdot i}{\sqrt{3} \cdot i} \\
& =\frac{(\sqrt{3}+1)+i(\sqrt{3}-1)}{4} \tag{1}\\
& =\frac{\sqrt{3}+1}{4}+i \cdot \frac{\sqrt{3}-1}{4}
\end{align*}
$$

(ii) $\omega=2 \mathrm{cis} \pi / 6$ $\leftarrow(1)$
(iii)

$$
\begin{aligned}
\frac{2}{\omega}=\frac{\sqrt{2} \text { cis } \pi / 4}{2 \text { cis } \pi / 6} & =\frac{\sqrt{2}}{2} \text {, cis } \frac{\pi}{12} \\
& =\frac{\sqrt{2}}{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)
\end{aligned}
$$

Equating real parts: $\frac{\sqrt{2}}{2} \cdot \cos \frac{\pi}{12}=\frac{\sqrt{3}+1}{4}$

$$
\begin{aligned}
\therefore \quad \cos \frac{\pi}{12} & =\frac{\sqrt{3}+1}{4} \times \frac{2}{\sqrt{2}} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} .
\end{aligned}
$$

(2) correct sol-
(1)

- attempts to equate real parts.
c) (i)

$$
\begin{aligned}
& |z+(\sqrt{3}-i)|=1 \\
& |z-(-\sqrt{3}+i)|=1
\end{aligned}
$$

 aroothe- valid working

Asiecle $\left\{\begin{array}{l}\text { centre }(-\sqrt{3}, 1) \\ \text { radius },\end{array}\right.$
(1) Draw eocrest circle
(1) Draw an circle with correct radius or centre.
(ii) $\frac{2 n}{3} \leqslant \arg z \leqslant \pi$
(2) correct answar
(1) purtially corred ansues.
(iii) 3 wnit..
(1) correct answar

II d) (i) $\quad a=\sqrt{2}$ since rectanguler hypuble.
C.) coired answa.

$$
\text { (ii) At A, y--c|} \begin{aligned}
x+p^{2}\left(-\frac{c}{p}\right) & =2 c p \\
x-c p & =2 c p \\
x & =3 c p \quad A \quad\left(3 c p,-\frac{c}{p}\right)
\end{aligned}
$$

At B, $x=-c p \quad-c p+p^{2} y=2 c p$

$$
p^{2} y=3 c p
$$

$$
y=\frac{3 c}{p} \quad B\left(-c p, \frac{3 c}{p}\right)
$$

Now midpt of $A B$

$$
\begin{aligned}
& =\left(\frac{3 c p-c p}{2}, \frac{3 c}{p}-\frac{c}{p}\right) \\
& =\left(c p, \frac{c}{p}\right)
\end{aligned}
$$

(2) coirect suln $=$ coord's of P. (1) find A or B.
(iii) At $A, \quad x=3 \mathrm{cp}, \quad p=\frac{x}{3 c}$

$$
\begin{array}{r}
y=-\frac{c}{p}, y=-c+3 \frac{3}{x}=-\frac{3 c^{2}}{x} \\
\therefore x y=-3 e^{2}
\end{array}
$$

(1) eoorect soln.

Ouestion 12

b) $P(x)=x^{3}-3 x-2$; roots α, β, γ
(i) Replace x with \sqrt{x} :
$x \sqrt{x}-3 \sqrt{x}-2=0$ $\sqrt{x}(x-3)=2$
$x(x-3)^{2}=4$
$x\left(x^{2}-6 x+9\right)=4$
$x^{3}-6 x^{2}+9 x-4=0$
(3) coiract graph
(2) dia- $y=\sqrt{f(x)}$
and ite raflectiobut missing one of the fllowing: -vertical tagents - carraet use of horiz axympotes
(1) draw $y=\sqrt{f(x)}$
correct. gragh.
(1)
(1) Replace x with \sqrt{x}
(2) a currect polynonicl equation (any equivale-t)
(ii) $\alpha^{2}+\beta^{2}+\gamma^{2}=\frac{-b}{a}$ (for new eq-) $=C$
(1) correct answar
(iii)

$$
\left.\begin{array}{l}
\alpha^{3}=3 \alpha+2 \\
\beta^{3}=3 \beta+2 \\
\gamma^{3}=3 \gamma+2
\end{array}\right\}
$$

$$
\begin{aligned}
\therefore \alpha^{3}+\beta^{3}+\gamma^{3} & =3(\alpha+\beta+\gamma) \\
& =3(0) \\
& =6
\end{aligned}
$$

