

2019 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General \cdot Reading time -5 minutes Instructions
 - Working time -3 hours

- Write using black or blue pen, black is preferred
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- In Questions 11 - 16, show relevant mathematical reasoning and/or calculations

Total marks: Section I-10 marks (pages 2 - 7)
 100
 - Attempt Questions 1 - 10
 - Allow about 15 minutes for this section
 Section II - 90 marks (pages 8 -17)

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer page in the writing booklet for Questions 1-10.

1 What is the value of i^{2019} ?
A. i
B. $-i$
C. 1
D. -1

2 Which of the equations below best represents the following graph?

A. $|x| y=1$
B. $x|y|=1$
C. $|x y|=1$
D. $x^{2} y^{2}=1$

3 What are the equations of the asymptotes of the hyperbola $4 x^{2}-25 y^{2}=100$?
A. $y= \pm \frac{2}{5} x$
B. $y= \pm \frac{4}{25} x$
C. $y= \pm \frac{5}{2} x$
D. $y= \pm \frac{25}{4} x$

4 Multiplying a non-zero complex number by $\frac{1+i}{1-i}$ results in a rotation about the origin on an Argand diagram. What is the rotation?
A. Clockwise by $\frac{\pi}{2}$ radians
B. Clockwise by $\frac{\pi}{4}$ radians
C. Anticlockwise by $\frac{\pi}{2}$ radians
D. Anticlockwise by $\frac{\pi}{4}$ radians

5 The polynomial equation $x^{3}-3 x^{2}-x+2=0$ has roots α, β and γ. Which of the following polynomial equations has roots $2 \alpha+\beta+\gamma, \alpha+2 \beta+\gamma$ and $\alpha+\beta+2 \gamma$?
A. $x^{3}-6 x^{2}-2 x+4=0$
B. $x^{3}+6 x^{2}+8 x-1=0$
C. $x^{3}+12 x^{2}-44 x+49=0$
D. $x^{3}-12 x^{2}+44 x-49=0$

6 The motion of a particle undergoing simple harmonic motion is oscillatory, of which the amplitude of the motion remains constant.

However, in many real-world applications, oscillatory motions are often dampened out of necessity. The motion of a particle undergoing dampened harmonic motion is still oscillatory, but the amplitude of its motion reduces over time.

One such motion can be modelled by the equation:

$$
x=e^{-\gamma t} \cos (\omega t)
$$

where γ and ω are positive constants, and x is the displacement of the particle from the centre of its oscillatory motion over time t.

Which of the following graphs best describes this model?
A.

C.

D.

7 Which diagram best represents the solutions to the equation $\arg (z)=\arg (z+2+2 i)$?
A.

B.

C.

D.

8 It is given that $3+i$ is a root of $P(z)=z^{3}+a z^{2}+b z+10$ where a and b are real numbers. Which of the following expressions for $P(z)$ is correct?
A. $P(z)=(z-1)\left(z^{2}+6 z-10\right)$
B. $\quad P(z)=(z-1)\left(z^{2}-6 z-10\right)$
C. $P(z)=(z+1)\left(z^{2}+6 z+10\right)$
D. $P(z)=(z+1)\left(z^{2}-6 z+10\right)$

9 The region enclosed by the ellipse $(x-1)^{2}+\frac{y^{2}}{4}=1$ is rotated about the y-axis to form a solid.

Which integral represents the volume of the solid formed?
A. $\int_{-2}^{2} \pi \sqrt{4-y^{2}} d y$
B. $\int_{-2}^{2} \pi \sqrt{1-y^{2}} d y$
C. $\int_{-2}^{2} 2 \pi \sqrt{4-y^{2}} d y$
D. $\int_{-2}^{2} 2 \pi \sqrt{1-y^{2}} d y$

10 Two light inextensible strings $P Q$ and $Q R$ each of length ℓ are attached to a particle of mass m at Q. The other ends P and R are fixed to two points in a vertical line such that P is at a distance ℓ above R. The particle moves in a horizontal circle with constant angular velocity ω such that both strings remain taut.

Taking $g \mathrm{~m} / \mathrm{s}^{2}$ as the acceleration due to gravity, what are the tensions in the strings?
A. $\quad T_{1}=\frac{m}{2}\left(\ell \omega^{2}+2 g\right)$ and $T_{2}=\frac{m}{2}\left(\ell \omega^{2}-2 g\right)$
B. $\quad T_{1}=\frac{m}{2}\left(\ell \omega^{2}-2 g\right)$ and $T_{2}=\frac{m}{2}\left(\ell \omega^{2}+2 g\right)$
C. $T_{1}=m\left(\ell \omega^{2}+2 g\right)$ and $T_{2}=m\left(\ell \omega^{2}-2 g\right)$
D. $T_{1}=m\left(\ell \omega^{2}-2 g\right)$ and $T_{2}=m\left(\ell \omega^{2}+2 g\right)$

End of Section I

Section II

90 marks
Attempt Questions 11 - 16
Allow about $\mathbf{2}$ hours and 45 minutes for this section
Answer each question in the appropriate section of the writing booklet. Extra writing paper is available.

In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 section of the writing booklet.
(a) Given $z=3+i$ and $w=1-2 i$, express $\frac{5 z}{w}$ in $x+i y$ form, where x and y are real 2 numbers.
(b) (i) Write $\sqrt{3}+i$ in modulus-argument form.
(ii) Find the smallest positive integer n such that $(\sqrt{3}+i)^{n}$ is a real number.
(c) (i) Find real numbers a, b and c such that $\frac{4}{x^{2}(2-x)} \equiv \frac{a x+b}{x^{2}}+\frac{c}{2-x}$.
(ii) Hence, or otherwise, find $\int \frac{4}{x^{2}(2-x)} d x$.
(d) Find $\int \frac{d x}{\sqrt{1-4 x-x^{2}}}$.
(e) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\cos x}$ using the substitution $t=\tan \frac{x}{2}$.

