

2019 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General	Reading time – 5 minutes		
Instructions	 Working time – 3 hours Write using black or blue pen, black is preferred Calculators approved by NESA may be used 		
	 A reference sheet is provided at the back of this paper 		
	 In Questions 11 – 16, show relevant mathematical reasoning and/or calculations 		
Total marks:	Section I – 10 marks (pages 2 – 7)		
100	 Attempt Questions 1 – 10 		
	 Allow about 15 minutes for this section 		
	Section II – 90 marks (pages 8 – 17)		
	 Attempt Questions 11 – 16 		
	 Allow about 2 hours and 45 minutes for this section 		

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer page in the writing booklet for Questions 1 - 10.

What is the value of i²⁰¹⁹?
A. i
B. -i
C. 1
D. -1

2 Which of the equations below best represents the following graph?

- A. |x|y=1
- B. x|y|=1
- C. |xy| = 1
- D. $x^2 y^2 = 1$

3 What are the equations of the asymptotes of the hyperbola $4x^2 - 25y^2 = 100$?

A.
$$y = \pm \frac{2}{5}x$$

B. $y = \pm \frac{4}{25}x$
C. $y = \pm \frac{5}{2}x$
D. $y = \pm \frac{25}{4}x$

- 4 Multiplying a non-zero complex number by $\frac{1+i}{1-i}$ results in a rotation about the origin on an Argand diagram. What is the rotation?
 - A. Clockwise by $\frac{\pi}{2}$ radians
 - B. Clockwise by $\frac{\pi}{4}$ radians
 - C. Anticlockwise by $\frac{\pi}{2}$ radians
 - D. Anticlockwise by $\frac{\pi}{4}$ radians
- 5 The polynomial equation $x^3 3x^2 x + 2 = 0$ has roots α, β and γ . Which of the following polynomial equations has roots $2\alpha + \beta + \gamma$, $\alpha + 2\beta + \gamma$ and $\alpha + \beta + 2\gamma$?
 - A. $x^3 6x^2 2x + 4 = 0$
 - B. $x^3 + 6x^2 + 8x 1 = 0$
 - C. $x^3 + 12x^2 44x + 49 = 0$
 - D. $x^3 12x^2 + 44x 49 = 0$

6 The motion of a particle undergoing simple harmonic motion is oscillatory, of which the amplitude of the motion remains constant.

However, in many real-world applications, oscillatory motions are often dampened out of necessity. The motion of a particle undergoing dampened harmonic motion is still oscillatory, but the amplitude of its motion reduces over time.

One such motion can be modelled by the equation:

$$x = e^{-\gamma t} \cos\left(\omega t\right)$$

where γ and ω are positive constants, and *x* is the displacement of the particle from the centre of its oscillatory motion over time *t*.

Which of the following graphs best describes this model?

7 Which diagram best represents the solutions to the equation $\arg(z) = \arg(z+2+2i)$?

- 8 It is given that 3+i is a root of $P(z) = z^3 + az^2 + bz + 10$ where *a* and *b* are real numbers. Which of the following expressions for P(z) is correct?
 - A. $P(z) = (z-1)(z^2+6z-10)$
 - B. $P(z) = (z-1)(z^2-6z-10)$
 - C. $P(z) = (z+1)(z^2+6z+10)$
 - D. $P(z) = (z+1)(z^2-6z+10)$

9 The region enclosed by the ellipse $(x-1)^2 + \frac{y^2}{4} = 1$ is rotated about the y-axis to form a solid.

Which integral represents the volume of the solid formed?

A.
$$\int_{-2}^{2} \pi \sqrt{4 - y^{2}} dy$$

B. $\int_{-2}^{2} \pi \sqrt{1 - y^{2}} dy$
C. $\int_{-2}^{2} 2\pi \sqrt{4 - y^{2}} dy$
D. $\int_{-2}^{2} 2\pi \sqrt{1 - y^{2}} dy$

10 Two light inextensible strings PQ and QR each of length ℓ are attached to a particle of mass *m* at *Q*. The other ends *P* and *R* are fixed to two points in a vertical line such that *P* is at a distance ℓ above *R*. The particle moves in a horizontal circle with constant angular velocity ω such that both strings remain taut.

Taking $g \text{ m/s}^2$ as the acceleration due to gravity, what are the tensions in the strings?

- A. $T_1 = \frac{m}{2} \left(\ell \omega^2 + 2g \right)$ and $T_2 = \frac{m}{2} \left(\ell \omega^2 2g \right)$
- B. $T_1 = \frac{m}{2} \left(\ell \omega^2 2g \right)$ and $T_2 = \frac{m}{2} \left(\ell \omega^2 + 2g \right)$
- C. $T_1 = m(\ell \omega^2 + 2g)$ and $T_2 = m(\ell \omega^2 2g)$
- D. $T_1 = m(\ell\omega^2 2g)$ and $T_2 = m(\ell\omega^2 + 2g)$

End of Section I

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate section of the writing booklet. Extra writing paper is available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 section of the writing booklet.

(a) Given z=3+i and w=1-2i, express $\frac{5z}{w}$ in x+iy form, where x and y are real **2** numbers.

(b) (i) Write
$$\sqrt{3} + i$$
 in modulus-argument form. 2

- (ii) Find the smallest positive integer *n* such that $(\sqrt{3} + i)^n$ is a real number. **1**
- (c) (i) Find real numbers a, b and c such that $\frac{4}{x^2(2-x)} \equiv \frac{ax+b}{x^2} + \frac{c}{2-x}$. 2

(ii) Hence, or otherwise, find
$$\int \frac{4}{x^2(2-x)} dx$$
. 3

(d) Find
$$\int \frac{dx}{\sqrt{1-4x-x^2}}$$
. 2

(e) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$$
 using the substitution $t = \tan \frac{x}{2}$.

End of Question 11

Question 12 (15 marks) Use the Question 12 section of the writing booklet.

