CARINGBAH HIGH SCHOOL

Mathematics Extension 2

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks $\mathbf{- 1 0 0}$

Section I Pages 2-5
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 6-12
90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

1. If w is a non-real cube root of unity the value $\frac{1}{1+w}+\frac{1}{1+w^{2}}$ is equal to
(A) -1
(B) 0
(C) 1
(D) none of these
2. What is the remainder when $x^{3}+x^{2}+5 x+6$ is divided by $x+i$
(A) $7-4 i$
(B) $7-6 i$
(C) $5-4 i$
(D) $5+6 i$
3. The gradient of the tangent to $x y^{3}+2 y=4$ at the point $(2,1)$ is
(A) -8
(B) $\frac{1}{8}$
(C) 8
(D) $\frac{-1}{8}$
4. The eccentricity of the ellipse $3 x^{2}+5 y^{2}-15=0$ is
(A) $\sqrt{\frac{5}{2}}$
(B) $\sqrt{\frac{2}{5}}$
(C) $\sqrt{\frac{8}{5}}$
(D) $\sqrt{\frac{5}{8}}$
5. The polynomial $3 x^{3}-2 x^{2}+x-7=0$ has roots α, β, γ. Which polynomial has roots $\frac{2}{\alpha}, \frac{2}{\beta}, \frac{2}{\gamma}$?
(A) $3 x^{3}-4 x^{2}+4 x-56$
(B) $7 x^{3}-2 x^{2}+8 x-24=0$
(C) $9 x^{3}-2 x^{2}-27 x-49=0$
(D) $24 x^{3}-8 x^{2}+2 x-7=0$
6. The arg of $i z$ where $z=1+i$ is
(A) $\frac{-\pi}{4}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{5 \pi}{4}$
(D) $\frac{-3 \pi}{4}$
7. Find $\int x \sin \left(x^{2}+3\right) d x$
(A) $-\frac{1}{2} \cos \left(x^{2}+3\right)+C$
(B) $-\frac{1}{2} \sin \left(x^{2}+3\right)+C$
(C) $\frac{1}{2} \cos \left(x^{2}+3\right)+C$
(D) $2 x \cos \left(x^{2}+3\right)+C$
8. The polynomial equation $P(x)=0$ has real coefficients, and has roots which include

$$
x=-2+i \quad \text { and } \quad x=2
$$

What is the minimum possible degree of $P(x)$?
(A) 1
(B) 2
(C) 3
(D) 4
9. What is the value of $\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x$
(A) $\log _{e}(1+e)$
(B) 1
(C) $\log _{e}\left(\frac{1+e}{2}\right)$
(D) $\log _{e} \frac{e}{2}-2$
10. Which of the following is the sketch of $y=\log _{2} x+\frac{1}{x}$?
(A)

(B)

(D)
(C)

\qquad

Question 11 (15 marks)

a) Let $w=\sqrt{3}+i$ and $z=3-\sqrt{3} i$
i) Find $w z$
ii) Express w in mod/arg form
iii) Write w^{4} in simplest Cartesian form.
b)
i) Mark clearly on an Argand diagram the region satisfied simultaneously by
$|z+2|<2 \quad$ and $\quad 0<\arg z<\frac{3 \pi}{4}$
ii) Solve simultaneously
$|z+2|=2 \quad$ and $\quad \arg z=\frac{3 \pi}{4}$
Write your answer in the form $a+i b$
c) A polynomial $P(x)$ has a double root at $x=\alpha$, ie $P(x)=(x-a)^{2} Q(x)$
i) Prove that $P^{\prime}(x)$ also has a root at $x=\alpha$
ii) The polynomial $Q(x)=x^{4}-6 x^{3}+a x^{2}+b x+36$ has a double root at $x=3$

Find the values of a and b
iii) Factorise $Q(x)$ over the complex field.
\qquad

Question 12 (15 marks)

a)
i) Show that $(\cos x-\sin x)^{2}=1-\sin 2 x$
ii) Evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} \sqrt{1-\sin 2 x} d x \tag{2}
\end{equation*}
$$

b) Using the substitution $u=1-x$, find

$$
\begin{equation*}
\int x \sqrt{1-x} d x \tag{3}
\end{equation*}
$$

c)
i) Find the value of the integral

$$
\int_{0}^{\pi} \frac{1}{\sqrt{16-x^{2}}} d x
$$

ii) Find the integral of

$$
\int \frac{1}{16-x^{2}} d x
$$

d) If $I_{n}=\int_{1}^{e} x(\ln x)^{n} d x, n=0,1,2,3, \ldots \ldots$
i) Show that $I_{n}=\frac{e^{2}}{2}-\frac{n}{2} I_{n-1}, \mathrm{n}=1,2,3, \ldots$.
ii) Hence evaluate

$$
\int_{1}^{e} x(\ln x)^{3} d x
$$

\qquad

Question 13 (15 marks)

a)
i) Show that the equation of the normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $P(a \sec \theta, b \tan \theta)$ is $a x \sin \theta+b y=\left(a^{2}+b^{2}\right) \tan \theta$
ii) If the normal in part (i) intersects the x axis at A and the y axis at B , find the co-ordinates of A and B .
iii) Show that the co-ordinates of M, the midpoint of $A B$ are given by

$$
\begin{equation*}
x=\frac{1}{2 a}\left(a^{2}+b^{2}\right) \sec \theta, \quad y=\frac{1}{2 b}\left(a^{2}+b^{2}\right) \tan \theta \tag{2}
\end{equation*}
$$

iv) Hence find the equation of the locus of M in Cartesian form.
v) If $a=b$, what can you say about the locus in part (iv)
b) The region bounded by the portion of the curve $y=\frac{x}{x+1}$, and the x axis is rotated about the line $x=2$

i) Using the method of cylindrical shells, show that the volume δV of a typical
shell at a distance x from the origin and with thickness δx is given by

$$
\delta V=2 \pi(2-x) \cdot \frac{x}{1+x} \cdot \delta x
$$

ii) Hence find the volume of this solid.