Question 12 (15 marks) Use the Question 12 section of the writing booklet.
(a) The equation $x^{3}+x^{2}+2=0$ has roots α, β and γ.
(i) Show that $\alpha^{2}+\beta^{2}+\gamma^{2}=1$.
(ii) Evaluate $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(iii) Evaluate $\alpha^{4}+\beta^{4}+\gamma^{4}$.
(b) (i) Sketch the region on the Argand diagram where the following inequalities hold simultaneously.

$$
|z-1| \leq \sqrt{2} \quad \text { and } \quad 0 \leq \arg (z+i) \leq \frac{\pi}{4}
$$

(ii) Let w be the complex number of minimum modulus satisfying the inequalities in part (i). Express w in the form $x+i y$, where x and y are real number.
(c) How many thirteen-letter arrangements can be made using the letters of the word BAULKHAMHILLS if:
(i) there are no restrictions?
(ii) all seven of the repeated letters are grouped together in no particular order?
(iii) the vowels appear in alphabetical order but are separated by at least one 2 consonant?

End of Question 12

Question 13 (15 marks) Use the Question 13 section of the writing booklet.
(a) A and B are two points on a circle. Tangents at A and B meet at C. A third tangent on the minor arc $A B$ cuts $C A$ and $C B$ at P and Q respectively, as shown in the diagram below.

Copy the diagram into your writing booklet and show that the perimeter of $\triangle C P Q$ is independent of $P Q$.

(b) The region between the curves $y=\frac{1}{x+1}, y=\frac{1}{x-5}$, the y-axis and the line $x=2$ is rotated about the line $x=2$ to form a solid.

(i) Using the method of cylindrical shells, show that the volume of a typical shell of thickness Δx is given by $\Delta V=12 \pi\left(\frac{x-2}{x^{2}-4 x-5}\right) \Delta x$.
(ii) Hence, or otherwise, find the exact volume of the resulting solid.
(c) The point $T\left(c t, \frac{c}{t}\right)$ lies on the hyperbola $x y=c^{2}$. The tangent at T meets the x-axis at P and the y-axis at Q. The normal at T meets the line $y=x$ at R.

You may assume that the tangent at T has equation $x+t^{2} y=2 c t$ (Do NOT prove this.)
(i) Find the coordinates of P and Q.
(ii) Find the equation of the normal at T.
(iii) Show that the x-coordinate of R is $\frac{c}{t}\left(t^{2}+1\right)$.
(iv) Prove that $\triangle P Q R$ is isosceles.

End of Question 13

Question 14 (15 marks) Use the Question 14 section of the writing booklet.
(a) The diagram shows the graph of $y=f(x)$.

Draw sketches of the graphs of the following on separate number planes:
(i) $y=\frac{1}{f(x)}$
(ii) $y=[f(x)]^{2}$
(iii) $y^{2}=-f(x)$
(b) A particle of mass m kilograms is projected vertically upwards through a medium under the influence of gravity with an initial velocity of $U \mathrm{~m} / \mathrm{s}$. In this medium, the particle experiences a resistive force of $m k v$ newtons, where k is a positive constant and v is the particle's velocity in m / s. The acceleration due to gravity for this motion is $g \mathrm{~m} / \mathrm{s}^{2}$.

It is known that the particle reaches its greatest height H metres in T seconds.
(i) Show that $T=\frac{1}{k} \ln \left(\frac{g+k U}{g}\right)$.
(ii) Show that $\frac{d x}{d v}=-\frac{v}{g+k v}$, where x is the particle's displacement from its point of projection in metres.
(iii) Hence, or otherwise, show that $U=k H+g T$.
(c) A sandstone cap on the corner of a fence is show below. The solid is formed by intersecting two parabolic cylinders (a prism with uniform parabolic cross-sections).

On the front face, the equation of the parabola is $y=4-x^{2}$.

Slices parallel to the base of the solid are in the shape of a square with four smaller squares removed, one from each corner. The shape of a typical horizontal slice at height y is also shown below.

Sandstone cap

Shape of a typical slice
(i) Show that the area of a typical slice is $16-4 \times(2-\sqrt{4-y})^{2}$ square units.
(ii) Hence find the volume of the sandstone cap.

End of Question 14

Question 15 (15 marks) Use the Question 15 section of the writing booklet.
(a) A 5000 kg truck is travelling around a circular portion of road of radius 500 metres. This portion of the road is banked at an angle of 2° to the horizontal. A cross-section of the road is shown in the diagram below. (Take g to be $10 \mathrm{~m} / \mathrm{s}^{2}$.)

(i) By resolving forces, determine the speed at which the truck must negotiate this circular portion of road such that the truck experiences no sideways friction.
(ii) If the truck travels around this circular portion of road at a speed of $72 \mathrm{~km} / \mathrm{h}$, how much sideways friction (in newtons) is exerted on the tyres of the truck?

(b) (i) Show that $\tan \left(A+\frac{\pi}{2}\right)=-\cot A$.
(ii) Use mathematical induction to prove that $\tan \left[(2 n+1) \frac{\pi}{4}\right]=(-1)^{n}$ for all 3 integers $n \geq 1$.

Question 15 continues on the next page

Question 15 (continued)
(c) Let $I_{n}=\int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}} d x$, where n is an integer and $n \geq 0$.
(i) Show that $I_{0}=2 \sqrt{2}-2$.
(ii) Show that $I_{n-1}+I_{n}=\int_{0}^{1} x^{n-1} \sqrt{x+1} d x$.
(iii) Use integration by parts to show that $I_{n}=\frac{2 \sqrt{2}-2 n I_{n-1}}{2 n+1}$ where n is an integer 2 and $n \geq 1$.
(iv) Hence, or otherwise, evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{x+1}} d x$.

Question 16 (15 marks) Use the Question 16 section of the writing booklet.
(a) On the Argand diagram below, the complex numbers z and w are represented by the points K and M respectively. It is given that $\triangle O K L$ is isosceles with $\angle O K L=\frac{2 \pi}{3}$ as shown, and $\triangle O L M$ is equilateral. All angles are measured in radians.

(i) Show that $\angle M O K=\frac{\pi}{2}$.
(ii) Show that $|\overrightarrow{O L}|=\sqrt{3} \times|z|$.
(iii) Hence show that $3 z^{2}+w^{2}=0$.

Question 16 continues on the next page

(b) The curve below represents $y=f(x)$, which is continuous and differentiable in the domain $a \leq x \leq b$.