- (a) The equation $x^3 + x^2 + 2 = 0$ has roots α, β and γ .
 - (i) Show that $\alpha^2 + \beta^2 + \gamma^2 = 1$. 2
 - (ii) Evaluate $\alpha^3 + \beta^3 + \gamma^3$. 2
 - (iii) Evaluate $\alpha^4 + \beta^4 + \gamma^4$. 2
- (b) (i) Sketch the region on the Argand diagram where the following inequalities **3** hold simultaneously.

$$|z-1| \le \sqrt{2}$$
 and $0 \le \arg(z+i) \le \frac{\pi}{4}$

- (ii) Let w be the complex number of minimum modulus satisfying the inequalities 1 in part (i). Express w in the form x+iy, where x and y are real number.
- (c) How many thirteen-letter arrangements can be made using the letters of the word BAULKHAMHILLS if:

(i)	there are no restrictions?	1
(ii)	all seven of the repeated letters are grouped together in no particular order?	2
(iii)	the vowels appear in alphabetical order but are separated by at least one consonant?	2

End of Question 12

Question 13 (15 marks) Use the Question 13 section of the writing booklet.

(a) A and B are two points on a circle. Tangents at A and B meet at C. A third tangent(a) on the minor arc AB cuts CA and CB at P and Q respectively, as shown in the diagram below.

Copy the diagram into your writing booklet and show that the perimeter of ΔCPQ is independent of PQ.

(b) The region between the curves $y = \frac{1}{x+1}$, $y = \frac{1}{x-5}$, the y-axis and the line x = 2 is rotated about the line x = 2 to form a solid.

- (i) Using the method of cylindrical shells, show that the volume of a typical 2 shell of thickness Δx is given by $\Delta V = 12\pi \left(\frac{x-2}{x^2-4x-5}\right)\Delta x$.
- (ii) Hence, or otherwise, find the exact volume of the resulting solid.

3

Question 13 continues on the next page

Question 13 (continued)

(c) The point $T\left(ct, \frac{c}{t}\right)$ lies on the hyperbola $xy = c^2$. The tangent at *T* meets the *x*-axis at *P* and the *y*-axis at *Q*. The normal at *T* meets the line y = x at *R*.

You may assume that the tangent at *T* has equation $x + t^2 y = 2ct$ (Do NOT prove this.)

(i)	Find the coordinates of P and Q .	2
(ii)	Find the equation of the normal at <i>T</i> .	2
(iii)	Show that the <i>x</i> -coordinate of <i>R</i> is $\frac{c}{t}(t^2+1)$.	2

2

(iv) Prove that ΔPQR is isosceles.

End of Question 13

Question 14 (15 marks) Use the Question 14 section of the writing booklet.

(a) The diagram shows the graph of y = f(x).

Draw sketches of the graphs of the following on separate number planes:

(i)
$$y = \frac{1}{f(x)}$$
 2

(ii)
$$y = \left[f(x)\right]^2$$
 2

(iii)
$$y^2 = -f(x)$$
 2

(b) A particle of mass *m* kilograms is projected vertically upwards through a medium under the influence of gravity with an initial velocity of *U* m/s. In this medium, the particle experiences a resistive force of *mkv* newtons, where *k* is a positive constant and *v* is the particle's velocity in m/s. The acceleration due to gravity for this motion is $g \text{ m/s}^2$.

It is known that the particle reaches its greatest height *H* metres in *T* seconds.

(i) Show that
$$T = \frac{1}{k} \ln\left(\frac{g+kU}{g}\right)$$
. 2

- (ii) Show that $\frac{dx}{dv} = -\frac{v}{g+kv}$, where x is the particle's displacement from its **1** point of projection in metres.
- (iii) Hence, or otherwise, show that U = kH + gT. 2

Question 14 continues on the next page

Question 14 (continued)

(c) A sandstone cap on the corner of a fence is show below. The solid is formed by intersecting two parabolic cylinders (a prism with uniform parabolic cross-sections).

On the front face, the equation of the parabola is $y = 4 - x^2$.

Slices parallel to the base of the solid are in the shape of a square with four smaller squares removed, one from each corner. The shape of a typical horizontal slice at height *y* is also shown below.

- (i) Show that the area of a typical slice is $16-4 \times \left(2-\sqrt{4-y}\right)^2$ square units. **1**
- (ii) Hence find the volume of the sandstone cap.

3

End of Question 14

Question 15 (15 marks) Use the Question 15 section of the writing booklet.

(a) A 5000 kg truck is travelling around a circular portion of road of radius 500 metres. This portion of the road is banked at an angle of 2° to the horizontal. A cross-section of the road is shown in the diagram below. (Take *g* to be 10 m/s².)

- (i) By resolving forces, determine the speed at which the truck must negotiate this 2 circular portion of road such that the truck experiences no sideways friction.
- (ii) If the truck travels around this circular portion of road at a speed of 72 km/h, how much sideways friction (in newtons) is exerted on the tyres of the truck?

(b) (i) Show that
$$\tan\left(A + \frac{\pi}{2}\right) = -\cot A$$
. 1

(ii) Use mathematical induction to prove that $\tan \left\lfloor (2n+1)\frac{\pi}{4} \right\rfloor = (-1)^n$ for all 3 integers $n \ge 1$.

Question 15 continues on the next page

Question 15 (continued)

(c) Let
$$I_n = \int_0^1 \frac{x^n}{\sqrt{x+1}} dx$$
, where *n* is an integer and $n \ge 0$.

(i) Show that
$$I_0 = 2\sqrt{2} - 2$$
. **1**

(ii) Show that
$$I_{n-1} + I_n = \int_0^1 x^{n-1} \sqrt{x+1} \, dx$$
. **1**

(iii) Use integration by parts to show that $I_n = \frac{2\sqrt{2} - 2nI_{n-1}}{2n+1}$ where *n* is an integer **2** and $n \ge 1$.

(iv) Hence, or otherwise, evaluate
$$\int_{0}^{1} \frac{x^{2}}{\sqrt{x+1}} dx.$$
 2

End of Question 15

Question 16 (15 marks) Use the Question 16 section of the writing booklet.

