CARINGBAH HIGH SCHOOL 2013

TRIAL HIGHER SCHOOL
CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I Pages 2-5

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 6-12
90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following are the foci for the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1
$$

(A) $\left(0, \pm \frac{3 \sqrt{7}}{4}\right)$
(B) $(\pm \sqrt{7}, 0)$
(C) $(0, \pm \sqrt{7})$
(D) $\quad\left(\frac{3 \sqrt{7}}{4}, 0\right)$

2 Which is the correct answer to the following integral?

$$
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin ^{7}(x) \cos ^{4}(x) d x
$$

(A)
$2 \times \int_{0}^{\frac{\pi}{4}} \sin ^{7}(x) \cos ^{4}(x) d x$
(B)

$$
\frac{1024-533 \sqrt{2}}{36960}
$$

(C)
(D)

$$
-\frac{1024-533 \sqrt{2}}{36960}
$$

zero

3 Let α, β and γ be the roots of the cubic equation $x^{3}-5 x^{2}+13 x-7=0$. Which of the following is the equation with roots α^{2}, β^{2} and γ^{2} ?
(A) $7 x^{3}-13 x^{2}+5 x-1=0$
(B) $x^{3}+x^{2}+99 x-49=0$
(C) $x^{3}+5 x^{2}-13 x-7=0$
(D) $49 x^{3}+99 x^{2}+x-1=0$

4 Given that $x^{2}+y^{2}+x y=12$, which of the following is true?
(A)

$$
\begin{equation*}
\frac{d y}{d x}=\frac{2 x+y}{2 y+x} \tag{B}
\end{equation*}
$$

$\frac{d y}{d x}=-\frac{2 x+y}{2 y+x}$
(C)

$$
\frac{d y}{d x}=\frac{2 x-y}{2 y+x}
$$

(D)

$$
\frac{d y}{d x}=\frac{-2 x+y}{2 y+x}
$$

5 The equation $|z-1-3 i|+|z-9-3 i|=10$ corresponds to an ellipse in the Argand diagram. Which of the following is the complex number corresponding to the centre of the ellipse?
(A) $\mathbf{5}+\mathbf{3 i}$
(B) $-\mathbf{5}+\mathbf{3 i}$
(C) $-\mathbf{5}-\mathbf{3 i}$
(D) $\mathbf{5}-\mathbf{3 i}$

6 The point $T(a \cos \theta, \operatorname{asin} \theta)$ lies on the circle $x^{2}+y^{2}=r^{2}$. Which of the following gives the equation of the tangent at T ?
(A) $\boldsymbol{x} \boldsymbol{\operatorname { c o s } \theta}+\boldsymbol{y} \sin \theta=\boldsymbol{a}$
(B) $\boldsymbol{x} \cos \theta-y \sin \theta=a$
(C) $x \cos \theta-y \sin \theta=a^{2}$
(D) $x \cos \theta+y \sin \theta=a^{2}$

The point P lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The chord through P and the focus $S(a e, 0)$ meets the ellipse at Q. The tangents to the ellipse at P and Q meet at the point $T\left(x_{0}, y_{0}\right)$, so the equation of PQ is $\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=1$. (Note that T lies on the directrix).

What is the value of the ratio $\frac{P S}{S T}$, given that this ratio is constant?
(A) e^{2}
(B) ae
(C) $\frac{\boldsymbol{a}}{\boldsymbol{e}}$
(D) \boldsymbol{e}
$8 \quad$ Suppose $\omega^{3}=1, \omega \neq 1$ and k is a positive integer.
What are the two values of $1+\omega^{k}+\omega^{2 k}$?
(A) 3,0
(B) 3,1
(C) 1,0
(D) None of the above
(A)

(C)

(B)

(D)

Given that $\cos (a+b) x+\cos (a-b) x=2 \cos (a x) \cos (b x)$, which of the following is the answer for

$$
\int \cos (3 x) \cos (2 x) d x ?
$$

(A) $\frac{1}{2}(\cos 5 x+\cos x)+c$
(B) $\frac{1}{10} \cos 5 x+\frac{1}{2} \cos x+c$
(C) $\frac{1}{10} \sin 5 x+\frac{1}{2} \sin x+c$
(D) $\frac{1}{2}(\sin 5 x+\sin x)+c$