(2) corred solution worling (1) obtain $3(\alpha+\beta+\gamma)+6$ of bald ansue
c)

$$
\begin{aligned}
& \text { (i) } \int \frac{e^{x}+e^{2 x}}{1+e^{2 x}} \cdot d x \\
& =\int \frac{e^{x}\left(1+e^{x}\right)}{1+\left(e^{x}\right)^{2}} \cdot d x \quad \text { Let } u=e^{x} \\
& =\int \frac{1+u}{1+u^{2}} \cdot d u=e^{x} \cdot d x
\end{aligned}
$$

$$
=\int \frac{1}{1+u^{2}}+\frac{u}{1+u^{2}} \cdot d u
$$

(3) correct soln.

$$
=\tan ^{-1} u+\frac{1}{2} \ln \left|1+u^{2}\right|+c
$$

(2) particlly correct
(1) use substin method

$$
=\tan ^{-1}\left(e^{x}\right)+\frac{1}{2} \ln \left|1+e^{2 x}\right|+c
$$ |...| not nee.

(ii)

$$
x \sec ^{2} x \cdot d x
$$

$$
=[x \tan x]_{0}^{\pi / 4}-\int_{0}^{\pi / 4} \tan x \cdot d x
$$

$$
=\frac{\pi}{4}(1)-0+\left[\lambda_{1}|\cos x|\right]_{0}^{\pi / 4}
$$

$$
=\frac{\pi}{4}+\left(\ln \frac{1}{\sqrt{2}}-\ln 1\right)
$$

(2) $\frac{\operatorname{sbtan}}{\text { and }} 1-|\cos x|$

$$
=\frac{\pi}{4}+\ln \frac{1}{\sqrt{2}}
$$

(1) attempt IBP,

Question 13.
a) (i) $|z|$, $|w|$ and $|z-w|$ are the three sideleyths of $\triangle O Q Q$.
$\therefore|=-\omega| \leqslant|2|+|\omega|$ because any side of a Δ is less then or equal to the sum of the other. two sides (equality when $0, P, Q$ collinear).
(1) Correct explanation
(ii) $O P R Q$ b a parallelogram with equal diagonals since $|\overrightarrow{O P}|=|z+w|$
$\therefore O P R Q$ is a rectangle.
(2) Rectangle with cense. .
(1) Diagonal equal) (Davahlogram and dragonets equal)
b)

$$
\Delta V=2 \pi(3-x)\left(x^{4}+1\right) \Delta x
$$

$\underset{\substack{\text { radius } \\ 3-x}}{\leftarrow}$

$$
\therefore v=\lim _{\Delta x \rightarrow 0} \sum_{x=0}^{1} 2 \pi(3-x)\left(x^{4}+1\right) \cdot \Delta x
$$

$\begin{aligned} & \text { (1). Development of } \varepsilon \\ & \text { formula } \\ & \text { Concoct penitives. } \\ & \text { but no der. of } \\ & \text { e formalin }\end{aligned} \quad=2 \pi \int_{0}^{1}(3-x)\left(x^{4}+1\right) \cdot d x$

$$
=2 \pi \int_{0}^{1} 3 x^{4}+3-x^{5}-x \cdot d x
$$

(3) exact volume
(2). exact vol. but

$$
=2 \pi\left[\frac{3 x^{5}}{5}+3 x-\frac{x^{6}}{6}-\frac{x^{2}}{2}\right]_{0}^{1}
$$ missing development

$$
\begin{aligned}
& \text { of } \sum \text { formula } \\
& \text {-correct p:mitues }
\end{aligned}=2 \pi\left(\frac{3}{5}+3-\frac{1}{6}-\frac{1}{2}\right)=\frac{88 \pi}{15} \text { un dts }^{3}
$$

c) (i)

$$
\begin{aligned}
\frac{8-x}{4} & =\frac{h}{10} \\
80-10 x & =4 h \\
x & =\frac{80-4 h}{10} \\
& =\frac{40-2 h}{5} \quad \begin{array}{c}
\text { (2) corrext } \\
\text { (1) corressin } \\
\text { preperin }
\end{array}
\end{aligned}
$$

$$
\text { (or } \left.\quad 8-\frac{2}{5} h\right)
$$

(ii)