(a) On the Argand diagram below, the complex numbers z and w are represented by the points K and M respectively. It is given that $\triangle OKL$ is isosceles with $\angle OKL = \frac{2\pi}{3}$ as shown, and $\triangle OLM$ is equilateral. All angles are measured in radians.

(i) Show that $\angle MOK = \frac{\pi}{2}$. 1

(ii) Show that
$$\left| \overrightarrow{OL} \right| = \sqrt{3} \times |z|$$
. 2

2

(iii) Hence show that
$$3z^2 + w^2 = 0$$
.

Question 16 continues on the next page

Question 16 (continued)

(b) The curve below represents y = f(x), which is continuous and differentiable in the domain $a \le x \le b$.

The length of this curve, L, from x = a to x = b is given by $L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$.

Now consider the curve $y = \frac{1}{2} (e^x + e^{-x}).$

(i) Show that, for this curve,
$$1 + \left(\frac{dy}{dx}\right)^2 = \frac{\left(e^x + e^{-x}\right)^2}{4}$$
. 2

(ii) Hence calculate the exact length of this curve from x = 0 to x = 1. 2

(c) A polynomial of degree *n* is given by $P(x) = x^n + px - q$. It is given that the polynomial has a double root at $x = \alpha$.

(i) Show that
$$\alpha^{n-1} = -\frac{p}{n}$$
. 2

(ii) Show that
$$\left(\frac{p}{n}\right)^n + \left(\frac{q}{n-1}\right)^{n-1} = 0.$$
 3

(iii) Hence, or otherwise, deduce that the double root is $\frac{qn}{p(n-1)}$. 1

End of Paper

YEAR 12 TRIAL EXAMINATION 2019 MATHEMATICS EXTENSION 2 MARKING GUIDELINES

Section I

Multiple-choice Answer Key

Question	Answer
1	В
2	В
3	А
4	С
5	D

Question	Answer
6	А
7	D
8	D
9	С
10	А

Questions 1 – 10

Samp	le solution		
1.	$i^{2019} = (i^4)^{504} \times i^3$		
	$=1^{504} \times (-i)$		
	=-i		
2.	The given graph is the portion of graph $xy = 1$ above the <i>x</i> -axis as well as its reflection in the <i>x</i> -axis, so replace <i>y</i> in the equation with $ y $. The equation of the given graph is therefore $x y = 1$		
3.	$4x^{2} - 25y^{2} = 100$ $a^{2} = 25 \implies a = 5$ $b^{2} = 4 \implies b = 2$ Asymptotes are $y = \pm \frac{b}{a}x$, i.e. $y = \pm \frac{2}{5}x$		
4.	$\frac{1+i}{1-i} = \frac{\sqrt{2}\left(\operatorname{cis}\frac{\pi}{4}\right)}{\sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)}$ Multiplying by $\frac{1+i}{1-i}$ is therefore equivalent to multiplying by $\operatorname{cis}\frac{\pi}{2}$, which causes an anticlockwise rotation by $\frac{\pi}{2}$ radians.		
	$= \operatorname{cis}\left[\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right]$ $= \operatorname{cis}\frac{\pi}{2}$		
5.	For the new polynomial,		
	$\sum \alpha = (2\alpha + \beta + \gamma) + (\alpha + 2\beta + \gamma) + (\alpha + \beta + 2\gamma)$		
	$=4lpha+4eta+4\gamma$		
	$=4(\alpha+\beta+\gamma)$		
	$= 4 \times 3$		
	=12		
6	Only option <i>D</i> satisfies this property.		
6.	$-1 \le \cos\left(\omega t\right) \le 1$		
	$-e^{-\gamma t} \le e^{-\gamma t} \cos\left(\omega t\right) \le e^{-\gamma t}$		
	When $t = 0$, $e^0 \cos 0 = 1$		
	Option A satisfies both of these properties.		

Sam	ample solution			
7.	$\arg(z) = \arg(z+2+2i)$			
	$\arg(z) = \arg\left[z - (-2 - 2i)\right]$			
	Critical points are therefore $z = 0$ and $z = -2 - 2i$.			
	Option <i>D</i> is the best representation of the solutions to the equation $\arg(z) = \arg(z+2+2i)$			
8.	Since <i>a</i> and <i>b</i> are real numbers, and $3+i$ is a root	t of $P(z)$, therefore $3-i$ must also be a root of $P(z)$.		
	Therefore, $[z - (3+i)][z - (3-i)]$ is a factor of	P(z).		
	[z-(3+i)][z-(3-i)] = (z-3-i)(z-3+i)			
	$= (z-3)^2 - i^2$			
	$=z^2-6z+9-(-1)$			
	$= z^2 - 6z + 10$			
9.	$y = (x-1)^2 + \frac{y^2}{4} = 1$	$(x-1)^{2} + \frac{y^{2}}{4} = 1$ $(x-1)^{2} = 1 - \frac{y^{2}}{4}$		
		$x-1 = \pm \sqrt{1 - \frac{y^2}{4}}$ $x = 1 \pm \sqrt{1 - \frac{y^2}{4}}$		
	$\Delta V = \pi \left(x_2^2 - x_1^2 \right) \Delta y$ $= \pi \left[\left(1 + \sqrt{1 - \frac{y^2}{4}} \right)^2 - \left(1 - \sqrt{1 - \frac{y^2}{4}} \right)^2 \right] \Delta y$	$V = \lim_{\Delta y \to 0} \sum_{y=-2}^{2} 4\pi \sqrt{1 - \frac{y^2}{4}} \Delta y$ $= \int_{-\infty}^{2} 4\pi \sqrt{1 - \frac{y^2}{4}} dy$		
	$= \pi \left(2 \times 2\sqrt{1 - \frac{y^2}{4}} \right) \Delta y$ $= 4\pi \sqrt{1 - \frac{y^2}{4}} \Delta y$	$= \int_{-2}^{2} 2\pi \sqrt{4 - y^2} dy$		
10.	P P P T_{1} P P T_{2} P R P P T_{2} P R	Resolving vertically: $T_1 \cos \theta - T_2 \cos \theta - mg = 0$ $T_1 - T_2 = \frac{mg}{\cos \theta}$ $T_1 - T_2 = 2mg$ Resolving horizontally:		
	ΔPQR is equilateral, $\therefore \cos \theta = \cos 60^\circ = \frac{1}{2}$	$T_{1}\sin\theta + T_{2}\sin\theta = mr\omega^{2}$ $T_{1} + T_{2} = \frac{mr\omega^{2}}{\sin\theta}$		
	$\sin\theta = -\frac{1}{\ell}$	$=m\ell\omega^2$		
	Solving simultaneously,	1		
	$T_1 = \frac{m\ell\omega^2 + 2mg}{2} \qquad T_2 = \frac{m\ell\omega^2 - 2mg}{2}$			
	$=\frac{m}{2}\left(\ell\omega^{2}+2g\right) \qquad \qquad =\frac{m}{2}\left(\ell\omega^{2}-2g\right)$			