Section II

90 marks
Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In
Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW booklet.
(a) Find
(i) $\int \frac{t^{2}-2}{t^{3}} d t$
(ii) $\int x e^{x} d x$
(iii) $\int \frac{2 x}{(x+1)(x+3)} d x$
(b) By using the substitution $u=x-4$ evaluate

$$
\int_{4}^{4 \cdot 5} \frac{d x}{\sqrt{(x-3)(5-x)}}
$$

(c) (i) If

$$
u_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x, \quad n \geq 2
$$

prove that

$$
u_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) u_{n-2}
$$

(ii) Hence evaluate

$$
\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x
$$

(a) The complex number w is given by $w=-1+i \sqrt{3}$.
(i) Show that $w^{2}=2 \bar{w}$. 2
(ii) Evaluate $|w|$ and $\arg w$.
(iii) Show that w is a root of $w^{3}-8=0$
(b) Sketch the locus of z satisfying:
(i) $\operatorname{Re}(z)=|z| \quad 2$
(ii) Both $\operatorname{Re}(z) \geq 2$ and $|z-1| \leq 2$
(c) Given that a and b are real numbers and

$$
\frac{a}{1+i}+\frac{b}{1+2 i}=1
$$

find the values of a and b.
(d) The complex numbers z_{1}, z_{2}, z_{3} and z_{4} are represented in the complex plane by the points

A, B, C and D respectively.
If $z_{1}+z_{3}=z_{2}+z_{4}$ prove ABCD is a parallelogram.
(a) The equation $x^{3}+b x^{2}+x+2=0$, where b is a real number, has roots α, β, γ.
(i) Obtain an expression, in terms of b, for

$$
\alpha^{2}+\beta^{2}+\gamma^{2}
$$

(ii) Hence determine the set of possible values of b if the roots of the above equation are all real.
(iii) Write down the equation whose roots are

$$
2 \alpha, 2 \beta, 2 \gamma
$$

(b) Given that the polynomial $P(x)=8 x^{4}-36 x^{3}-66 x^{2}-35 x-6$ has a zero of multiplicity 3, find all the zeros of $P(x)$.
(c) If z represents a complex number such that $z^{5}=1$, where $z \neq 1$.
(i) Deduce that

$$
z^{2}+z+1+\frac{1}{z}+\frac{1}{z^{2}}=0
$$

(ii) By substituting $x=z+\frac{1}{z}$ reduce the equation in (i) to a quadratic in x.
(iii) Hence deduce that

$$
\cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5}=-\frac{1}{4}
$$

(a) The points A, B, C and D lie on the circle C_{1}. From the exterior point T, a tangent is drawn to point A on C_{1}. The line $C T$ passes through D and $T C$ is parallel to $A B$.

B
(i) Copy or trace the diagram on to your page.
(ii) Prove that $\triangle A D T$ is similar to $\triangle A B C$.

The line $B A$ is produced through A to point M, which lies on a second circle C_{2}. The points A, D, T also lie on C_{2} and the line $D M$ crosses $A T$ at Q.
(iii) Show that $\triangle Q M A$ is isosceles. 2
(iv) Show that $T M=B C$.
(b) (i) Prove that the normal to the hyperbola $x y=4$ at the point $P\left(2 p, \frac{2}{p}\right)$ is given by

$$
p^{3} x-p y=2\left(p^{4}-1\right)
$$

(ii) If this normal meets the hyperbola again at $Q\left(2 q, \frac{2}{q}\right)$ prove that $p^{3} q=-1$.
(iii) Hence prove that there exists only one chord which is normal to the hyperbola at both ends and find its equation.
(a) Find the equation of the ellipse with centre the origin, which has a focus at $(2,0)$ and the corresponding directrix is $\mathrm{x}=4$.
(b)

The diagram shows the graph of the function $y=f(x)$
Draw separate sketches of the following:
(i) $y=f(-x)$
(ii) $y=\frac{1}{f(x)}$
(iii) $y=f(|x|)$
(iv) $y=\ln (f(x))$
(v) $y=e^{f(x)}$
(vi) $x=f(y)$
(c) The base of a solid is the semi-circular region of radius 1 unit in the $x-y$ plane as illustrated in the diagram below.

