

2009

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

MATHEMATICS EXTENSION 2

General Instructions

- Reading Time - 5 minutes
- Working Time - 3 hours
- Write using blue or black pen
- Board approved calculators may be used
- Write your name on each page
- Each question is to be started on a new page.
- This examination paper must NOT be removed from the examination room
- There is a total of eight questions.
- Each question is worth 15 marks.
- Marks may be deducted for careless or badly arranged work.

Question 1 (15 marks) Start a NEW page.
a) Find $\int \cos x \sin ^{4} x d x$.
b) Find $\int \frac{d x}{x^{2}-4 x+8}$.
c) Use the substitution $u=x-2$ to find the exact value of $\int_{1}^{3} x(x-2)^{5} d x$.
d) i) Find the values of A, B and C so that

$$
\frac{5}{\left(x^{2}+4\right)(x+1)} \equiv \frac{A x+B}{x^{2}+4}+\frac{C}{x+1} .
$$

ii) Hence find $\int \frac{5}{\left(x^{2}+4\right)(x+1)} d x$.
e) i) If $I_{n}=\int_{1}^{e} x(\ln x)^{n} d x$ for $n=0,1,2,3, \ldots$ use integration by parts

$$
\text { to show that } I_{n}=\frac{e^{2}}{2}-\frac{n}{2} I_{n-1} \text { for } n=1,2,3, \ldots
$$

ii) Hence find the value of I_{2}.

Question 2 (15 marks) Start a NEW page.
a) If $z=1-i$, find
i) $\bar{z} \quad 1$
ii) $|z| \quad 1$
iii) $\arg z \quad 1$
iv) $\arg i z \quad 1$
v) z^{6} in $a+i b$ form. $\quad 2$
b) Express $\frac{i^{5}(1-i)}{2+i}$ in the form $a+i b$ where a and b are real.
c) Graph the region in the Argand diagram which simultaneously satisfies
$1 \leq|z-i| \leq 2$ and $\operatorname{Im} z \geq 0$.
d) In the Argand diagram A represents the point $z_{1}=\sqrt{3}+i$, and O is the origin.

Given that $O A B C$ is a square:

i) Find the complex number $\left(z_{3}\right)$ represented by C.
ii) Find the complex number $\left(z_{2}\right)$ represented by B.

Question 3 (15 marks) Start a NEW page.
a) i) Without using calculus, draw a good size neat sketch of

$$
y=(x+1)^{2}(1-x) .
$$

ii) On a separate diagram using the same scale as above, and also without calculus, sketch $y^{2}=(x+1)^{2}(1-x)$, paying close attention to the shape of the curve as ' y ' approaches zero.
b) Neatly sketch each of the following on separate axes for $0 \leq x \leq 2 \pi$.
i) $\quad y=\sin ^{2} x$.
ii) $\quad y=|\sin x|$.
iii) $y=\sqrt{\sin x}$.
iv) $y=\frac{1}{\sin x}$.
v) $y=\frac{|\sin x|}{\sin x}$.
vi) $y=e^{\sin x}$.
c) A plane curve is defined by the equation $x^{2}+2 x y+y^{5}=4$.

The curve has a horizontal tangent at the point $P(X, Y)$.
By using implicit differentiation or otherwise, show that X is the unique solution to the equation $X^{5}+X^{2}+4=0$.
[Do not solve this equation]

Question 4 (15 marks) Start a NEW page.
a) Given the hyperbola $16 x^{2}-9 y^{2}=144$, find:
i) the length of the transverse axis
ii) the eccentricity
iii) the coordinates of the foci
iv) the equations of the directrices1
v) the equations of the asymptotes.
b) If α, β and γ are the roots of the equation $x^{3}+6 x+1=0$, find the polynomial equation whose roots are $\alpha \beta, \beta \gamma$ and $\alpha \gamma$.
c) Consider the equation $x^{4}-5 x^{3}+7 x^{2}+3 x-10=0$.
i) Given that $2-i$ is a root of the equation explain why $2+i$ is also a root.
ii) Find the other roots of the equation.
d) The area enclosed between the curves $y=\sqrt{x}$ and $y=x^{2}$ is rotated about y - axis through one complete revolution. Use the method of cylindrical shells to find the volume of the solid that is generated.