Section II

Question 11

Samp	le solution	Suggested marking criteria
(a)	$\frac{5z}{w} = \frac{5(3+i)}{1-2i}$ = $\frac{15+5i}{1-2i}$ = $\frac{(15+5i)(1+2i)}{(1-2i)(1+2i)}$ = $\frac{15+30i+5i+10i^2}{1^2-(2i)^2}$ = $\frac{5+35i}{5}$ = $1+7i$	 2 – correct solution 1 – realises the denominator
(b)	(i) $\sqrt{3} + i = 2\operatorname{cis}\frac{\pi}{6}$	 2 – correct solution 1 – correct modulus correct argument (not necessarily principal argument)
	(ii) $\left(\sqrt{3}+i\right)^{n} = \left(2\operatorname{cis}\frac{\pi}{6}\right)^{n}$ $= 2^{n}\operatorname{cis}\frac{n\pi}{6}$ This is a real number if the argument is an integer multiple of π , the smallest positive integer <i>n</i> such that this happens is $n = 6$.	• 1 – correct solution
(c)	(i) $\frac{4}{x^{2}(2-x)} \equiv \frac{ax+b}{x^{2}} + \frac{c}{2-x}$ $4 \equiv (ax+b)(2-x) + cx^{2}$ $4 \equiv 2ax - ax^{2} + 2b - bx + cx^{2}$ $4 \equiv (c-a)x^{2} + (2a-b)x + 2b$ Comparing coefficients: $2b = 4 \qquad 2a - b = 0 \qquad c - a = 0$ $b = 2 \qquad 2a - 2 = 0 \qquad c - 1 = 0$ $2a = 2 \qquad c = 1$ $a = 1$	 2 - correct solution 1 - correctly finds two of the three coefficients
	(ii) $\int \frac{4}{x^2 (2-x)} dx = \int \frac{x+2}{x^2} + \frac{1}{2-x} dx$ $= \int \frac{1}{x} + 2x^{-2} - \frac{-1}{2-x} dx$ $= \ln x - \frac{2}{x} - \ln (2-x) + c$ $= \ln \frac{x}{2-x} - \frac{2}{x} + c$	 3 - correct solution 2 - correctly integrates two of the three integrals listed below, or equivalent merit 1 - correctly integrates one of the three integrals (¹/_{2-x}), or equivalent merit

Question 11 (continued)

Samp	le solution		Suggested marking criteria
(d)	$\int \frac{dx}{\sqrt{1 - 4x - x^2}} = \int \frac{d}{\sqrt{-(x^2 + x^2)^2}}$ $= \int \frac{d}{\sqrt{-[(x + x^2)^2]^2}}$ $= \int \frac{dx}{\sqrt{5 - (x^2 + x^2)^2}}$ $= \sin^{-1} \left(\frac{x + x^2}{\sqrt{5 - (x^2 + x^2)^2}}\right)$	$\frac{x}{-4x-1}$ $\frac{dx}{-2)^2-5}$ $\overline{\overline{+2)^2}}$ $\frac{2}{5} + c$	 2 – correct solution 1 – attempts to complete the square and reduces the integral to a "standard" integral
(e)	$t = \tan \frac{x}{2}$ $\frac{dt}{dx} = \frac{1}{2}\sec^2 \frac{x}{2}$ $= \frac{1}{2}\left(1 + \tan^2 \frac{x}{2}\right)$ $= \frac{1 + t^2}{2}$ $\frac{dx}{dt} = \frac{2}{1 + t^2}$	When $x = 0, t = 0$. When $x = \frac{\pi}{2}, t = 1$. $\frac{\frac{\pi}{2}}{\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}} = \int_{0}^{1} \frac{\frac{2dt}{1+t^{2}}}{2 + \frac{1-t^{2}}{1+t^{2}}}$ $= \int_{0}^{1} \frac{2dt}{2(1+t^{2}) + (1-t^{2})}$ $= \int_{0}^{1} \frac{2dt}{3+t^{2}}$ $= 2 \times \left[\frac{1}{\sqrt{3}} \tan^{-1} \frac{t}{\sqrt{3}}\right]_{0}^{1}$ $= 2 \times \left(\frac{1}{\sqrt{3}} \tan^{-1} \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \tan^{-1} 0\right)$ $= \frac{2}{\sqrt{3}} \times \frac{\pi}{6}$ $= \frac{\pi}{3\sqrt{3}}$	 3 - correct solution 2 - applies the substitution to express the integral in terms of <i>t</i> 1 - applies the substitution to partially change the integral to an integral in terms of <i>t</i>