Each cross-section perpendicular to the x-axis is an isosceles triangle with each of the two equal sides three quarters the length of the third side..
(i) Show that the area of the triangular cross-section at $x=a$ is

$$
\frac{\sqrt{5}}{2}\left(1-a^{2}\right) .
$$

(ii) Hence find the volume of the solid.
(a) $\quad P(4,6)$ and $Q(14,24)$ are two points on the hyperbola

$$
\frac{x^{2}}{4}-\frac{y^{2}}{12}=1
$$

M is the midpoint of $P Q$ and $O(0,0)$ is the origin. The tangents to the hyperbola at P and Q intersect at the point R . Show that the points R, O and M are collinear.

You may assume that the tangent to this hyperbola at $T\left(x_{1}, y_{1}\right)$ has equation

$$
\frac{x_{1} x}{4}-\frac{y_{1} y}{12}=1
$$

(Do NOT prove this.)
(b) A particle is moving so that $\ddot{x}=18 x^{3}+27 x^{2}+9 x$.

Initially $x=-2$ and the velocity, v, is -6 . It is known that the velocity is always negative.
(i) Show that $v^{2}=9 x^{2}(1+x)^{2}$.
(ii) Hence, or otherwise, show that

$$
\int \frac{1}{x(1+x)} d x=-3 t
$$

(iii) Find a, b such that

$$
\frac{1}{x(1+x)} \equiv \frac{a}{x}+\frac{b}{1+x}
$$

(iv) Show that for some constant c,

$$
\log _{e}\left(1+\frac{1}{x}\right)=3 t+c
$$

(v) Using this equation and the initial conditions, find x as a function of t.
(c) The angles A, B and C are consecutive terms in an arithmetic series. Show that

Candidate Name/Number: \qquad

Multiple choice answer page. Fill in either A, B, C or \mathbf{D} for questions 1-10.

This page must be handed in with your answer booklets

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, \quad x>0$
| CARINGBAM HIGH EXtENSION II 2013
*THSC SOnvTIows
Q 1 C
Q6 A
Q2 D
Q7 D
Q3 B
Q8 A

Q4 B
Q9 D
Q5 A Q10C
(Q11) $\int \frac{t^{2}-2}{t^{3}} d t=\int\left(\frac{1}{t}-\frac{2}{t^{2}}\right) d t$

$$
=\int\left(\frac{1}{t}-2 t^{-3}\right) d t
$$

$$
\begin{aligned}
& =\frac{\ln |t|+\frac{1}{t^{2}}+c}{u \cdot v} \\
& =x e^{x}-\int^{u^{\prime} \cdot v} 1 \cdot e^{x} d x
\end{aligned}
$$

$$
=x e^{x}-e^{x}+c
$$

(iii) $I=\int \frac{2 x}{(x+1)(x+3)} d x$

Using partial fractions

$$
\begin{gathered}
2 x \equiv a(x+3)+b(x+1) \\
x=-1 \Rightarrow a=-1 \\
x=-3 \Rightarrow b=3 \\
\left.=\int \frac{(-1}{x+1}+\frac{3}{x+3}\right) d x \\
=3 \ln |x+3|-\ln |x+1|+c \\
=\ln \left|\frac{(x+3)^{3}}{x+1}\right|+c
\end{gathered}
$$

$$
\therefore I=\int\left(\frac{-1}{x+1}+\frac{3}{x+3}\right) d x
$$

(b)

$$
\begin{gathered}
I=\int_{4}^{4.5} \frac{d x}{\sqrt{(x-3)(5-x)}} \\
\int_{0=0}^{u=0.5} \frac{1 . d u}{\sqrt{(1+u)(1-u)}}
\end{gathered}
$$

when

$$
\begin{aligned}
& x=4.5, y=0.5 \\
& x=4, y=0
\end{aligned}
$$

(1)

$$
\begin{aligned}
& =\int_{v=0}^{u=\frac{1}{2}} \frac{1}{\sqrt{1-v^{2}}} d u \\
& =\left[\sin ^{-1} v\right]_{0}^{1 / 2} \\
& =\frac{\pi}{6}-0 \\
& =\frac{\pi}{6}
\end{aligned}
$$