Question 5 (15 marks) Start a NEW page.
a) Solve for $x: 2^{3 x+1}=5^{x+1}$, correct to 3 significant figures.
c) The altitudes PM and QN of an acute angled triangle PQR meet at H . PM produced cuts the circle PQR at A . [A larger diagram is included, use it and submit it with your solutions]

i) Explain why PQMN is a cyclic quadrilateral.
ii) Prove that $\mathrm{HM}=\mathrm{MA}$.
d) The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The tangent at P cuts the y-axis at B and M is the foot of the perpendicular from P to the y-axis.
i) Show that the equation of the tangent to the ellipse at the point P is

$$
\text { given by } \quad \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

ii) Show that $O M \cdot O B=b^{2}$, where O is the origin.

Question 6 (15 marks) Start a NEW page.
a) The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ lie on the rectangular hyperbola $x y=c^{2}$.

The chord PQ subtends a right angle at another point $R\left(c r, \frac{c}{r}\right)$ on the hyperbola.

Show that the normal at R is parallel to $P Q$.
b) The area bounded by the curve $y=2 x-x^{2}$ and the x-axis is rotated through 180° about the line $x=1$.

i) Show that the volume, ΔV, of a representative horizontal slice of width Δy is given by $\Delta \boldsymbol{V}=\boldsymbol{\pi}(\boldsymbol{x}-\mathbf{1})^{2} \Delta \boldsymbol{y}$.
ii) Hence show that the volume of the solid of revolution is given by

$$
V=\lim _{\Delta y \rightarrow 0} \sum_{y=0}^{1} \pi(1-y) \Delta y
$$

iii) Hence, find the volume of the solid of revolution.
$\begin{array}{ll}\text { c) } \quad \text { Show that } a^{2}+b^{2}>2 a b \text {, where } a \text { and } b \text { are distinct } & 1 \\ \text { positive real numbers. }\end{array}$
ii) Hence show that $a^{2}+b^{2}+c^{2}>a b+b c+c a$, where a, b and c are distinct positive real numbers.
iii) Hence, or otherwise prove that $\frac{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}{a+b+c}>a b c$, 2
where a, b and c are distinct positive real numbers.

End of Question 6

Question 7 (15 marks) Start a NEW page.
a) Given that $P(x)=3 x^{3}-11 x^{2}+8 x+4$ has a double root, fully factorise $P(x)$.
b) Show that $\tan ^{-1} x>x-\frac{1}{3} x^{3}$ for all values of $x>0$.
c) The acceleration of a particle which is moving along the x-axis is given by $\frac{d^{2} x}{d t^{2}}=2 x^{3}-10 x$.
i) If the particle starts at the origin with velocity u show that its velocity v is given by $v^{2}-u^{2}=x^{4}-10 x^{2}$.
ii) If $u=3$ show that the particle oscillates within the interval $-1 \leq x \leq 1$.
iii) Is the motion referred to in (ii) an example of simple harmonic motion? Give a clear reason for your answer.
iv) If $u=6$, carefully describe the motion.

Question 8 (15 marks) Start a NEW page.
a) Let ω be one of the non-real cube roots of unity.
i) Show that $1+\omega+\omega^{2}=0$.

$$
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta
$$

ii) By using the substitution $x=2 \cos \theta$, solve the equation $x^{3}-3 x=\sqrt{2}$.
iii) Hence explain why $\cos \left(\frac{\pi}{12}\right)+\cos \left(\frac{7 \pi}{12}\right)+\cos \left(\frac{9 \pi}{12}\right)=0$
c) The equation $x^{3}-3 p x+q=0$, where $p>0, q \neq 0$ are both real, has three distinct, non- zero real roots.
i) Show that the graph of $y=x^{3}-3 p x+q$ has a relative maximum value of $q+2 p \sqrt{p}$ and a relative minimum of $q-2 p \sqrt{p}$.
ii) Hence show giving reasons that $q^{2}<4 p^{3}$.

YEAR 12 EXTENSION 2 CARINGBAH
1a） $\int \cos x \sin ^{4} x d x=\frac{\sin ^{5} x}{5}+C$
V
b） $\int \frac{d x}{x^{2}-4 x+8}=\int \frac{d x}{(x-2)^{2}+2^{2}}$

$$
=\frac{1}{2} \tan ^{-1}\left(\frac{x-2}{2}\right)+C
$$

∇

■
c）Let $u=x-2 \rightarrow x=u+2 \rightarrow d u=d x$
When $x=1, u=-1 ; x=3, u=1$
$\therefore \quad I=\int_{-1}^{1}(u+2) \cdot u^{5} d u$
\downarrow