Question 12

Samp	ole solu	ition	Suggested marking criteria	
(a)	(i)	$\sum \alpha = -1$ $\sum \alpha \beta = 0$ $\sum \alpha^{2} = (\sum \alpha)^{2} - 2\sum \alpha \beta$ $= (-1)^{2} - 2 \times 0$ = 1	 2 - correct solution 1 - finds Σα 	
	(ii)	$\alpha, \beta \text{ and } \gamma \text{ are roots of } x^3 + x^2 + 2 = 0$ $\alpha^3 + \alpha^2 + 2 = 0$ $\beta^3 + \beta^2 + 2 = 0$ $\frac{\gamma^3 + \gamma^2 + 2 = 0 + \gamma^2}{(\alpha^3 + \beta^3 + \gamma^3) + (\alpha^2 + \beta^2 + \gamma^2) + 6 = 0}$ $(\alpha^3 + \beta^3 + \gamma^3) + 1 + 6 = 0$ $\alpha^3 + \beta^3 + \gamma^3 = -7$	 2 - correct solution 1 - forms an expression involving Σα³ and Σα² 	
	(iii)	$\alpha^{4} + \alpha^{3} + 2\alpha = 0$ $\beta^{4} + \beta^{3} + 2\alpha = 0$ $\gamma^{4} + \gamma^{3} + 2\alpha = 0 + \frac{1}{(\alpha^{4} + \beta^{4} + \gamma^{4}) + (\alpha^{3} + \beta^{3} + \gamma^{3}) + 2(\alpha + \beta + \gamma) = 0}$ $(\alpha^{4} + \beta^{4} + \gamma^{4}) + (-7) + 2 \times (-1) = 0$ $\alpha^{4} + \beta^{4} + \gamma^{4} = 9$	 2 - correct solution 1 - forms an expression involving Σα³, Σα² and Σα 	
(b)	(i)		 3 - correct region 2 - correct boundary 1 - correctly sketches one of the two regions of the given inequalities 	
	(ii)	For <i>w</i> to lie in the region in part (i) and be of minimum modulus, <i>w</i> must be in the position as shown below: $y_{1} = \frac{1}{1} + \frac{1}{2} + \frac{1}{2}i$ By inspection, $w = \frac{1}{2} - \frac{1}{2}i$.	• 1 – correct answer	

Question 12 (continued)

Samp	ole solu	ition	Suggested marking criteria
(c)	(i)	$\frac{13!}{2!2!3!} = 259459200 \text{ ways}$	• 1 – correct answer
	(ii)	There are $\frac{7!}{2!2!3!}$ ways of arranging the seven repeated letter, then treating this as a group, there are 7! ways of arranging this group of repeated letter and the 6 remaining letters. Therefore, there are $\frac{7!}{2!2!3!} \times 7! = 1058400$ different arrangements.	 2 – correct solution 1 – correctly arranges the repeated letters
	(iii)	Let <i>v</i> be a vowel and <i>c</i> be a consonant of the word BAULKHAMHILLS, start with a string of the nine consonants, like so: c - c - c - c - c - c - c - c - c - c -	 2 - correct solution 1 - considers some of the valid cases progress towards solution
		With this string of consonants, there are ten spaces, choose any four of them to insert the vowels A, A, I and U in that order.	using valid reasoning
		Taking into account the number of possible arrangements of the consonants, this can be done in $\frac{9!}{2!3!} \times {}^{10}C_4 = 6350400$ ways.	

Question 13

Sample solution		Suggested marking criteria
(a)	A = PX (tangents from an external point are equal in length) $QB = QX (tangents from an external point are equal in length)$	 2 - correct proof 1 - one correct circle geometry reasoning towards the correct proof
	The perimeter of $\Delta CPQ = CP + PQ + CQ$	
	= CP + (PX + QX) + CQ	
	= (CP + PA) + (QB + CQ) (since PX = PA and QX = QB)	
	= CA + CB, which is independent of PQ.	
(b)	(i) $y = \frac{1}{x+1}$ $x = 2$ $0 = \frac{1}{x-5}$ $\Delta V = 2\pi (2-x) \left(\frac{1}{x+1} - \frac{1}{x-5}\right) \Delta x$ $= 2\pi (2-x) \left[\frac{x-5-(x+1)}{(x+1)(x-5)}\right] \Delta x$ $= 2\pi (2-x) \left(\frac{-6}{x^2-4x-5}\right) \Delta x$ $= 12\pi \left(\frac{x-2}{x^2-4x-5}\right) \Delta x$	 2 – correct solution 1 – finds a correct expression for ΔV
	(ii) $\Delta V = 12\pi \left(\frac{x-2}{x^2-4x-5}\right) \Delta x$	 3 – correct solution 2 – correct primitive 1 – establishes correct
	$V = \lim_{\Delta x \to 0} \sum_{x=0}^{\infty} 12\pi \left(\frac{1}{x^2 - 4x - 5} \right) \Delta x$	sum of infinitesimals
	$= \int_{0}^{2} 12\pi \left(\frac{x-2}{x^{2}-4x-5}\right) dx$	
	$= 6\pi \int_{0}^{\pi} \left(\frac{2x-4}{x^2-4x-5} \right) dx$	
	$= 6\pi \left[\ln \left x^2 - 4x - 5 \right \right]_0$	
	$= 6\pi \left(\ln \left -9 \right - \ln \left -5 \right \right)$ $= 6\pi \ln \frac{9}{5} \text{ cubic units}$	
(c)	(i) The tangent at <i>T</i> has equation $x + t^2 y = 2ct$.	• 2 – correct solution
	When $y = 0, x = 2ct$, $\therefore P = (2ct, 0)$	• $1 - $ correctly finds P or Q
	When $x = 0, y = \frac{2c}{t}, \therefore Q = \left(0, \frac{2c}{t}\right)$	

Question	13 (continued)	