(0) $\overline{[u \cdot v}]_{0}^{\pi / 2} \int_{0}^{\pi / 2 v^{\prime}} \cdot v$
$=0+n \int_{0}^{\pi / 2} x^{n-1} \cdot \cos x \cdot d x$
Now use parts a secend time.

$$
\begin{aligned}
& =n\left[x^{n-1} \cdot \sin x\right]_{0}^{\pi / 2}-n(n-1) \int_{0}^{\pi / 2} x^{n-2} \cdot v \\
& =n\left(\left(\frac{\pi}{2}\right)^{n-1} \cdot \sin \frac{\pi}{2}-0\right)-n(n-1) U_{n-2} \\
& =n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) U_{n-2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
n=2 \Rightarrow U_{2} & =2\left(\frac{\pi}{2}\right)^{1}-2 \cdot 1 \cdot U_{0} \\
& =\pi-2 \int_{0}^{\pi / 2} \sin x \cdot d x \\
& =\pi+2[\cos x]_{0}^{\pi / 2} \\
& =\pi+2(0-1) \\
& =\pi-2
\end{aligned}
$$

Q12 (a)

$$
\begin{align*}
w & =-1+i \sqrt{3} . \\
w^{2} & =(-1+i \sqrt{3})(-1+i \sqrt{3}) \tag{1}\\
& =1-3-2 i \sqrt{3} \\
& =-2-2 i \sqrt{3} \\
\bar{w} & =-1-i \sqrt{3} \\
2 \bar{w} & =2(-1-i \sqrt{3}) \\
& =-2-2 i \sqrt{3} \\
& =w^{2}
\end{align*}
$$

(11) $\quad|w|=\sqrt{1+3} \quad$ argw $=\frac{2 \pi}{3}$

$$
=2
$$

(iii)

$$
\begin{aligned}
\therefore w & =2 \operatorname{cis} \frac{2 \pi}{3} \\
w^{3} & =2^{3} \operatorname{cis}\left(3 . \frac{2 \pi}{3}\right) \\
& =8 \operatorname{cis} 2 \pi \\
& =8 \times 1 \\
w^{3} & =8 \\
& \therefore w^{3}-8=0
\end{aligned}
$$

(6) (1) Let $z=x+i y$.

$$
\begin{aligned}
& \operatorname{Re}(z)=x \\
& |z|=\sqrt{x^{2}+y^{2}} \\
& \text { as } \operatorname{Re}(z)=|z| \\
& \text { Then } x=\sqrt{x^{2}+y^{2}} \\
& x^{2}=x^{2}+y^{2} \\
& y^{2}=0 \\
& \therefore y=0 \text { iex-axi3 }
\end{aligned}
$$

BHt $|z| \geqslant 0 \therefore$ anly $x \nless 0$

(11) $\operatorname{Re}(z) \geqslant 2$ and $|z-1| \leqslant 2$

(c) $\therefore a(1+2 i)+b(1+i)=(1+i)(1+2 i)$
equating real parts $\Rightarrow a+b=-1$
" imaginany" parts $\Rightarrow 2 a+b=3$

$$
\therefore \frac{a}{}=4
$$

(d)

$$
\therefore z_{1}-z_{2}=z_{4}-z_{3}
$$

$$
\text { If } z_{1}-z_{2}=z_{4}-z_{3}
$$

then $\left|z_{1}-z_{2}\right|=\left|z_{4}-z_{3}\right|$
and $\arg \left(z_{1}-z_{2}\right)=\arg \left(z_{4}-z_{3}\right)$

$$
\therefore A B=C D
$$

and $A B \| C D$
$\therefore A B C D$ is a parallelogram.
Q13
(a) (1)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =(-b)^{2}-2 \times 1 \\
& =b^{2}-2
\end{aligned}
$$