$$
\begin{aligned}
& =\int_{-1}^{1} u^{6}+2 u^{5} d u \\
& =\left[\frac{u^{7}}{7}+\frac{2 u^{6}}{6}\right]_{-1}^{1}
\end{aligned}
$$

$$
=\left(\frac{1}{7}+\frac{1}{3}\right)-\left(-\frac{1}{7}+\frac{1}{3}\right)=\frac{2}{7}
$$

d）i） $5 \equiv(A x+B)(x+1)+C\left(x^{2}+4\right)$
Let $x=-1: 5=5 C \rightarrow C=1$
V
Let $x=0: 5=B+4 C \rightarrow B=1$
Let $x=1: \quad 5=2(A+B)+5 C \rightarrow A=-1$
ii）$I=\int \frac{-x+1}{x^{2}+4}+\frac{1}{x+1} d x$
$=\int \frac{-x}{x^{2}+4}+\frac{1}{x^{2}+4}+\frac{1}{x+1} d x$
$=-\frac{1}{2} \ln \left(x^{2}+4\right)+\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+\ln (x+1)+c$『マ
e）$\quad I_{n}=\int_{1}^{e} x(\ln x)^{n} d x$
Let $\quad u=(\ln x)^{n}, \quad v^{\prime}=x$

$$
u^{\prime}=\frac{n}{x}(\ln x)^{n-1}, \quad v=\frac{x^{2}}{2}
$$

HIGH SCHOOL TRIAL HSC SOLUTIONS 2009

$$
\begin{aligned}
\therefore I_{n} & =\left[\frac{x^{2}}{2}(\ln x)^{n}\right]_{1}^{e}-\int_{1}^{e} \frac{x^{2}}{2} \cdot \frac{n}{x}(\ln x)^{n-1} d x \\
& =\frac{e^{2}}{2}-\frac{1}{2}^{2} \cdot 0^{n}-\frac{n}{2} I_{n-1}=\frac{e^{2}}{2}-\frac{n}{2} I_{n-1}
\end{aligned}
$$

∇
e）ii）$\quad I_{2}=\frac{e^{2}}{2}-\frac{2}{2} I_{1}$

$$
\begin{align*}
& =\frac{e^{2}}{2}-\left[\frac{e^{2}}{2}-\frac{1}{2} I_{0}\right] \\
& =\frac{1}{2} \int_{1}^{e} x d x=\frac{e^{2}-1}{4}
\end{align*}
$$

2a）i） $\bar{z}=1+i$
マ
ii）$|z|=\sqrt{2}$
iii） $\arg z=-\frac{\pi}{4}$
iv） $\arg i z=\arg (i)+\arg z=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$
v）$z^{6}=\left(\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^{6}$

$$
\begin{align*}
& =\sqrt{2}^{6} \cdot \operatorname{cis}\left(-\frac{6 \pi}{4}\right)(D M T) \\
& =8 \times i=0+8 i \tag{च}
\end{align*}
$$

b）$\quad \frac{i^{5}(1-i)}{2+i}=\frac{i .\left(i^{2}\right)^{2}(1-i)}{2+i} \times \frac{2-i}{2-i}$
च

$$
\begin{align*}
& =\frac{i(1-i)(2-i)}{1+4} \tag{V}\\
& =\frac{i(2-i-2 i-1)}{5} \\
& =\frac{3}{5}+\frac{1}{5} i
\end{align*}
$$

■
2c) C is

3b) v)

vi)

c) Horizontal tangent at $x=X \rightarrow \frac{d y}{d x}=0$

$$
\begin{array}{ll}
\frac{d}{d x}\left(x^{2}+2 x y+y^{5}\right)=\frac{d}{d x}(4) \\
2 x+2\left(y \square \square_{d x}^{d, \}\right. & \square_{d x}^{d y}
\end{array}
$$

$$
\left(2 x+5 y^{4}\right) \frac{d y}{d x}=-2(x+y)
$$

$$
\therefore \quad \frac{d y}{d x}=\frac{-2(x+y)}{\left(2 x+5 y^{4}\right)}
$$

$\therefore-2(x+y)=0 \rightarrow y=-x \quad$ where $x=X$

$$
\therefore X^{2}+2 X(-X)+(-X)^{5}=4
$$

$$
X^{2}-2 X^{2}-X^{5}=4
$$

$$
\therefore X^{5}+X^{2}+4=0
$$

4a) $\quad \frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \quad \rightarrow \quad a=3, b=4$
i) transverse axis $=6$