Samp	Sample solution		Suggested marking criteria	
(c)	(ii)	$xy = c^2$	Equation of normal at <i>T</i> :	• 2 – correct solution
		$y = \frac{c^2}{x}$	$y - \frac{c}{t} = t^2 \left(x - ct \right)$	• 1 – correct gradient for the normal
		$\frac{dy}{dt} = \frac{-c^2}{dt}$	$y - \frac{c}{t} = t^2 x - ct^3$	
		$dx x^2$	$ty - c = t^3 x - ct^4$	
		At T.	$ct^4 - c = t^3x - ty$	
		$dy c^2$	$t^3x - ty = c\left(t^4 - 1\right)$	
		$\frac{dx}{dx} = -\frac{dx}{(ct)^2}$		
		$=-\frac{1}{2}$		
		<i>t</i> ²		
	(iii)	$t^3x - ty = c\left(t^4 - 1\right)$		 2 – correct solution 1 – attempts to use
		$t^3x - tx = c\left(t^2 + 1\right)\left($	$\left(t^2-1\right)$	• 1 – attempts to use simultaneous equations to
		$xt\left(t^{2}-1\right) = c\left(t^{2}+1\right)\left($	$(t^2 - 1)$	find the <i>x</i> -coordinate of <i>R</i>
		$xt = c\left(t^2 + 1\right)$		
		$x = \frac{c}{t} \left(t^2 + 1 \right)$		
	(iv) $d_{PR} = \sqrt{\left[\frac{c}{t}(t^2+1) - 2ct\right]^2 + \left[\frac{c}{t}(t^2+1)\right]^2}$		$\overline{\left[\frac{c}{c}\right]^{2}+\left[\frac{c}{c}\left(t^{2}+1\right)\right]^{2}}$	• 2 – correct solution
			• 1 – finds d_{PR} or d_{QR}	
		$=\sqrt{\left(ct+\frac{c}{t}-2ct\right)}$	$\int_{0}^{2} + \left(ct + \frac{c}{t}\right)^{2}$	 – establishes <i>I</i> as the midpoint of <i>PQ</i> – calculates the gradient of
		$=\sqrt{\left(-ct+\frac{c}{t}\right)^2}+$	$\left(ct+\frac{c}{t}\right)^2$	PQ or QR
		$=\sqrt{c^2t^2-2c^2+\frac{c^2}{2}}$	$\frac{c^2}{c^2} + c^2 t^2 + 2c^2 + \frac{c^2}{c^2}$	
		$\sqrt{\frac{1}{2c^2}}t$	t^2	
		$=\sqrt{2c^2t^2+\frac{2c}{t^2}}$		
		$d_{QR} = \sqrt{\left[\frac{c}{t}\left(t^2 + 1\right)\right]^2}$	$+\left[\frac{c}{t}\left(t^{2}+1\right)-\frac{2c}{t}\right]^{2}$	
		$=\sqrt{\left(ct+\frac{c}{t}\right)^2} + \left(ct+\frac{c}{t}\right)^2 + \left(ct+$	$\overline{ct + \frac{c}{t} - \frac{2c}{t}}\right)^2$	
		$=\sqrt{\left(ct+\frac{c}{t}\right)^2}+\left(ct+\frac{c}{t}\right)^2$	$\left(ct-\frac{c}{t}\right)^2$	
		$=\sqrt{c^2t^2+2c^2+\frac{c^2}{4}}$	$\frac{c^2}{t^2} + c^2 t^2 - 2c^2 + \frac{c^2}{t^2}$	
		$=\sqrt{2c^2t^2+\frac{2c^2}{t^2}}$		
		Since $d_{PR} = d_{QR}$, ΔP	QR is isosceles.	

Question 14

Question 14 (continued)

Samj	ple solution	Suggested marking criteria
(b)	(ii) $a = -(g + kv)$	• 1 – correct solution
	$v\frac{dv}{dx} = -(g + kv)$	
	$\frac{dv}{dt} = -\frac{g + kv}{dt}$	
	dx v	
	$\frac{dx}{dv} = -\frac{v}{g+kv}$	
	(iii) $dx = v$	• 2 – correct solution
	$\frac{dv}{dv} = -\frac{1}{g+kv}$	• 1 – correctly integrates
	$\int_{0}^{H} dx = \int_{U}^{0} -\frac{v}{g+kv} dv$	$-\frac{v}{g+kv}$
	$H = \frac{1}{k} \int_{0}^{U} \frac{kv}{g + kv} dv$	
	$=\frac{1}{k}\int_{0}^{U}\frac{g+kv-g}{g+kv}dv$	
	$=\frac{1}{k}\int_{0}^{U}1-\frac{g}{g+kv}dv$	
	$=\frac{1}{k}\int_{0}^{U}1-\frac{g}{k}\times\frac{k}{g+kv}dv$	
	$=\frac{1}{k}\left[v-\frac{g}{k}\ln\left(g+kv\right)\right]_{0}^{U}$	
	$= \frac{1}{k} \left\{ \left[U - \frac{g}{k} \ln \left(g + kU \right) \right] - \left[0 - \frac{g}{k} \ln g \right] \right\}$	
	$=\frac{1}{k}\left[U-\frac{g}{k}\ln\left(\frac{g+kU}{g}\right)\right]$	
	$=rac{1}{k}(U-gT)$	
	kH = U - gT	
	U = kH + gT	

Question 14 (continued)