(ii) realroots $\Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2} \geqslant 0$
bothere $\alpha, \beta, \gamma \neq 0$

$$
\begin{aligned}
& \therefore \alpha^{2}+\beta^{2}+\gamma^{2}>0 \\
& \therefore b^{2}-2>0 \\
& \therefore b<-\sqrt{2} \text { ar } b>\sqrt{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& 2 \alpha=x \quad \therefore \frac{x}{2}=\alpha \\
& \text { in } \alpha^{3}+b \alpha^{2}+\alpha+2=0 \\
& \therefore\left(\frac{x}{2}\right)^{3}+b\left(\frac{x}{2}\right)^{2}+\frac{x}{2}+2=0 \\
& \frac{x^{3}}{8}+\frac{b x^{2}}{4}+\frac{x}{2}+2=0 \\
& \therefore x^{3}+2 b x^{2}+4 x+16=0
\end{aligned}
$$

(2)
(b)

$$
\begin{aligned}
& P^{\prime}(x)=32 x^{3}-108 x^{2}-132 x-35 \\
& P^{\prime \prime}(x)=96 x^{2}-216 x-132 \\
&=12\left(8 x^{2}-18 x-11\right) \\
&=12(2 x+1)(4 x-11) \\
& \therefore x=-1 / 2 \text { or } \frac{11}{4} \\
& P\left(\frac{11}{4}\right) \neq 0 \quad, P(-1 / 2)=0 \\
& \therefore P(x)=(2 x+1)^{3} Q(x) \\
&=(2 x+1)^{3} \cdot(x-6) \\
& \therefore x=-1 / 2,-1 / 2,-1 / 2,6
\end{aligned}
$$

(c)
(1)

$$
\begin{aligned}
& \therefore z^{5}-1=0 \\
& \text { ie }(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)=0 \\
& z \neq 1 \text { so } z^{4}+z^{3}+z^{2}+z+1=0 \\
& z \neq 0 \text { so } \div \text { by } z^{2} \\
& \text { ie } z^{2}+z+1+\frac{1}{z}+\frac{1}{z^{2}}=0
\end{aligned}
$$

(II)

$$
\begin{aligned}
& \therefore\left(z^{2}+\frac{1}{t^{2}}\right)+\left(z+\frac{1}{z}\right)+1=0 \\
& \left(z+\frac{1}{z}\right)^{2}-2+\left(z+\frac{1}{z}\right)+1=0 \\
& \therefore x^{2}+x-1=0
\end{aligned}
$$

(iii) From $z^{5}=1$

$$
\begin{aligned}
z_{1} & =\operatorname{cis} \frac{2 \pi}{5} \\
z_{2} & =\operatorname{cis} \frac{4 \pi}{5} \\
\frac{1}{z_{2}}=z_{3} & =\operatorname{cis} \frac{6 \pi}{5} \\
\frac{1}{z_{1}}=z_{4} & =\operatorname{cis} \frac{8 \pi}{5} \\
z_{5} & =\operatorname{cis} \frac{10 \pi}{5}=1
\end{aligned}
$$

from(11) $x=x_{1} \operatorname{rr} x_{2}$

$$
\begin{aligned}
x_{1}=z_{1}+\frac{1}{z_{1}}= & \operatorname{cis} \frac{2 \pi}{5}+\operatorname{cis}-\frac{2 \pi}{5} \\
= & \cos \frac{2 \pi}{5}+\sin \frac{2 \pi}{3} \\
& +\cos \frac{2 \pi}{5}+i \sin -\frac{2 \pi}{5}
\end{aligned}
$$

as cos Even function andsin ODD function

$$
\begin{aligned}
\therefore x_{1} & =\frac{2 \cos \left(\frac{2 \pi}{5}\right)}{\text { and } x_{2}}
\end{aligned}=z_{2}+\frac{1}{z_{2}}, ~ 2 \cos \left(\frac{4 \pi}{5}\right) \text {) }
$$

frem (11)

$$
\begin{aligned}
\therefore 2 \cos \left(\frac{2 \pi}{5}\right) \cdot 2 \cos \left(\frac{4 \pi}{5}\right) & =-1 \\
\therefore \cos \left(\frac{2 \pi}{5}\right) \cdot \cos \left(\frac{4 \pi}{5}\right) & =-1 / 4
\end{aligned}
$$