V
ii) $e^{2}=1+\frac{b^{2}}{a^{2}}=\frac{25}{9}$
$\therefore \quad e=\frac{5}{3}$
iii) $a e=3 \times \frac{5}{3}=5$
\therefore Foci are $S(5,0)$ and $S^{\prime}(-5,0)$
iv) $\frac{a}{e}=\frac{3}{5 / 3}=\frac{9}{5}$
\therefore directrices are $x= \pm \frac{9}{5}$
v) $\frac{b}{a}=\frac{4}{3} \rightarrow$ asymptotes $y= \pm \frac{4}{3} x$
b) Let the roots be: $\alpha \beta, \beta \gamma, \alpha \gamma$
which is the equivalent of: $\frac{\alpha \beta \gamma}{\gamma}, \frac{\beta \gamma \alpha}{\alpha}, \frac{\alpha \gamma \beta}{\beta}$ and since $\alpha \beta \gamma=-\frac{d}{a}=-1$
then the roots are $-\frac{1}{\alpha},-\frac{1}{\beta},-\frac{1}{\gamma}$.
Let $x=-\frac{1}{\alpha} \rightarrow \alpha=-\frac{1}{x}$
and since α satisfies the original equation then we get
$\left(-\frac{1}{x}\right)^{3}+6\left(-\frac{1}{x}\right)+1=0$
which gives $x^{3}-6 x^{2}-1=0$.
c) i) Since the coefficients are real, the complex roots occur in conjugate pairs.
ii) Let $P(x)=(x-(2-i))(x-(2+i)) Q(x)$

$$
=\left(x^{2}-4 x+5\right)\left(x^{2}+a x+b\right)
$$

$\therefore a x^{3}-4 x^{3}=-5 x^{3} \rightarrow a=-1$ also $5 b=-10 \rightarrow b=-2$

$$
\begin{aligned}
\therefore \quad P(x) & =\left(x^{2}-4 x+5\right)\left(x^{2}-x-2\right) \\
& =\left(x^{2}-4 x+5\right)(x-2)(x+1)
\end{aligned}
$$

Hence the other roots are $x=2$ and $x=-1$.

4d) $\quad V_{s}=2 \pi x y \delta x$

$$
\begin{aligned}
\therefore \quad V & =\lim _{\delta x \rightarrow 0} \sum_{x=0}^{1} 2 \pi x y \delta x \\
& =2 \pi \int_{0}^{1} x\left(\sqrt{x}-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1} x^{\frac{3}{2}}-x^{3} d x \\
& =2 \pi\left[\frac{2 x^{\frac{5}{2}}}{5}-\frac{x^{4}}{4}\right]_{0}^{1} \\
& =\frac{3 \pi}{10} u^{3}
\end{aligned}
$$

5a) $\ln \left(2^{3 x+1}\right)=\ln \left(5^{x+1}\right)$
$\therefore(3 x+1) \ln 2=(x+1) \ln 5$

$$
\begin{align*}
& 3 x \ln 2+\ln 2=x \ln 5+\ln 5 \\
& x(3 \ln 2-\ln 5)=\ln 5-\ln 2 \\
& x=\frac{\ln 5-\ln 2}{3 \ln 2-\ln 5} \approx 1.95 \tag{V}
\end{align*}
$$

b) i) $I=\int_{-a}^{a} f(x) d x$

$$
=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x
$$

Let $x=-u \rightarrow d x=-d u$
When $x=-a, u=a ; x=0, u=0$

$$
\begin{aligned}
\therefore \quad \mathrm{I} & =-\int_{a}^{0} f(-u) d u+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a} f(-u) d u+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a} f(-x) d x+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a}[f(x)+f(-x)] d x
\end{aligned}
$$

ii)

$$
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin x} d x=\int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x}+\frac{1}{1+\sin (-x)} d x
$$

$$
=\int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x}+\frac{1}{1-\sin x} d x
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} \frac{1-\sin x+1+\sin x}{1-\sin ^{2} x} d x \\
& =\int_{0}^{\frac{\pi}{4}} \frac{2}{\cos ^{2} x} d x \\
& =2 \int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x \\
& =2[\tan x]_{0}^{\frac{\pi}{4}}=2
\end{aligned}
$$

c) i) $\angle P N Q=\angle P M Q=90^{\circ}[\angle ' s$ in same segment $]$
ii) Join QA and AR.