$$
V=\frac{2}{25} \int_{0}^{10} 500-45 h+h^{2} \cdot d h
$$

$$
\begin{aligned}
& =\frac{2}{25}\left[500 h-\frac{45 h^{2}}{2}+\frac{h^{3}}{3}\right]_{0}^{10} \\
& =\frac{2}{25}\left(5000-\frac{4500}{2}+\frac{1000}{3}\right)
\end{aligned}
$$

$$
=\frac{740}{3} \mathrm{~cm}^{3}
$$

(3) correct solution
(2) correct den. + (or $\left.24<\frac{2}{3} \mathrm{~cm}^{3}\right)$.
(2) collat primitive
(1) correct integrand development

$$
\begin{aligned}
& \frac{\Delta V^{\Delta h}}{x} \quad y=\frac{25-h}{5} \quad \Delta v=\frac{40-2 h}{5} \cdot \frac{25-h}{5} \cdot d h \\
& =\frac{40-2 h}{5} \\
& =\frac{1}{25}(40-2 h)(25-h) \cdot \Delta h \\
& V=\lim _{\Delta h \rightarrow 0} \sum_{h=0}^{10} \frac{2}{25}(20-h)(25-h) \cdot \Delta h
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
& \lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{2-x} \\
= & \lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{2-x} \cdot \frac{\sqrt{6-x}+2}{\sqrt{6-x}+2} \\
= & \lim _{x \rightarrow 2} \frac{6-x-42-x}{(2-x)(\sqrt{6-x}+2)} \\
= & \frac{1}{\sqrt{4}+2} \\
= & \frac{1}{4}
\end{aligned}
$$

(2) Correct solution
(i) partially correct - rationalise numerator bald answer.
e) There are 7' ways without restriction

No. of ways where no boys as together is

$$
4!\times(5 \times 24 \times 3)
$$

ways of
seating the girls

$$
\therefore \quad 7!-4!\times 60=3600
$$

(2) correct solution
(1) sign same tract work. $y /$ explanation.

Question 14.
a) If $n=1, s_{1}=\frac{1}{1^{2}}=1$

$$
2-\frac{1}{1}=1
$$

\therefore True for $A=1$
Assume true for $n=k$ (where k in integer).
ie. Assume

$$
S_{k}=\sum_{r=1}^{k} \frac{1}{r^{2}} \leq 2-\frac{1}{k}
$$

Now prose abe true for. $n=k+1$
i. Prove

$$
S_{k+1}=\sum_{r=1}^{k+1} \frac{1}{r^{2}} \leq 2-\frac{1}{k+1}
$$

Now $S_{k+1}=S_{k}+\frac{1}{(k+1)^{2}}$

$$
\begin{aligned}
& \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}} \\
& <2-\frac{1}{k}+\frac{1}{k(k+1)} \\
& =2-\left(\frac{1}{k}+\frac{1}{k(k+1)}\right) \\
& =2-\frac{k+1-1}{k(k+1)}
\end{aligned}
$$

$$
=2-\frac{1}{k+1} \quad \therefore \text { If true for } n=k \text {, }
$$ then statement is also true for $n=k+1$

Now statement is true for $n=1$
\therefore Also true for $n=2,3,4 \ldots$ and by induction, true for all positive integers n. (3) correct proof.
(2) use assumption + set.epr
(1) Test an =1 and set up.
b) $I_{n}=\int_{\pi / 6}^{\pi / 4} \cot ^{n} x \cdot d x$
(i)

$$
\begin{aligned}
I_{1} & =\int_{\pi / 6}^{\pi / 4} \cos x \cdot d x \\
& =[\ln x|\sin x|]_{\pi / 6}^{\pi / 4} \\
& =\ln \left(\sin \frac{\pi}{4}\right)-\ln (\sin \pi / 6) \\
& =\ln \left(\frac{1}{\sqrt{2}}\right)-\ln \left(\frac{1}{2}\right) \quad \leftarrow \operatorname{li)} \text { on any } \\
& =\ln \left(\frac{1}{\sqrt{2}} x \frac{2}{1}\right) \\
& =\ln \sqrt{2} \\
& =\frac{1}{2} \ln 2 .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
I_{n-2} & +I_{n} \\
& =\int_{n / 4}^{\pi / 4} \cot ^{n-2} x+\cot ^{n} x \cdot d x \\
& =\int_{n / 4}^{n / 4} \cot ^{n-2} x\left(1+\cot ^{2} x\right) \cdot d x \\
& =\int_{\pi / 6}^{\pi / 4} \cot ^{n-2} x \cdot \operatorname{cosec}^{2} x \cdot d x \\
& =-\frac{1}{n-1}\left[\cot ^{n-1} x\right]_{\pi / 4}^{\pi / 4} \\
& =-\frac{1}{n-1}\left(\cot ^{n-1} \frac{n}{4}-\cot ^{n-1} \frac{\pi}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{n-1}\left(1-(\sqrt{3})^{n-1}\right) \\
& =\frac{(\sqrt{3})^{n-1}-1}{n-1} \\
& =\frac{1}{n-1}\left[(\sqrt{3})^{n-1}-1\right]
\end{aligned}
$$