The length of this curve, L, from $x=a$ to $x=b$ is given by $L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.
Now consider the curve $y=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
(i) Show that, for this curve, $1+\left(\frac{d y}{d x}\right)^{2}=\frac{\left(e^{x}+e^{-x}\right)^{2}}{4}$.
(ii) Hence calculate the exact length of this curve from $x=0$ to $x=1$.
(c) A polynomial of degree n is given by $P(x)=x^{n}+p x-q$. It is given that the polynomial has a double root at $x=\alpha$.
(i) Show that $\alpha^{n-1}=-\frac{p}{n}$.
(ii) Show that $\left(\frac{p}{n}\right)^{n}+\left(\frac{q}{n-1}\right)^{n-1}=0$.
(iii) Hence, or otherwise, deduce that the double root is $\frac{q n}{p(n-1)}$.

End of Paper

YEAR 12 TRIAL EXAMINATION 2019
MATHEMATICS EXTENSION 2
MARKING GUIDELINES

Section I

Multiple-choice Answer Key

Question	Answer
1	B
2	B
3	A
4	C
5	D

Question	Answer
6	A
7	D
8	D
9	C
10	A

Questions 1 - 10

Sample solution

1. \quad| i^{2019} | $=\left(i^{4}\right)^{504} \times i^{3}$ |
| ---: | :--- |
| | $=1^{504} \times(-i)$ |
| | $=-i$ |
2. The given graph is the portion of graph $x y=1$ above the x-axis as well as its reflection in the x-axis, so replace y in the equation with $|y|$. The equation of the given graph is therefore $x|y|=1$

$4 x^{2}-25 y^{2}=100$	
$\frac{x^{2}}{2}-\frac{y^{2}}{4}=1$	$a^{2}=25 \Rightarrow a=5$
$b^{2}=4 \Rightarrow b=2$	

4. $\frac{1+i}{1-i}=\frac{\sqrt{2}\left(\operatorname{cis} \frac{\pi}{4}\right)}{2} \quad$ Multiplying by $\frac{1+i}{1-i}$ is therefore equivalent to multiplying by $\operatorname{cis} \frac{\pi}{2}$, which causes an $\frac{1+i}{1-i}=\frac{\sqrt{2}\left(\operatorname{cis} \frac{\pi}{4}\right)}{\sqrt{2}\left(-\frac{\pi}{4}\right)} \quad$ Multiplying by $\frac{1+i}{1-i}$ is therefore equivalent to multiplying by $\operatorname{cis} \frac{\pi}{2}$, which causes an

$$
\begin{aligned}
& =\operatorname{cis}\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right] \\
& =\operatorname{cis} \frac{\pi}{2}
\end{aligned}
$$

5. For the new polynomial,

$$
\begin{aligned}
\sum \alpha & =(2 \alpha+\beta+\gamma)+(\alpha+2 \beta+\gamma)+(\alpha+\beta+2 \gamma) \\
& =4 \alpha+4 \beta+4 \gamma \\
& =4(\alpha+\beta+\gamma) \\
& =4 \times 3 \\
& =12
\end{aligned}
$$

Only option D satisfies this property.
6.

$$
-1 \leq \cos (\omega t) \leq 1
$$

$-e^{-\gamma t} \leq e^{-\gamma t} \cos (\omega t) \leq e^{-\gamma t}$
When $t=0, e^{0} \cos 0=1$
Option A satisfies both of these properties.

Sample solution

7. $\quad \arg (z)=\arg (z+2+2 i)$
$\arg (z)=\arg [z-(-2-2 i)]$
Critical points are therefore $z=0$ and $z=-2-2 i$.
Option D is the best representation of the solutions to the equation $\arg (z)=\arg (z+2+2 i)$
8. Since a and b are real numbers, and $3+i$ is a root of $P(z)$, therefore $3-i$ must also be a root of $P(z)$.

Therefore, $[z-(3+i)][z-(3-i)]$ is a factor of $P(z)$.

$$
\begin{aligned}
{[z-(3+i)][z-(3-i)] } & =(z-3-i)(z-3+i) \\
& =(z-3)^{2}-i^{2} \\
& =z^{2}-6 z+9-(-1)
\end{aligned}
$$

$$
=z^{2}-6 z+10
$$

9.

$$
\begin{aligned}
(x-1)^{2}+\frac{y^{2}}{4} & =1 \\
(x-1)^{2} & =1-\frac{y^{2}}{4} \\
x-1 & = \pm \sqrt{1-\frac{y^{2}}{4}} \\
x & =1 \pm \sqrt{1-\frac{y^{2}}{4}}
\end{aligned}
$$

$$
\Delta V=\pi\left(x_{2}^{2}-x_{1}^{2}\right) \Delta y
$$

$$
=\pi\left[\left(1+\sqrt{1-\frac{y^{2}}{4}}\right)^{2}-\left(1-\sqrt{1-\frac{y^{2}}{4}}\right)^{2}\right] \Delta y
$$

$$
V=\lim _{\Delta y \rightarrow 0} \sum_{y=-2}^{2} 4 \pi \sqrt{1-\frac{y^{2}}{4}} \Delta y
$$

$$
=\int_{-2}^{2} 4 \pi \sqrt{1-\frac{y^{2}}{4}} d y
$$

$$
=\pi\left(2 \times 2 \sqrt{1-\frac{y^{2}}{4}}\right) \Delta y
$$

$$
=4 \pi \sqrt{1-\frac{y^{2}}{4}} \Delta y
$$

10.