Let $\angle \mathrm{RPA}=\alpha=\angle \mathrm{RQA}$
[$\angle '$ s in same segment in cyclic quad PQAR] Also $\angle \mathrm{NPM}=\alpha=\angle \mathrm{NQM}$
[$\angle '$ s in same segment in cyclic quad PQMN]
Also since $\angle \mathrm{HMQ}=\angle \mathrm{AMQ}=90^{\circ}$
and since QM is a common side
then $\triangle \mathrm{QHM} \equiv \Delta \mathrm{QAM}$ [AAS]
Hence $\mathrm{HM}=\mathrm{MA}$ [corres sides in cong $\Delta^{\prime} s$]
d) i) $\frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{1}{\frac{d x}{d \theta}}$

$$
\therefore \quad m=\frac{d y}{d x}=b \cos \theta \times \frac{1}{-a \sin \theta}=-\frac{b \cos \theta}{a \sin \theta}
$$

$\therefore y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta)$
$a y \sin \theta-a b \sin ^{2} \theta=-b x \cos \theta+a b \cos ^{2} \theta$
$\therefore b x \cos \theta+a y \sin \theta=a b\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$ $b x \cos \theta+a y \sin \theta=a b[\div a b]$ to get

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 .
$$

ii) M has coordinates $(0, b \sin \theta)$

In the equation in (i) let $x=0$ to give
the coordinates of $\mathrm{B}\left(0, \frac{b}{\sin \theta}\right)$.
$\therefore O M \cdot O B=|b \sin \theta| \times \frac{b}{|\sin \theta|}=b^{2}$

6a) $m_{P Q}=\frac{\bar{q}-\bar{p}}{c q-c p}=\frac{c(p-q)}{p q} \times \frac{1}{c(q-p)}=\frac{-1}{p q}$ V
Since $\angle P R Q=90^{\circ}$ then $m_{P R} \times m_{Q R}=-1$
$\therefore \frac{-1}{p r} \times \frac{-1}{q r}=-1 \quad \rightarrow \quad r^{2}=-\frac{1}{p q}$
マ

Now $x y=c^{2} \quad \rightarrow \quad y^{\prime}=-\frac{c^{2}}{x^{2}}$
Hence at R the gradient of the tangent $=\frac{-1}{\mathrm{r}^{2}}$
\therefore at R the gradient of the normal $=r^{2}$
but $r^{2}=-\frac{1}{p q}=m_{P Q}$
$\therefore P Q$ parallel to the normal at R.
bi) Let r be the radius of a typical slice
$\therefore r+1=x \rightarrow r=x-1$
∇
Now $\Delta V=\pi r^{2} h=\pi(x-1)^{2} \Delta y$
ii) When $x=1, y=2-1=1$
$\therefore V=\lim _{\Delta y \rightarrow 0} \sum_{y=0}^{1} \pi(x-1)^{2} \Delta y$
Now $\quad-y=x^{2}-2 x$
$\therefore \quad 1-y=x^{2}-2 x+1$
∇
$\therefore \quad 1-y=(x-1)^{2}$
hence $\therefore V=\lim _{\Delta y \rightarrow 0} \sum_{y=0}^{1} \pi(1-y) \Delta y$
iii) $\quad V=\pi \int_{0}^{1} 1-y d y$

$$
\begin{align*}
& =\pi\left[y-\frac{y^{2}}{2}\right]_{0}^{1} \tag{V}\\
& =\frac{\pi}{2} u^{3}
\end{align*}
$$

c) i) $(a-b)^{2}>0 \quad(a \neq b)$
$\therefore \quad a^{2}-2 a b+b^{2}>0$
∇
$\therefore \quad a^{2}+b^{2}>2 a b$
ii) Similarly $b^{2}+c^{2}>2 b c$ and $\quad c^{2}+a^{2}>2 c a$

Now $1+2+3$ gives

$$
2\left(a^{2}+b^{2}+c^{2}\right)>2(a b+b c+c a)
$$

$\therefore a^{2}+b^{2}+c^{2}>a b+b c+c a$
iii) Using the result in (ii)

Let $a \rightarrow a b ; b \rightarrow b c ; c \rightarrow c a$.
$\therefore a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}>a b . b c+b c . c a+c a . a b \quad \nabla$

$$
\begin{aligned}
& a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}>a b c(a+b+c) \\
& \therefore \quad \frac{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}{a+b+c}>a b c
\end{aligned}
$$