(3) ceoreel salution.
(2) corred prinitive: $\frac{-1}{n-1}\left[\right.$ ofl $\left._{x} x\right]$
(1) olteir integra-d;

$$
\therefore \quad \cot ^{-2} x \operatorname{cosec}^{2}
$$

(ii)

$$
\begin{array}{rl}
F: N=6: 1 & r=72 \mathrm{~km} / \mathrm{h} \\
\therefore F=6 N \\
(6 N)^{2}+N^{2} & =\frac{20^{4} m^{2}}{r^{2}}+m^{2} g^{2} \\
\therefore \quad 37 N^{2} & =m^{2}\left(\frac{20^{4}}{r^{2}}+g^{2}\right) \\
N^{2} & =\frac{\mathrm{m}}{37}\left(\frac{160000}{r^{2}}+g^{2}\right) \quad(2) \\
N & =\frac{m}{\sqrt{37}} \sqrt{\frac{160000}{r^{2}}+g^{2}}
\end{array}
$$

(iii) Let $F=0$ in. the 2 equs obtained by resolving, forces: (Also $g=10, \theta=5^{\circ}$)

$$
\begin{aligned}
& \left.N \sin 5^{\circ}=\frac{m v^{2}}{300} \ldots c_{1}\right) \\
& N \cos 5^{\circ}=10 m \ldots(2) \\
& \tan 5^{\circ}=\frac{v^{2}}{3000} \\
& v^{2}=3000 \tan 5^{\circ} \\
& v=16.2 \mathrm{~m} / \mathrm{s} . \quad(o r 58.3 \mathrm{~km} / \mathrm{h})
\end{aligned}
$$

$$
\therefore \quad \tan 5^{\circ}=\frac{v^{2}}{3000}
$$

(2) Correct answer including correct units.
(1). correct numerical answer but no units
findiy expressions with $\sin 5^{\circ}, \cos 55^{\circ}$

Question 15.
a) (i) $\angle P F A=\angle P G A=90^{\circ}$ (given)
$\therefore P G F A$ is a cyclic quadrilateral (equal $\angle s$ subtended at points G, F on sam side of aterval $P A$?
$\angle P G H=\angle P A F$ (exterior \angle of cyclic quadrilateral = interior opposite (2) co)
(2) correct proof
(1) estabitist cyclic quad.
(ii) $\angle P C H=\angle P A B$ (exterior \angle of cyclic quadrilateral = interior opposite <)

$$
\therefore \angle P C H=\angle P G H \text { (bath }=\angle P A F)
$$

$\therefore P H C G$ is a cyclic quadrilateral equal L s subtended at points C, G on same side of interval $P H$;

$$
\therefore \quad \angle P G C+\angle P H C=180^{\circ}
$$

(opposite Ls of cyclic quadrilateral supplementary)

$$
\therefore \angle P H C=180-90=90^{\circ}
$$

i. $\mathrm{PH} \perp B C$
(3) correct proof
(2) $e s t+b / i s h$ glia
(1) using a correct cyclic quad. to conclude.
b) $\int \frac{d x}{3-\cos x}=\int \frac{\frac{2}{1+t^{2}}}{3-\frac{1-t^{2}}{1+t^{2}}} \cdot d t$

$$
\begin{aligned}
& =\int \frac{2}{3+3 t^{2}-1+t^{2}} \cdot d t \\
& =\int \frac{2}{2+4 t^{2}} \cdot d t \\
& =\int \frac{1}{2 t^{2}+1} \cdot d t
\end{aligned}
$$

(3) Correct solution
(2) correct integrand
(1) use trouts.

$$
=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\sqrt{2} \tan \frac{x}{2}\right)+c .
$$

$$
\begin{array}{cc}
a-a<=\varnothing 1 & a+a c=61 \\
a(1-e)=1 & a(1+e)=1 \\
a=\frac{1}{0.6}=\frac{5}{3} & a=\frac{1}{1.4}=\frac{5}{7}
\end{array}
$$

(2) bedh solution.
(.) obtai- a.e or both $-q-s$ ($a \pm a c=1$
d) (1)

(2) correct graph
(1) correct esymptote and position of intercepts.