Q14
(a) Let $\angle D A T=\beta$, Let $\angle A B C=\alpha$
(1)
$\angle D A T=\angle A C D$ ($\angle s$ in alt. seg.)
$\angle A C D=\angle B A C \quad$ (alt $\angle s, C D \| A B$)
$\angle A B C=\angle A D T \quad$ (ext \angle cyclic grad $A B C D)$
(III)
$\angle M A T=\angle M D T$ (\angle sin sameseg)
$\angle M D T=\angle A M D \quad(a l t \angle S, D T \| A M)$

N

$$
\begin{gathered}
\angle D M T=\angle D A T(\angle s \text { in same seg) } \\
\therefore \angle A M T=\beta+\gamma \\
\angle A T D=\angle A M D \text { (} \angle \text { s insamesey) } \\
=\gamma
\end{gathered}
$$

\therefore Frem $\triangle A D T$ 的 $\alpha+\gamma=180^{\circ}$

$$
\begin{aligned}
& \therefore \angle B C A=\gamma \\
& \therefore \angle B C D=\beta+\sigma=\angle A M T
\end{aligned}
$$

\therefore BCTM is a parallelogrem (l pair of sidesparallel plus one pair ofopp. $\angle s$ equal).

$$
\therefore C B=T M
$$

(b) (1)

$$
\begin{align*}
& y=\frac{y}{x} \\
& y^{\prime}=-\frac{4}{x^{2}} \\
& \therefore m_{T_{p}}=-\frac{y}{4 p^{2}} \\
& =-\frac{1}{p^{2}} \\
& m_{N p}=p^{2} \\
& \therefore y-\frac{2}{p}=p^{2}(x-2 p) \\
& p y-2=p^{3} x-2 p^{4} \\
& p^{3} x-p y=2\left(p^{4}-1\right)
\end{align*}
$$

(11) $\therefore Q$ satisfres $x y=4$ then $y=\frac{4}{x}$ so $\quad p^{3} \cdot x-p \cdot \frac{4}{x}=2\left(p^{4}-1\right)$
or $p^{3} x^{2}-2\left(p^{4}-1\right) x-4 p=0$

$$
\begin{aligned}
\therefore x & =\frac{2\left(p^{4}-1\right) \pm \sqrt{4\left(p^{4}-1\right)^{2}+16 p^{4}}}{2 p^{3}} \\
& =\frac{p^{4}-1 \pm \sqrt{\left(p^{4}-1\right)^{2}+4 p^{4}}}{p^{3}} \\
& =\frac{p^{4}-1 \pm\left(p^{4}+1\right)}{p^{3}} \\
& =\frac{p^{4}-1+p^{4}+1}{p^{3}} \text { or } \frac{p^{4}-1-p^{4}-1}{p^{3}} \\
& =\frac{2 p^{4}}{p^{3}}, \frac{-2}{p^{3}} \\
& =2 p
\end{aligned}
$$

Now if $x=2 p$ then we have $P\left(2 p, \frac{2}{p}\right)$
so $Q\left(2 q, \frac{2}{q}\right) \Rightarrow 2 q=\frac{-2}{p^{3}}$

$$
\text { or } p^{3} q=-1
$$

(iII)

By symmetry $q^{3} p=-1$ also

$$
\begin{aligned}
& \therefore p^{3} q=p q^{3} \\
& \text { or } p^{3} q-q^{3} p=0 \\
& p q\left(p^{2}-q^{2}\right)=0 \\
& p q(p-q)(p+q)=0 \\
& \therefore p q=0 \text { - not possible } \\
& \text { or } p=q \text { - not possible } \\
& \therefore p=-q \text {. } \\
& \therefore \quad q^{3}-q=-1 \\
& q^{4}=1 \\
& \therefore q= \pm 1 \\
& \therefore P \equiv(\pm 2, \pm 2) \\
& \therefore \text { cherd is } y=x:-2 \leqslant x \leqslant 2
\end{aligned}
$$