7a) $\quad P(x)=3 x^{3}-11 x^{2}+8 x+4$ $P^{\prime}(x)=9 x^{2}-22 x+8$ $P^{\prime}(x)=0$ for stationary points.

$$
\therefore(9 x-4)(x-2)=0 \rightarrow x=2 \text { or } x=\frac{9}{4} .
$$

Since $P(2)=24-44+16+4=0$
then $x=2$ is the double root.

$$
\therefore P(x)=(x-2)^{2}(3 x+1)
$$

b) Let $P(x)=\tan ^{-1} x-x+\frac{1}{3} x^{3}$

$$
\begin{align*}
\therefore \quad P^{\prime}(x) & =\frac{1}{1+x^{2}}-1+x^{2} \\
& =\frac{1-\left(1+x^{2}\right)+x^{2}\left(1+x^{2}\right)}{1+x^{2}} \\
& =\frac{x^{4}}{1+x^{2}}>0 \text { for } x>0
\end{align*}
$$

$\therefore P(x)$ is an increasing function for $x>0$ and since $P(0)=0$ then $\tan ^{-1} x>x-\frac{1}{3} x^{3}$
c) i) $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=2 x^{3}-10 x$
when $x=0, v=u \rightarrow c=\frac{1}{2} u^{2}$
$\therefore \frac{1}{2} v^{2}=\frac{x^{4}}{2}-5 x^{2}+\frac{1}{2} u^{2}$

$$
\therefore \frac{1}{2} v^{2}=\frac{x^{4}}{2}-5 x^{2}+c
$$

$$
\therefore \frac{1}{2} v^{2}=\frac{x^{4}}{2}-5 x^{2}+\frac{1}{2} u^{2}
$$

\square

$$
\therefore \quad v^{2}-u^{2}=x^{4}-10 x^{2}
$$

$\therefore \quad v^{2}-u^{2}=x^{4}-10 x^{2}$

7cii) If $u=3$ then $v^{2}-9=x^{4}-10 x^{2}$
$\therefore \quad v^{2}=x^{4}-10 x^{2}+9$
$=\left(x^{2}-1\right)\left(x^{2}-9\right)$

$$
=(x-1)(x+1)(x-3)(x+3) \nabla
$$

Since $v^{2} \geq 0$ for motion to exist then $(x-1)(x+1)(x-3)(x+3) \geq 0$ and since the particle starts at $x=0$ with $v=3$ it is moving to the right.

At $x=1, v=0$ and $\ddot{x}=-8$ and so the particle will move to the left until it reaches $x=-1$
where $v=0$ and $\ddot{x}=8$. This means the particle will then move to the right until $v=0$ again at $x=1$.

Thus it oscillates in the interval $-1 \leq x \leq 1$.
iii) Not SHM since $\ddot{x} \neq-n^{2}(x-b)$
iv) When $u=6, \quad v^{2}=x^{4}-10 x^{2}+36$

$$
=\left(x^{2}-5\right)^{2}+11
$$

$\therefore \quad v^{2}>0$ for all x in the domain, hence the particle will never stop.

It moves to the right with decreasing velocity until it passes $x=\sqrt{5}($ with $v=\sqrt{11})$ and continues to the right with increasing velocity.

8 a) i) Let ω be a solution to $z^{3}=1$
$\therefore \quad z^{3}-1=0 \rightarrow(z-1)\left(z^{2}+z+1\right)=0$ but as ω is a non real root, then $\omega^{2}+\omega+1=0$.
ii) Now $\omega^{3}=1$, hence
$(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{4}\right)(2-$
ω^{5}) reduces to

$$
\begin{aligned}
& (2-\omega)\left(2-\omega^{2}\right)(2-\omega)\left(2-\omega^{2}\right) \\
& =(2-\omega)^{2}\left(2-\omega^{2}\right)^{2} \\
& =\left[(2-\omega)\left(2-\omega^{2}\right)\right]^{2} \\
& =\left[4-2 \omega^{2}-2 \omega+\omega^{3}\right]^{2} \\
& =\left[5-2\left(\omega^{2}+\omega\right)\right]^{2} \\
& =[5-2 \times-1]^{2}=49
\end{aligned}
$$

\therefore minimum \times maximum <0
$\therefore \quad(q+2 p \sqrt{p})(q-2 p \sqrt{p})<0$
$q^{2}-4 p^{2} \cdot p<0$
hence $q^{2}<4 p^{3}$