6.1 correct graph

(2) correct. graph
(1) symmetry in x-axis

Question 16.
a)(i) $0+\underbrace{}_{x(t)}$

$$
\begin{aligned}
m \ddot{x} & =m g-m k v \\
\ddot{x} & =g-k v \\
& =g-2
\end{aligned}
$$

when $\ddot{x}=0, v=R$:

$$
\begin{aligned}
& 0=g-k R \\
& g=k R \\
& \therefore \quad \ddot{x}=k R-k r
\end{aligned}
$$

$$
=k(R-r) \text { (z) correct soln }
$$

(1) estobishes eqn. of mation.

$$
\text { (ii) } \begin{aligned}
\ddot{x}=\frac{d v}{d t} & =k(R-v) \\
\int_{0}^{0.5 R} \frac{d v}{R-v} & =\int_{0}^{T} k \cdot d t \\
{[k t]_{0}^{t} } & =[-\ln (R-v)]_{0}^{0.5 R} \\
k t & =-\ln 0.5 R+\ln R \\
& =\ln \frac{R}{0.5 R} \\
& =\ln 2 \\
\therefore t & =\frac{1}{k} \ln 2 .
\end{aligned}
$$

(2) Cornet suln
(4) correct primiture
(iii)

$$
\begin{aligned}
& \ddot{x}=v \cdot \frac{d v}{d x}=k(R-v) \\
& \int_{0}^{0.5 R} \frac{v}{R-v} \cdot d v=\int_{0}^{x} k \cdot d x \\
& k x=\int_{0}^{0.5 R}-1+\frac{R}{R-v} \cdot d v \\
&=[-v-R \ln (R-v)]_{0}^{0.5 R} \\
& x=\frac{1}{k}(-0.5 R-R \ln 0.5 R-(0-R \ln R))
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{k}(R \ln R-R \ln 0.5 R-0.5 R) \\
& =\frac{1}{k}\left(R \ln \frac{R}{0.5 R}-0.5 R\right)
\end{aligned}
$$

(3) correct son

$$
=\frac{1}{k}(R \ln 2-0.5 R)
$$

(2) correct primitive with e or limits.

$$
=\frac{R}{k}(\ln 2-0.5) \text { metres. }
$$

(1) attempts to. integrate 1 ing

$$
\therefore \frac{d v}{d x} \text { or } \frac{d v}{d t}
$$

b) From the given identity,

The coefficient of $x^{2 n}$ will be

$$
\begin{aligned}
& \binom{2 n+1}{0}\binom{2 n}{2 n}+\binom{2 n+1}{1} \cdot-\binom{2 n}{2 n-1}+\binom{2 n+1}{2} \cdot\binom{2 n}{2 n-2}+\cdots \cdot \\
& \ldots+\binom{2 n+1}{2 n-1} \cdot-\binom{2 n}{1}+\binom{2 n+1}{2 n} \cdot\binom{2 n}{0} \\
& =\binom{2 n+1}{0}\binom{2 n}{2 n}-\binom{2 n+1}{1}\binom{2 n}{2 n-1}+\binom{2 n+1}{2}\binom{2 n}{2 n-2}+\cdots \\
& \cdots-\binom{2 n+1}{2 n-1}\binom{2 n}{1}+\binom{2 n+1}{2 n}\binom{2 n}{0}
\end{aligned}
$$

$$
\begin{aligned}
& L H S=\left[\binom{2 n+1}{0}+\binom{2 n+1}{0} x^{1}+\binom{2 n+1}{2} x^{2}+\cdots+\binom{2 n+1}{2 n} x^{2 n}+\binom{2 n+1}{2 n+1} x^{2 n+1}\right] \\
& {\left[\binom{2 n}{0}-\binom{2 n}{1} x^{1}+\binom{2 n}{2} x^{2}-\cdots-\binom{2 n}{2 n-1} x^{2 n-1}+\binom{2 n}{2 n} x^{2 n}\right]} \\
& \uparrow \\
& \binom{\text { this last term will be }}{\text { positive since in is even }}
\end{aligned}
$$