Samp	ole solution	Suggested marking criteria
(c)	(i) $y = 4 - x^{2}$ $y = 4 - x^{2}$ $x^{2} = 4 - y$ $x = \sqrt{4 - y}$ Area of slice = $4^{2} - 4 \times (2 - x)^{2}$	• 1 – correct solution
	$=16-4\times\left(2-\sqrt{4-y}\right)^2$	
	(ii) $\Delta V = 4^2 - 4 \times \left(2 - \sqrt{4 - y}\right)^2 \Delta y$ $V = \lim_{\Delta y \to 0} \sum_{y=0}^{4} \left[16 - 4 \times \left(2 - \sqrt{4 - y}\right)^2 \right] \Delta y$	 3 - correct solution 2 - correct primitive 1 - correct integral
	$= \int_{0}^{4} \left[16 - 4 \times \left(2 - \sqrt{4 - y} \right)^{2} \right] dy$	
	$= \int_{0}^{4} \left[16 - 4 \times \left(4 - 4\sqrt{4 - y} + 4 - y \right) \right] dy$	
	$= \int_{0}^{4} \left[16 - 4 \times \left(8 - 4\sqrt{4 - y} - y \right) \right] dy$	
	$= \int_{0}^{4} \left(16 - 32 + 16\sqrt{4 - y} + 4y \right) dy$	
	$= \int_{0}^{4} \left(-16 + 16\sqrt{4 - y} + 4y \right) dy$	
	$= \int_{0}^{4} \left(-16 + 16 \left(4 - y \right)^{\frac{1}{2}} + 4y \right) dy$	
	$= \left[-16y + \frac{16(4-y)^{\frac{3}{2}}}{-\left(\frac{3}{2}\right)^{\frac{3}{2}}} + 2y^{2} \right]_{0}^{4}$	
	$= \left[-16y - \frac{32(4-y)^{\frac{3}{2}}}{3} + 2y^{2} \right]_{0}^{4}$	
	$=(-64+32)+\left(\frac{32\times4^{\frac{3}{2}}}{3}\right)$	
	$=53\frac{1}{3}$ cubic units	

Question 15

Samp	le solution	Suggested marking criteria
(b)	(ii) Let $S(n)$ be the statement that $\tan\left[\left(2n+1\right)\frac{\pi}{4}\right] = \left(-1\right)^n$.	 3 – correct solution 2 – uses the inductive hypothesis to attempt to
	Show $S(1)$ is true:	prove the result inductively
	LHS = $\tan\left(\frac{3\pi}{4}\right)$ RHS = $(-1)^1$	• 1 – showing the result to be true for <i>n</i> = 1
	$= -\tan\frac{\pi}{4} = -1$	
	Since LHS = RHS, $\therefore S(1)$ is true.	
	Assume $S(k)$ is true: i.e. $\tan\left[\left(2k+1\right)\frac{\pi}{4}\right] = \left(-1\right)^k$	
	Prove that $S(k+1)$ is true: i.e. $\tan\left[\left(2k+3\right)\frac{\pi}{4}\right] = \left(-1\right)^{k+1}$	
	$LHS = \tan\left[\left(2k+3\right)\frac{\pi}{4}\right]$	
	$= \tan\left[\left(2k+1\right)\frac{\pi}{4} + 2 \times \frac{\pi}{4}\right]$	
	$= \tan\left[\left(2k+1\right)\frac{\pi}{4} + \frac{\pi}{2}\right]$	
	$= -\cot\left\lfloor \left(2k+1\right)\frac{\pi}{4}\right\rfloor$	
	$= -\frac{1}{\tan\left[\left(2k+1\right)\frac{\pi}{4}\right]}$	
	$= -\frac{1}{\left(-1\right)^{k}}$	
	$=\frac{-1}{(-1)^{k}} \times \frac{(-1)}{(-1)^{k}}$	
	$=rac{(-1)^{k+1}}{(-1)^{2k}}$	
	$=\frac{\left(-1\right)^{k+1}}{\left\lceil \left(-1\right)^2\right\rceil^k}$	
	$=\frac{(-1)^{k+1}}{1^k}$	
	$= (-1)^{k+1}$ $= RHS$	
	$\therefore S(k+1)$ is true if $S(k)$ is assumed true.	
	Since $S(1)$ is proven true, then by the principle of mathematical induction,	
	$S(n)$ is true for all integers $n \ge 1$.	

Question 15 (continued)

Samp	ole solı	ition	Suggested marking criteria
(c)	(i)	$I_0 = \int_0^1 \frac{1}{\sqrt{x+1}} dx$	• 1 – correct solution
		$= \int_{0}^{1} (x+1)^{-\frac{1}{2}} dx$	
		$= \left[2\left(x+1\right)^{\frac{1}{2}}\right]_{0}^{1}$	
		$= 2 \times 2^{\frac{1}{2}} - 2$ $= 2\sqrt{2} - 2$	
	(ii)	$I_{n-1} + I_n = \int_0^1 \frac{x^{n-1}}{\sqrt{x+1}} dx + \int_0^1 \frac{x^n}{\sqrt{x+1}} dx$	• 1 – correct solution
		$= \int_{0}^{1} \frac{x^{n-1}}{\sqrt{x+1}} + \frac{x^{n}}{\sqrt{x+1}} dx$	
		$= \int_{0}^{1} \frac{x^{n-1} + x^{n}}{\sqrt{x+1}} dx$	
		$= \int_{0}^{1} \frac{x^{n-1}(1+x)}{\sqrt{x+1}} dx$	
		$=\int_{0}^{1}x^{n-1}\sqrt{x+1}dx$	
	(iii)	Using integration by parts,	• 2 – correct solution
		$I_{n-1} + I_n = \left[\frac{x^n \sqrt{x+1}}{n}\right]_0^1 - \int_0^1 \frac{x^n}{2n\sqrt{x+1}} dx \qquad u = \sqrt{x+1} \qquad du = \frac{dx}{2\sqrt{x+1}}$	• 1 – attempts to use integration by parts towards the required
		$=\frac{\sqrt{2}}{n} - \frac{1}{2n} \int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}} dx \qquad \qquad v = \frac{x^{n}}{n} \qquad \qquad dv = x^{n-1} dx$	result
		$=\frac{\sqrt{2}}{n}-\frac{1}{2n}I_n$	
		$I_n + \frac{1}{2n}I_n = \frac{\sqrt{2}}{n} - I_{n-1}$	
		$I_n \left(1 + \frac{1}{2n} \right) = \frac{\sqrt{2}}{n} - I_{n-1}$	
		$I_n(2n+1) = 2\sqrt{2} - 2nI_{n-1}$	
		$I_n = \frac{2\sqrt{2 - 2nI_{n-1}}}{2n + 1}$	

Question 15 (continued)