$\triangle P Q R$ is equilateral, $\therefore \cos \theta=\cos 60^{\circ}=\frac{1}{2}$
$\sin \theta=\frac{r}{\ell}$

Resolving vertically:

$$
T_{1} \cos \theta-T_{2} \cos \theta-m g=0
$$

$$
\begin{aligned}
& T_{1}-T_{2}=\frac{m g}{\cos \theta} \\
& T_{1}-T_{2}=2 m g
\end{aligned}
$$

Resolving horizontally:
$T_{1} \sin \theta+T_{2} \sin \theta=m r \omega^{2}$

$$
\begin{aligned}
T_{1}+T_{2} & =\frac{m r \omega^{2}}{\sin \theta} \\
& =m \ell \omega^{2}
\end{aligned}
$$

Solving simultaneously,
[.

$$
\begin{aligned}
T_{1} & =\frac{m \ell \omega^{2}+2 m g}{2} & T_{2} & =\frac{m \ell \omega^{2}-2 m g}{2} \\
& =\frac{m}{2}\left(\ell \omega^{2}+2 g\right) & & =\frac{m}{2}\left(\ell \omega^{2}-2 g\right)
\end{aligned}
$$

Section II

Question 11

Sample solution		Suggested marking criteria
(a)	$\begin{aligned} \frac{5 z}{w} & =\frac{5(3+i)}{1-2 i} \\ & =\frac{15+5 i}{1-2 i} \\ & =\frac{(15+5 i)(1+2 i)}{(1-2 i)(1+2 i)} \\ & =\frac{15+30 i+5 i+10 i^{2}}{1^{2}-(2 i)^{2}} \\ & =\frac{5+35 i}{5} \\ & =1+7 i \end{aligned}$	- 2 - correct solution - 1 - realises the denominator
(b)	(i) $\sqrt{3}+i=2 \mathrm{cis} \frac{\pi}{6}$	- 2 - correct solution - 1 - correct modulus - correct argument (not necessarily principal argument)
	(ii) $\begin{aligned} (\sqrt{3}+i)^{n} & =\left(2 \operatorname{cis} \frac{\pi}{6}\right)^{n} \\ & =2^{n} \operatorname{cis} \frac{n \pi}{6} \end{aligned}$ This is a real number if the argument is an integer multiple of π, the smallest positive integer n such that this happens is $n=6$.	- 1 - correct solution
(c)	(i) $\begin{aligned} \frac{4}{x^{2}(2-x)} & \equiv \frac{a x+b}{x^{2}}+\frac{c}{2-x} \\ 4 & \equiv(a x+b)(2-x)+c x^{2} \\ 4 & \equiv 2 a x-a x^{2}+2 b-b x+c x^{2} \\ 4 & \equiv(c-a) x^{2}+(2 a-b) x+2 b \end{aligned}$ Comparing coefficients: $\begin{array}{rlrl} 2 b=4 & 2 a-b & =0 & c-a \end{array}=0 \text { a } \begin{aligned} & =2 \\ 2 a-2 & =0 \\ 2 a & =2 \\ a & =1 \end{aligned}$	- 2 - correct solution - 1 - correctly finds two of the three coefficients
	$\text { (ii) } \begin{aligned} \int \frac{4}{x^{2}(2-x)} d x & =\int \frac{x+2}{x^{2}}+\frac{1}{2-x} d x \\ & =\int \frac{1}{x}+2 x^{-2}-\frac{-1}{2-x} d x \\ & =\ln x-\frac{2}{x}-\ln (2-x)+c \\ & =\ln \frac{x}{2-x}-\frac{2}{x}+c \end{aligned}$	- 3 - correct solution - 2 - correctly integrates two of the three integrals listed below, or equivalent merit - 1 - correctly integrates one of the three integrals ($\frac{1}{X}, 2 x^{-2}$ or $\frac{1}{2-x}$), or equivalent merit

Question 11 (continued)

Sample solution			Suggested marking criteria
(d)	$\begin{aligned} \int \frac{d x}{\sqrt{1-4 x-x^{2}}} & =\int \frac{}{\sqrt{-}} \\ & =\int \frac{}{\sqrt{-}} \\ & =\int \frac{1}{\sqrt{5}} \\ & =\sin ^{-1} \end{aligned}$		- 2 - correct solution - 1 - attempts to complete the square and reduces the integral to a "standard" integral
(e)	$\begin{aligned} t & =\tan \frac{x}{2} \\ \frac{d t}{d x} & =\frac{1}{2} \sec ^{2} \frac{x}{2} \\ & =\frac{1}{2}\left(1+\tan ^{2} \frac{x}{2}\right) \\ & =\frac{1+t^{2}}{2} \\ \frac{d x}{d t} & =\frac{2}{1+t^{2}} \end{aligned}$	When $x=0, t=0$. When $x=\frac{\pi}{2}, t=1$. $\begin{aligned} \int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\cos x} & =\int_{0}^{1} \frac{\frac{2 d t}{1+t^{2}}}{2+\frac{1-t^{2}}{1+t^{2}}} \\ & =\int_{0}^{1} \frac{2 d t}{2\left(1+t^{2}\right)+\left(1-t^{2}\right)} \\ & =\int_{0}^{1} \frac{2 d t}{3+t^{2}} \\ & =2 \times\left[\frac{1}{\sqrt{3}} \tan ^{-1} \frac{t}{\sqrt{3}}\right]_{0}^{1} \\ & =2 \times\left(\frac{1}{\sqrt{3}} \tan ^{-1} \frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}} \tan ^{-1} 0\right) \\ & =\frac{2}{\sqrt{3}} \times \frac{\pi}{6} \\ & =\frac{\pi}{3 \sqrt{3}} \end{aligned}$	- 3 - correct solution - 2 - applies the substitution to express the integral in terms of t - 1 - applies the substitution to partially change the integral to an integral in terms of t

Question 12

Sample solution		Suggested marking criteria
(a)	$\text { (i) } \quad \begin{aligned} \sum \alpha & =-1 \\ \sum \alpha \beta & =0 \\ \sum \alpha^{2} & =\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta \\ & =(-1)^{2}-2 \times 0 \\ & =1 \end{aligned}$	- 2 - correct solution - 1 - finds $\sum \alpha$
	(ii) $\quad \alpha, \beta$ and γ are roots of $x^{3}+x^{2}+2=0$ $\begin{aligned} \alpha^{3}+\alpha^{2}+2 & =0 \\ \beta^{3}+\beta^{2}+2 & =0 \\ \gamma^{3}+\gamma^{2}+2 & =0+ \\ \hline\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)+\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+6 & =0 \\ \left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)+1+6 & =0 \\ \alpha^{3}+\beta^{3}+\gamma^{3} & =-7 \end{aligned}$	- 2 - correct solution - 1 - forms an expression involving $\sum \alpha^{3}$ and $\sum \alpha^{2}$
	(iii) $\begin{aligned} \alpha^{4}+\alpha^{3}+2 \alpha & =0 \\ \beta^{4}+\beta^{3}+2 \alpha & =0 \\ \gamma^{4}+\gamma^{3}+2 \alpha & =0+ \\ \hline\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right)+\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)+2(\alpha+\beta+\gamma) & =0 \\ \left(\alpha^{4}+\beta^{4}+\gamma^{4}\right)+(-7)+2 \times(-1) & =0 \\ \alpha^{4}+\beta^{4}+\gamma^{4} & =9 \end{aligned}$	- 2 - correct solution - 1 - forms an expression involving $\sum \alpha^{3}, \sum \alpha^{2}$ and $\sum \alpha$
(b)	(i)	- 3 - correct region - 2 - correct boundary - 1 - correctly sketches one of the two regions of the given inequalities
	(ii) For w to lie in the region in part (i) and be of minimum modulus, w must be in the position as shown below: By inspection, $w=\frac{1}{2}-\frac{1}{2} i$.	- 1 - correct answer