$$
\begin{aligned}
&=\binom{2 n+1}{0}\binom{2 n}{0}-\binom{2 n+1}{1}\binom{2 n}{1}+\binom{2 n+1}{2}\binom{2 n}{2}+\cdots \\
& \cdots-\binom{2 n+1}{2 n-1}\binom{2 n}{2 n-1}+\binom{2 n+1}{2 n}\binom{2 n}{2 n} \\
& {\left[\begin{array}{l}
\text { since }\binom{n}{2}=\binom{n}{n-r}, \\
\text { and }\binom{n}{r}=\binom{2 n-r}{2 n-r}
\end{array}\right] }
\end{aligned}
$$

and this is the required expression.
Now

$$
\begin{aligned}
\text { RUS } & =(1+x)\left(1-x^{2}\right)^{2 n} \\
& =(1+x)\left(\binom{2 n}{0}-\binom{2_{n}}{1} x^{2}+\binom{2_{n}}{2} x^{4}+\cdots\binom{2_{n}}{1}-\left(x^{2}\right)^{n}\right)
\end{aligned}
$$

and the only term containing x^{2} will be

$$
\begin{aligned}
& 1 \times\binom{ 2 n}{n} \times\left(-x^{2}\right)^{n} \\
= & \binom{2 n}{n} \cdot(-1)^{n} \cdot x^{2 n}
\end{aligned}
$$

$$
\therefore \text { Required expression }=\binom{2 n}{n} \cdot(-1)^{n}
$$

(3) correct som.
(2) Fid coefficient of $x^{2 n}$

$$
\left(\operatorname{lor} x^{2 n+1}\right) \text { and }
$$

either use symmetry or simplifies earrecty.

1) Either find carfficiet. of x^{20} loo $x^{2 m+1} 2$ a^{2} use symmetry $\binom{n}{c_{1}=" b_{n-1}}$
c)
(i)

$$
\begin{aligned}
\text { LHS } & =\frac{1+k}{1-k} \\
& =\frac{1+\tan x \tan (\theta-x)}{1-\tan x \tan (\theta-x)} \times \frac{\cos x \cos (\theta-x)}{\cos x \cos (\theta-x)} \\
& =\frac{\cos x \cos (\theta-x)+\sin x \sin (\theta-x)}{\cos x \cos (\theta-x)-\sin x \sin (\theta-x)}
\end{aligned}
$$

$$
=\frac{\cos (x-(\theta-x))}{\cos (x+(\theta-x))}
$$

(2) correct soln.
(1) significant progess

$$
=\frac{\cos (2 x-\theta)}{\cos \theta}
$$

seg. expressing lus in bems of sum sas.

$$
=\text { RHS. }
$$

(ii) If $\tan x \tan (\theta-x)=k=2+\sqrt{3}$ and $\theta=\frac{\pi}{3}$,
then $\quad \frac{1+k}{1-k}=\frac{\cos (2 x-\theta)}{\cos \theta}$
ie equivatent to

$$
\begin{aligned}
& \frac{3+\sqrt{3}}{-1-\sqrt{3}}=\frac{\cos \left(2 x-\frac{\pi}{3}\right)}{\cos \pi / 3} \\
& \frac{3+\sqrt{3}}{-(1+\sqrt{3})}=2 \cos \left(2 x-\frac{\pi}{3}\right)
\end{aligned}
$$

(3) coired setm.

$$
\frac{(2) \operatorname{sig}-f_{i} \cos ^{2}}{\text { p-ogress }}
$$

(1) $s u b \cdot \operatorname{tant} \frac{\pi}{3}$ into eqa from part is).

Now $\frac{3+\sqrt{3}}{1+\sqrt{3}}=\sqrt{3}$ (rationdisis denominator)

$$
\begin{array}{r}
\therefore \quad \frac{2}{} \cos \left(2 x-\frac{\pi}{3}\right)=\frac{-\sqrt{3}}{2} \\
2 x-\frac{\pi}{3}=2 n \pi \pm \frac{5 \pi}{6}
\end{array}
$$

(whare n is an integer)

$$
\left.\begin{array}{rlrl}
2 x & =2 n \pi+\frac{5 \pi}{6}+\frac{\pi}{3} & \text { or } & 2 x
\end{array}\right)=2 n \pi-\frac{5 \pi}{6}+.
$$