Question 16

Sample solution			Suggested marking criteria	
(a)	(i) <i>y</i> ↑	• 1 – correct solution		
	M(w)			
	$ \begin{array}{c} $			
	In ΔOKL ,	In ΔOKL ,		
	$\angle KOL = \angle KLO$ (angles opposite equal			
	$\angle KOL + \angle KLO + \angle OKL = \pi$ (angle sur	n of ΔOKL is π radians)		
	$\angle KOL + \angle KOL + \frac{2\pi}{3} = \pi$			
	$2\angle KOL = \frac{\pi}{2}$			
	π			
	$\angle KOL = \frac{1}{6}$	$\angle KOL = \frac{-}{6}$		
	In $\triangle OML$, $\angle MOL = \frac{\pi}{3}$ (angles in an equivalent of ΔOML).	uuilateral triangle)		
	$\angle MOK = \angle MOL + \angle KOL$			
	$=\frac{\pi}{3} + \frac{\pi}{6}$ $=\frac{\pi}{2}$			
	2	Since AOKI is isosceles by	• 2 correct solution	
	$M(w) \qquad \qquad$	symmetry, if <i>KN</i> is an altitude of	 2 – confect solution 1 – uses trigonometry to attempt to show the required result 	
		<i>N</i> bisect <i>QL</i> and $\angle QKN = \frac{\pi}{2}$.		
	$ \begin{array}{c} $	$\sin \frac{\pi}{3} = \frac{\left \overline{ON}\right }{\left \overline{OK}\right }$ $\frac{\sqrt{3}}{2} = \frac{\frac{1}{2}\left \overline{OL}\right }{\left z\right }$ $\sqrt{3} = \frac{\left \overline{OL}\right }{\left z\right }$		
		$\left \overline{OL} \right = \sqrt{3} \times \left z \right $		

Question 16 (continued)

Sample solution		Suggested marking criteria
(a)	(iii) <i>y</i> ↑	• 2 – correct solution
	(iii) $M(w) = \int_{V_{1}}^{V_{1}} \int_{V_{2}}^{U_{2}} \int_{V_{2}}^{U_{2}} \int_{X_{2}}^{U_{2}} \int_{X_{2}}^{U_{$	• 1 – expresses <i>w</i> in terms of <i>z</i>
	$OM = i\sqrt{3} \times OK$	
	$w = i\sqrt{3} \times z$ $w^2 = -3z^2$	
	$3z^2 + w^2 = 0$	
(b)	(i) $y = \frac{1}{2} (e^x + e^{-x})$	• 2 – correct solution
	$\frac{dy}{dx} = \frac{1}{2} \left(e^x - e^{-x} \right)$	• 1 – finds $\frac{dy}{dx}$
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left[\frac{1}{4}\left(e^x - e^{-x}\right)^2\right]$	
	$=1 + \frac{(e^{x})^{2} - 2 + (e^{-x})^{2}}{4}$	
	$=\frac{4+(e^{x})^{2}-2+(e^{-x})^{2}}{4}$	
	$=\frac{(e^{x})^{2}+2+(e^{-x})^{2}}{4}$	
	$=\frac{\left(e^{x}+e^{-x}\right)^{2}}{4}$	
	(ii) $L = \int_{0}^{1} \sqrt{\frac{\left(e^{x} + e^{-x}\right)^{2}}{4}} dx$	 2 - correct solution 1 - correct integration
	$= \int_{0}^{1} \frac{e^{x} + e^{-x}}{2} dx$	
	$=\frac{1}{2}\left[e^{x}-e^{-x}\right]_{0}^{1}$	
	$=\frac{1}{2}\left\lfloor \left(e-e^{-1}\right)-\left(e^{0}-e^{0}\right)\right\rfloor$	
	$=\frac{1}{2}\left(e-\frac{1}{e}\right)$ units	

Sample solution			Suggested marking criteria
(c)	(i) $P(x) = x^{n} + px - q$ $P'(x) = nx^{n-1} + p$ $P'(\alpha) = 0$ $n\alpha^{n-1} + p = 0$ $n\alpha^{n-1} = -p$ $\alpha^{n-1} = -\frac{p}{n}$		 2 - correct solution 1 - finds P'(α)
	(ii) $P'(\alpha) = 0$ $n\alpha^{n-1} + p = 0$ $n\alpha^{n} + p\alpha = 0$ $P(x) = x^{n} + px - q$ $P(\alpha) = 0$ $\alpha^{n} + p\alpha - q = 0$ $\alpha^{n} + p\alpha = q$ Solving simultaneously: $(\alpha^{n} + p\alpha) - (n\alpha^{n} + p\alpha) = q$ $\alpha^{n} - n\alpha^{n} = q$ $\alpha^{n} (1-n) = q$ $\alpha^{n} = \frac{q}{1-n}$	$\left(\alpha^{n-1}\right)^n = \left(-\frac{p}{n}\right)^n$ $\left(\alpha^n\right)^{n-1} = \left(\frac{q}{1-n}\right)^{n-1}$ $\left(\frac{q}{1-n}\right)^{n-1} = \left(-\frac{p}{n}\right)^n$ $\left(\frac{-q}{n-1}\right)^{n-1} = \left(-1\right)^n \left(\frac{p}{n}\right)^n$ $\left(-1\right)^{n-1} \left(\frac{q}{n-1}\right)^{n-1} = \left(-1\right)^n \left(\frac{p}{n}\right)^n$ $\left(\frac{q}{n-1}\right)^{n-1} = -\left(\frac{p}{n}\right)^n$ $\left(\frac{p}{n}\right)^n + \left(\frac{q}{n-1}\right)^{n-1} = 0$	 3 - correct solution 2 - substitutes α, αⁿ or αⁿ⁻¹ into an appropriate expression / equation and attempts to simply 1 - uses P(α) = 0 finds α or αⁿ
	(iii) $\alpha = \frac{\alpha^{n}}{\alpha^{n-1}}$ $= \frac{\left(\frac{q}{1-n}\right)}{\left(-\frac{p}{n}\right)}$ $= \frac{-qn}{p(1-n)}$ $= \frac{qn}{p(n-1)}$		• 1 – correct solution