Question 12 (continued)

Sample solution			Suggested marking criteria
(c)		$\frac{13!}{2!2!3!}=259459200 \text { ways }$	- 1 - correct answer
		There are $\frac{7!}{2!2!3!}$ ways of arranging the seven repeated letter, then treating this as a group, there are 7 ! ways of arranging this group of repeated letter and the 6 remaining letters. Therefore, there are $\frac{7!}{2!2!3!} \times 7!=1058400$ different arrangements.	- 2 - correct solution - 1 - correctly arranges the repeated letters
		Let v be a vowel and c be a consonant of the word BAULKHAMHILLS, start with a string of the nine consonants, like so: ${ }_{-} c_{-} c_{-} c_{-} c_{-} c_{-} c_{-} C_{-} C_{-} C_{-}$ With this string of consonants, there are ten spaces, choose any four of them to insert the vowels $\mathrm{A}, \mathrm{A}, \mathrm{I}$ and U in that order. Taking into account the number of possible arrangements of the consonants, this can be done in $\frac{9!}{2!3!} \times{ }^{10} C_{4}=6350400$ ways.	- 2 - correct solution - 1 - considers some of the valid cases - progress towards solution using valid reasoning

Question 13

Sample solution		Suggested marking criteria
(a)	Let X be the point of contact of the third tangent. $C A=C B$ (tangents from an external point are equal in length) $P A=P X \quad$ (tangents from an external point are equal in length) $Q B=Q X \quad$ (tangents from an external point are equal in length) $\text { The perimeter of } \begin{aligned} \triangle C P Q & =C P+P Q+C Q \\ & =C P+(P X+Q X)+C Q \\ & =(C P+P A)+(Q B+C Q) \quad \text { (since } P X=P A \text { and } Q X=Q B) \\ & =C A+C B, \text { which is independent of } P Q . \end{aligned}$	- 2 - correct proof - 1 - one correct circle geometry reasoning towards the correct proof
(b)	(i) $\begin{aligned} \Delta V & =2 \pi(2-x)\left(\frac{1}{x+1}-\frac{1}{x-5}\right) \Delta x \\ & =2 \pi(2-x)\left[\frac{x-5-(x+1)}{(x+1)(x-5)}\right] \Delta x \\ & =2 \pi(2-x)\left(\frac{-6}{x^{2}-4 x-5}\right) \Delta x \\ & =12 \pi\left(\frac{x-2}{x^{2}-4 x-5}\right) \Delta x \end{aligned}$	- 2 - correct solution - 1 - finds a correct expression for ΔV
	(ii) $\begin{aligned} \Delta V & =12 \pi\left(\frac{x-2}{x^{2}-4 x-5}\right) \Delta x \\ V & =\lim _{\Delta x \rightarrow 0} \sum_{x=0}^{2} 12 \pi\left(\frac{x-2}{x^{2}-4 x-5}\right) \Delta x \\ & =\int_{0}^{2} 12 \pi\left(\frac{x-2}{x^{2}-4 x-5}\right) d x \\ & =6 \pi \int_{0}^{2}\left(\frac{2 x-4}{x^{2}-4 x-5}\right) d x \\ & =6 \pi\left[\ln \left\|x^{2}-4 x-5\right\|\right]_{0}^{2} \\ & =6 \pi(\ln \|-9\|-\ln \|-5\|) \\ & =6 \pi \ln \frac{9}{5} \text { cubic units } \end{aligned}$	- 3 - correct solution - 2 - correct primitive - 1 - establishes correct sum of infinitesimals
(c)	(i) The tangent at T has equation $x+t^{2} y=2 c t$. When $y=0, x=2 c t, \therefore P=(2 c t, 0)$ When $x=0, y=\frac{2 c}{t}, \therefore Q=\left(0, \frac{2 c}{t}\right)$	- 2 - correct solution - 1 - correctly finds P or Q

Question 13 (continued)

Sample solution		Suggested marking criteria
(c)	(ii) $\begin{aligned} x y & =c^{2} \\ y & =\frac{c^{2}}{x} \\ \frac{d y}{d x} & =\frac{-c^{2}}{x^{2}} \end{aligned}$ At T, $\begin{aligned} \frac{d y}{d x} & =-\frac{c^{2}}{(c t)^{2}} \\ & =-\frac{1}{t^{2}} \end{aligned}$	- 2 - correct solution - 1 - correct gradient for the normal
	(iii) $\begin{aligned} t^{3} x-t y & =c\left(t^{4}-1\right) \\ t^{3} x-t x & =c\left(t^{2}+1\right)\left(t^{2}-1\right) \\ x t\left(t^{2}-1\right) & =c\left(t^{2}+1\right)\left(t^{2}-1\right) \\ x t & =c\left(t^{2}+1\right) \\ x & =\frac{c}{t}\left(t^{2}+1\right) \end{aligned}$	- 2 - correct solution - 1 - attempts to use simultaneous equations to find the x-coordinate of R
	(iv) $\begin{aligned} d_{P R} & =\sqrt{\left[\frac{c}{t}\left(t^{2}+1\right)-2 c t\right]^{2}+\left[\frac{c}{t}\left(t^{2}+1\right)\right]^{2}} \\ & =\sqrt{\left(c t+\frac{c}{t}-2 c t\right)^{2}+\left(c t+\frac{c}{t}\right)^{2}} \\ & =\sqrt{\left(-c t+\frac{c}{t}\right)^{2}+\left(c t+\frac{c}{t}\right)^{2}} \\ & =\sqrt{c^{2} t^{2}-2 c^{2}+\frac{c^{2}}{t^{2}}+c^{2} t^{2}+2 c^{2}+\frac{c^{2}}{t^{2}}} \\ & =\sqrt{2 c^{2} t^{2}+\frac{2 c^{2}}{t^{2}}} \\ d_{Q R} & =\sqrt{\left[\frac{c}{t}\left(t^{2}+1\right)\right]^{2}+\left[\frac{c}{t}\left(t^{2}+1\right)-\frac{2 c}{t}\right]^{2}} \\ & =\sqrt{\left(c t+\frac{c}{t}\right)^{2}+\left(c t+\frac{c}{t}-\frac{2 c}{t}\right)^{2}} \\ & =\sqrt{\left(c t+\frac{c}{t}\right)^{2}+\left(c t-\frac{c}{t}\right)^{2}} \\ & =\sqrt{2 c^{2} t^{2}+2 c^{2}+\frac{c^{2}}{t^{2}}+\frac{2 c^{2} t^{2}}{t^{2}}} \end{aligned}$ Since $d_{P R}=d_{Q R}, \triangle P Q R$ is isosceles.	- 2 - correct solution - 1 - finds $d_{P R}$ or $d_{Q R}$ - establishes T as the midpoint of $P Q$ - calculates the gradient of $P Q$ or $Q R$