Q15
(a)

$$
\begin{equation*}
a e=2 \tag{1}
\end{equation*}
$$

$9 / e=4$
(1) x (2) $\Rightarrow a^{2}=8$
(1) \div (2) $\Rightarrow e^{2}=\frac{1}{2}$
ellipse $\Rightarrow e^{2}=1-\frac{b^{2}}{a^{2}}$

$$
\begin{array}{r}
\frac{1}{2}=1-\frac{b^{2}}{8} \\
4=8-b^{2} \\
\underline{b^{2}=4} \\
\therefore \frac{x^{2}}{8}+\frac{y^{2}}{4}=1
\end{array}
$$

(b)
(1)

(II)

(iI)

(iv)

(v)

(v)

(c)

$$
\begin{aligned}
h^{2} & =\frac{9}{4}\left(1-a^{2}\right)-\left(1-a^{2}\right) \\
& =\frac{5}{4}\left(1-a^{2}\right)
\end{aligned}
$$

(1)

$$
\begin{aligned}
\int \frac{d}{d x} \frac{1}{2} v^{2} d x & =\int\left(18 x^{3}+27 x^{2}+9 x\right) d x \\
\frac{1}{2} v^{2} & =\frac{9 x^{4}}{2}+9 x^{3}+\frac{9 x^{2}}{2}+c \\
v^{2} & =9 x^{4}+18 x^{3}+9 x^{2}+c^{\prime} \\
x=-2, v & =-6 \quad \therefore c^{\prime}=0 \\
\therefore v^{2} & =9 x^{2}\left(x^{2}+2 x+1\right) \\
& =9 x^{2}(x+1)^{2}
\end{aligned}
$$

(iI)

$$
\therefore v=3 x(1+x) \text { or }-3 x(1+x)
$$

here

$$
\begin{aligned}
& x=-2 \Rightarrow v=-6 x-1 \begin{array}{l}
\text { here } \\
\\
=6
\end{array} \\
& \begin{array}{l}
\text { not -2 }-6
\end{array} \begin{array}{r}
V=6 x-1 \\
=-6
\end{array} \\
& \therefore v=-3 x(1+x)
\end{aligned} \quad \begin{aligned}
\therefore \frac{d x}{d t} & =-3 x(1+x) \\
\frac{d t}{d x} & =-\frac{1}{3} \frac{1}{x(1+x)}
\end{aligned}
$$

integrate both sides writ x gives
(II)

$$
\begin{aligned}
1 & \equiv a(1+x)+b x \\
x=0 & \Longrightarrow a=1 \\
x=-1 & \Longrightarrow b=-1
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\therefore-3 t & =\int\left(\frac{1}{x}-\frac{1}{1+x}\right) d x \\
& =\ln |x|-\ln |1+x|+c \\
3 t & =\ln \left|\frac{1+x}{x}\right|+c \\
3 t+c^{\prime} & =\ln \left|1+\frac{1}{x}\right|
\end{aligned}
$$

ω

$$
t=0 \quad x=-2
$$

$$
\therefore \quad \ln \left(\frac{A_{2}}{2}\right)=c^{\prime}
$$

$$
\therefore 1+\frac{1}{x}=e^{3 t+\ln 1 / 2}
$$

$$
=\frac{1}{2} e^{3 t}
$$

$$
\frac{1}{x}=\frac{1}{2} e^{3 t}-1
$$

$$
x=\frac{1}{1 / 2 e^{3 t}-1}
$$

$$
x=\frac{2}{e^{3 t}-2}
$$

(c)

$$
A P \Rightarrow A, B C \equiv B-d, B, B+d
$$

so we need only show.

$$
\begin{aligned}
\cos A \cos C-\sin A \sin C & =\cos ^{2} B-\sin ^{2} B \\
& =\cos (2 B)
\end{aligned}
$$

$$
\begin{aligned}
\text { LAS } & =\cos (A+C) \\
& =\cos (B-d+B+d) \\
& =\cos (2 B) \\
& =R+H S
\end{aligned}
$$