Question 14

Sample solution		Suggested marking criteria
(a)	(i)	- 2 - correct solution - 1 - significant progress towards solution
	(ii)	- 2 - correct solution - 1 - correctly identifies the turning points
	(iii)	- 2 - correct solution - 1 - sketches $y^{2}=f(x)$ - sketches $y=\sqrt{-f(x)}$ - sketches $y=-\sqrt{-f(x)}$ - correctly positions the graph of $y^{2}=f(x)$ but missing important features, or equivalent merit
(b)	(i) $\begin{aligned} m a & =-m g-m k v \\ a & =-(g+k v) \\ \frac{d v}{d t} & =-(g+k v) \\ \frac{d t}{d v} & =-\frac{1}{g+k v} \\ \int_{0}^{T} d t & =\int_{U}^{0}-\frac{1}{g+k v} d v \\ T & =\frac{1}{k} \int_{0}^{U} \frac{k}{g+k v} d v \\ & =\frac{1}{k}[\ln (g+k v)]_{0}^{U} \\ & =\frac{1}{k}[\ln (g+k U)-\ln g] \\ & =\frac{1}{k} \ln \left(\frac{g+k U}{g}\right) \end{aligned}$	- 2 - correct solution - 1 - correctly integrates $-\frac{1}{g+k v}$

Question 14 (continued)

Sample solution		Suggested marking criteria
(b)	(ii) $\begin{aligned} a & =-(g+k v) \\ v \frac{d v}{d x} & =-(g+k v) \\ \frac{d v}{d x} & =-\frac{g+k v}{v} \\ \frac{d x}{d v} & =-\frac{v}{g+k v} \end{aligned}$	- 1 - correct solution
	(iii) $\begin{aligned} \frac{d x}{d v} & =-\frac{v}{g+k v} \\ \int_{0}^{H} d x & =\int_{U}^{0}-\frac{v}{g+k v} d v \\ H & =\frac{1}{k} \int_{0}^{U} \frac{k v}{g+k v} d v \\ & =\frac{1}{k} \int_{0}^{U} \frac{g+k v-g}{g+k v} d v \\ & =\frac{1}{k} \int_{0}^{U} 1-\frac{g}{g+k v} d v \\ & =\frac{1}{k} \int_{0}^{U} 1-\frac{g}{k} \times \frac{k}{g+k v} d v \\ & =\frac{1}{k}\left[v-\frac{g}{k} \ln (g+k v)\right]_{0}^{U} \\ & =\frac{1}{k}\left\{\left[U-\frac{g}{k} \ln (g+k U)\right]-\left[0-\frac{g}{k} \ln g\right]\right\} \\ & =\frac{1}{k}\left[U-\frac{g}{k} \ln \left(\frac{g+k U}{g}\right)\right] \\ & =\frac{1}{k}(U-g T) \\ k H & =U-g T \\ U & =k H+g T \end{aligned}$	- 2 - correct solution - 1 - correctly integrates $-\frac{v}{g+k v}$

Sample solution		Suggested marking criteria
(c)	(i) $\begin{aligned} y & =4-x^{2} \\ x^{2} & =4-y \\ x & =\sqrt{4-y} \end{aligned}$ $\begin{aligned} \text { Area of slice } & =4^{2}-4 \times(2-x)^{2} \\ & =16-4 \times(2-\sqrt{4-y})^{2} \end{aligned}$	- 1 - correct solution
	(ii) $\begin{aligned} \Delta V & =4^{2}-4 \times(2-\sqrt{4-y})^{2} \Delta y \\ V & =\lim _{\Delta y \rightarrow 0} \sum_{y=0}^{4}\left[16-4 \times(2-\sqrt{4-y})^{2}\right] \Delta y \\ & =\int_{0}^{4}\left[16-4 \times(2-\sqrt{4-y})^{2}\right] d y \\ & =\int_{0}^{4}[16-4 \times(4-4 \sqrt{4-y}+4-y)] d y \\ & =\int_{0}^{4}[16-4 \times(8-4 \sqrt{4-y}-y)] d y \\ & =\int_{0}^{4}(16-32+16 \sqrt{4-y}+4 y) d y \\ & =\int_{0}^{4}(-16+16 \sqrt{4-y}+4 y) d y \\ & =\int_{0}^{4}\left(-16+16(4-y)^{\frac{1}{2}}+4 y\right) d y \\ & =\left[-16 y+\frac{16(4-y)^{\frac{3}{2}}}{-\left(\frac{3}{2}\right)}+2 y^{2}\right]_{0}^{4} \\ & =\left[-16 y-\frac{32(4-y)^{\frac{3}{2}}}{3}+2 y^{2}\right]_{0}^{4} \\ & =(-64+32)+\left(\frac{32 \times 4^{\frac{3}{2}}}{3}\right) \\ & =53 \frac{1}{3} \text { cubic units } \end{aligned}$	- 3 - correct solution - 2 - correct primitive - 1 - correct integral

Question 15

Sample solution		Suggested marking criteria
(a)	(i) Resolving forces vertically: $N \cos 2^{\circ}-m g=0$ $\frac{N \sin 2^{\circ}}{N \cos 2^{\circ}}=\frac{10 v^{2}}{50000}$ $N \cos 2^{\circ}=50000$ Resolving forces horizontally: $\begin{aligned} N \sin 2^{\circ} & =\frac{m v^{2}}{r} \\ N \sin 2^{\circ} & =\frac{5000 v^{2}}{500} \\ & =10 v^{2} \end{aligned}$	- 2 - correct solution - 1 - resolves the forces vertically and horizontally, or equivalent merit
	(ii) Resolving forces vertically: Resolving forces horizontally: $N \cos 2^{\circ}-F \sin 2^{\circ}-m g=0$ $N \cos 2^{\circ}-F \sin 2^{\circ}=50000$ $\begin{aligned} & N \sin 2^{\circ}+F \cos 2^{\circ}=\frac{m v^{2}}{r} \\ & N \sin 2^{\circ}+F \cos 2^{\circ}=\frac{5000 \times 20^{2}}{500} \end{aligned}$ Eliminating $N \sin 2^{\circ} \cos 2^{\circ}$: $\begin{aligned} N \sin 2^{\circ} \cos 2^{\circ}-F \sin ^{2} 2^{\circ} & =50000 \sin 2^{\circ} \\ N \sin 2^{\circ} \cos 2^{\circ}+F \cos ^{2} 2^{\circ} & =4000 \cos 2^{\circ} \\ \hline F \cos ^{2} 2^{\circ}+F \sin ^{2} 2^{\circ} & =4000 \cos 2^{\circ}-50000 \sin 2^{\circ} \\ F & =2252.6 \mathrm{~N} \text { (1 d.p.) } \end{aligned}$	- 3 - correct solution - 2 - resolves forces vertically and horizontally, or equivalent merit - 1 - resolves forces in one direction
(b)	(i) $\begin{aligned} \tan \left(A+\frac{\pi}{2}\right) & =\cot \left[\frac{\pi}{2}-\left(A+\frac{\pi}{2}\right)\right] \\ & =\cot (-A) \\ & =\frac{1}{\tan (-A)} \\ & =\frac{1}{-\tan A}(\tan x \text { is an odd function }) \\ & =-\cot A \end{aligned}$	- 1 - correct solution

Sample solution

Suggested marking criteria

(b) (ii)

Let $S(n)$ be the statement that $\tan \left[(2 n+1) \frac{\pi}{4}\right]=(-1)^{n}$.

Show $S(1)$ is true:

$$
\begin{array}{rlrl}
\text { LHS } & =\tan \left(\frac{3 \pi}{4}\right) & \text { RHS } & =(-1)^{1} \\
& =-\tan \frac{\pi}{4} & =-1 \\
& =-1 &
\end{array}
$$

- 3 - correct solution
- 2 - uses the inductive hypothesis to attempt to prove the result inductively
- 1 - showing the result to be true for $n=1$

$$
\begin{aligned}
\text { LHS } & =\tan \left[(2 k+3) \frac{\pi}{4}\right] \\
& =\tan \left[(2 k+1) \frac{\pi}{4}+2 \times \frac{\pi}{4}\right] \\
& =\tan \left[(2 k+1) \frac{\pi}{4}+\frac{\pi}{2}\right] \\
& =-\cot \left[(2 k+1) \frac{\pi}{4}\right] \\
& =-\frac{1}{\tan \left[(2 k+1) \frac{\pi}{4}\right]} \\
& =-\frac{1}{(-1)^{k}} \\
& =\frac{-1}{(-1)^{k}} \times \frac{(-1)^{k}}{(-1)^{k}} \\
& =\frac{(-1)^{k+1}}{(-1)^{2 k}} \\
& =\frac{(-1)^{k+1}}{\left[(-1)^{2}\right]^{k}} \\
& =\frac{(-1)^{k+1}}{1^{k}} \\
& =(-1)^{k+1} \\
& =\mathrm{RHS}
\end{aligned}
$$

$\therefore S(k+1)$ is true if $S(k)$ is assumed true.

Since $S(1)$ is proven true, then by the principle of mathematical induction, $S(n)$ is true for all integers $n \geq 1$.

Sample solution						Suggested marking criteria
(c)			$\begin{aligned} I_{0} & =\int_{0}^{1} \frac{1}{\sqrt{x+1}} d x \\ & =\int_{0}^{1}(x+1)^{-\frac{1}{2}} d x \\ & =\left[2(x+1)^{\frac{1}{2}}\right]_{0}^{1} \\ & =2 \times 2^{\frac{1}{2}}-2 \\ & =2 \sqrt{2}-2 \end{aligned}$			- 1 - correct solution
			$\begin{aligned} I_{n-1}+I_{n} & =\int_{0}^{1} \frac{x^{n-1}}{\sqrt{x+1}} d x+\int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}} d x \\ & =\int_{0}^{1} \frac{x^{n-1}}{\sqrt{x+1}}+\frac{x^{n}}{\sqrt{x+1}} d x \\ & =\int_{0}^{1} \frac{x^{n-1}+x^{n}}{\sqrt{x+1}} d x \\ & =\int_{0}^{1} \frac{x^{n-1}(1+x)}{\sqrt{x+1}} d x \\ & =\int_{0}^{1} x^{n-1} \sqrt{x+1} d x \end{aligned}$			- 1 - correct solution
			Using integration by parts, $\begin{aligned} I_{n-1}+I_{n} & =\left[\frac{x^{n} \sqrt{x+1}}{n}\right]_{0}^{1}-\int_{0}^{1} \frac{x^{n}}{2 n \sqrt{x+1}} d x \\ & =\frac{\sqrt{2}}{n}-\frac{1}{2 n} \int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}} d x \\ & =\frac{\sqrt{2}}{n}-\frac{1}{2 n} I_{n} \\ I_{n}+\frac{1}{2 n} I_{n} & =\frac{\sqrt{2}}{n}-I_{n-1} \\ I_{n}\left(1+\frac{1}{2 n}\right) & =\frac{\sqrt{2}}{n}-I_{n-1} \\ I_{n}(2 n+1) & =2 \sqrt{2}-2 n I_{n-1} \\ I_{n} & =\frac{2 \sqrt{2}-2 n I_{n-1}}{2 n+1} \end{aligned}$	$\begin{array}{r} u=\sqrt{x+1} \\ v=\frac{x^{n}}{n} \end{array}$	$\begin{aligned} & d u=\frac{d x}{2 \sqrt{x+1}} \\ & d v=x^{n-1} d x \end{aligned}$	- 2 - correct solution - 1 - attempts to use integration by parts towards the required result

Question 15 (continued)

Sample solution		Suggested marking criteria
(c)	(iv) $\begin{aligned} \int_{0}^{1} \frac{x^{2}}{\sqrt{x+1}} d x & =I_{2} \\ & =\frac{2 \sqrt{2}-4 I_{1}}{5} \\ & =\frac{2 \sqrt{2}-4 \times\left(\frac{2 \sqrt{2}-2 I_{0}}{3}\right)}{5} \\ & =\frac{2 \sqrt{2}-4 \times\left[\frac{2 \sqrt{2}-2 \times(2 \sqrt{2}-2)}{3}\right]}{5} \\ & =\frac{2 \sqrt{2}-4 \times\left[\frac{2 \sqrt{2}-4 \sqrt{2}+4}{3}\right]}{5} \\ & =\frac{2 \sqrt{2}-4 \times\left[\frac{4-2 \sqrt{2}}{3}\right]}{5} \\ & =\frac{6 \sqrt{2}-4 \times(4-2 \sqrt{2})}{15} \\ & =\frac{6 \sqrt{2}-16+8 \sqrt{2}}{15} \\ & =\frac{14 \sqrt{2}-16}{15} \end{aligned}$	- 2 - correct solution - 1 - one correct application of the reduction formula - finds I_{1}

Question 16

Sam	le solution	Suggested marking criteria
(a)	(i) In $\triangle O K L$, $\angle K O L=\angle K L O$ (angles opposite equal sides of a triangle are equal) $\angle K O L+\angle K L O+\angle O K L=\pi$ (angle sum of $\triangle O K L$ is π radians) $\begin{aligned} \angle K O L+\angle K O L+\frac{2 \pi}{3} & =\pi \\ 2 \angle K O L & =\frac{\pi}{3} \\ \angle K O L & =\frac{\pi}{6} \end{aligned}$ In $\triangle O M L, \angle M O L=\frac{\pi}{3}$ (angles in an equilateral triangle) $\begin{aligned} \angle M O K & =\angle M O L+\angle K O L \\ & =\frac{\pi}{3}+\frac{\pi}{6} \\ & =\frac{\pi}{2} \end{aligned}$	- 1 - correct solution
	(ii) Since $\triangle O K L$ is isosceles, by symmetry, if $K N$ is an altitude of the triangle, N bisect $O L$ and $\angle O K N=\frac{\pi}{3}$. $\begin{aligned} \sin \frac{\pi}{3} & =\frac{\|\overrightarrow{O N}\|}{\|\overrightarrow{O K}\|} \\ \frac{\sqrt{3}}{2} & =\frac{\frac{1}{2}\|\overrightarrow{O L}\|}{\|z\|} \\ \sqrt{3} & =\frac{\|\overrightarrow{O L}\|}{\|z\|} \\ \|\overrightarrow{O L}\| & =\sqrt{3} \times\|z\| \end{aligned}$	- 2 - correct solution - 1 - uses trigonometry to attempt to show the required result

Question 16 (continued)

| Sample solution | (aii) | |
| :--- | :--- | :--- | :--- |

Question 16 (continued)

Sample solution				Suggested marking criteria
(c)	(i)	$\begin{gathered} P(x)=x^{n}+p x-q \\ P^{\prime}(x)=n x^{n-1}+p \\ P^{\prime}(\alpha)=0 \\ n \alpha^{n-1}+p=0 \\ n \alpha^{n-1}=-p \\ \alpha^{n-1}=-\frac{p}{n} \end{gathered}$		- 2 - correct solution - 1 - finds $P^{\prime}(\alpha)$
		$\begin{aligned} & P^{\prime}(\alpha)=0 \\ & n \alpha^{n-1}+p=0 \\ & n \alpha^{n}+p \alpha=0 \\ & P(x)=x^{n}+p x-q \\ & P(\alpha)=0 \\ & \alpha^{n}+p \alpha-q=0 \\ & \alpha^{n}+p \alpha=q \end{aligned}$ Solving simultaneously: $\begin{aligned} \left(\alpha^{n}+p \alpha\right)-\left(n \alpha^{n}+p \alpha\right) & =q \\ \alpha^{n}-n \alpha^{n} & =q \\ \alpha^{n}(1-n) & =q \\ \alpha^{n} & =\frac{q}{1-n} \end{aligned}$	$\begin{aligned} & \left(\alpha^{n-1}\right)^{n}=\left(-\frac{p}{n}\right)^{n} \\ & \left(\alpha^{n}\right)^{n-1}=\left(\frac{q}{1-n}\right)^{n-1} \\ & \left(\frac{q}{1-n}\right)^{n-1}=\left(-\frac{p}{n}\right)^{n} \\ & \left(\frac{-q}{n-1}\right)^{n-1}=(-1)^{n}\left(\frac{p}{n}\right)^{n} \\ & (-1)^{n-1}\left(\frac{q}{n-1}\right)^{n-1}=(-1)^{n}\left(\frac{p}{n}\right)^{n} \\ & \quad\left(\frac{q}{n-1}\right)^{n-1}=-\left(\frac{p}{n}\right)^{n} \\ & \left(\frac{p}{n}\right)^{n}+\left(\frac{q}{n-1}\right)^{n-1}=0 \end{aligned}$	- 3 - correct solution - 2 - substitutes α, α^{n} or α^{n-1} into an appropriate expression / equation and attempts to simply - 1 - uses $P(\alpha)=0$ - finds α or α^{n}
		$\begin{aligned} \alpha & =\frac{\alpha^{n}}{\alpha^{n-1}} \\ & =\frac{\left(\frac{q}{1-n}\right)}{\left(-\frac{p}{n}\right)} \\ & =\frac{-q n}{p(1-n)} \\ & =\frac{q n}{p(n-1)} \end{aligned}$		- 1 - correct solution