Question 14 (15 marks)

a) Consider the function $f(x)=(3-x)(x+1)$ on separate axes sketch, showing the important features the graphs of
i) $y=f(x)$
ii) $y=|f(x)|$
iii) $y=f|(x)|$
iv) $|y|=f(x)$
v) $y^{2}=f(x)^{3}$
b) Given $a+b=m$, prove that, for $a>0, b>0$, and $m>0$
i) $\frac{1}{a}+\frac{1}{b} \geq \frac{4}{m}$
ii) $\frac{1}{a^{2}}+\frac{1}{b^{2}} \geq \frac{8}{m^{2}}$
c) Evaluate $\frac{\lim }{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}$
d)

> i) Use De Moivre's Theorem to express $\cos 3 \theta$ and $\sin 3 \theta$ in terms of powers of $\sin \theta$ and $\cos \theta$
ii) Hence express $\tan 3 \theta$ as a rational function of t, where $t=\tan \theta$
\qquad

Question 15 (15 marks)

a) As shown below, a circle has two chords $A B$ and $M N$ intersecting at F.

Perpendiculars are drawn to these chords at A and at N, intersecting at K.
$K F$ produced, meets $M B$ at T.
Prove that $K T$ is perpendicular to $M B$ (Hint: Join $A N$ and let $\angle A N F=\theta^{\circ}$)

b) If $V_{1}=1, V_{2}=5$ and $V_{n}=5 V_{n-1}-6 V_{n-2}$ for $n \geq 3$, show that
$V_{n}=3^{n}-2^{n}$ for $n \geq 1$
c) Consider the curve $y=\ln x$ sketched below.

Use the method of slicing to find the volume obtained by rotating the region bounded by $1 \leq x \leq e, 0 \leq y \leq \ln x$, about the y axis.

Question 15 (Cont'd)

d) The equation $x^{3}-3 x^{2}-x+2=0$ has roots α, β, γ. Find equations with roots

$$
\begin{equation*}
\text { i) } 2 \alpha+\beta+\gamma, \alpha+2 \beta+\gamma, \alpha+\beta+2 \gamma \tag{3}
\end{equation*}
$$

ii) Find the value of the sum of the squares of the roots of the equation formed in (i)

Question 16 (15 marks)

a) Find $\int \sin ^{5} \theta \cos ^{4} \theta d \theta$
b) If $x^{2}+y^{2}+x y=3$
i) Find $\frac{d y}{d x}$
ii) Sketch showing critical points and stationary points the graph of $x^{2}+y^{2}+x y=3$
c)
i) If $x_{1}>1$ and $x_{2}>1$ show that $x_{1}+x_{2}>\sqrt{x_{1} x_{2}}$
ii) Use the Principal of Mathematical Induction to show that,

For $\mathrm{n} \geq 2$, if $x_{j}>1$ where $j=1,2,3, \ldots \ldots n$ then,

$$
\begin{equation*}
\ln \left(x_{1}+x_{2}+\cdots \ldots \ldots \ldots+x_{n}\right)>\frac{1}{2^{n-1}}\left(\ln x_{1}+\ln x_{2}+\cdots \ldots \ldots .+\ln x_{n}\right) \tag{4}
\end{equation*}
$$

Find $\int x \sin \left(x^{2}+3\right) d x$
(A) $-\frac{1}{2} \cos \left(x^{2}+3\right)+c$
(B) $-\frac{1}{2} \sin \left(x^{2}+3\right)+c$
(C) $\frac{1}{2} \cos \left(x^{2}+3\right)+c$
(D) $2 x \cos \left(x^{2}+3\right)+c$

If ω is a non-real cube root of unity the value of $\frac{1}{1+\omega}+\frac{1}{1+\omega^{2}}$ is equal to
(a) -1
(B) 0
(C) 1
(D) None of these

Ext 2 inal 2014 Carngbatr tigh Schocl. Solutions

oHiple Cheres.

$\therefore 2, C$ 3, B 5, B
$B \quad 1, A \quad 8, C \quad 9, C \quad 10, A$
2uestisn 11
(i) wz
$=(\sqrt{5}+i)(2-\sqrt{3} i)$
$=3 \sqrt{2}-3 i+3 i+5$
$=4 \sqrt{3}$
$1 T=\sqrt{(\sqrt{3})^{2}+(1)^{2}}$
$=2$
$\tan \theta=\frac{1}{\sqrt{3}}$
$0=\pi \omega_{6}$
$c_{i}:=2 \operatorname{cis} \pi / b$
i) $\omega^{4}=(2 \text { cis } \pi / 6)^{4}$
$=z^{4} \operatorname{cis} 4 \pi / 6$
$=-2+8 \sqrt{3} 2$

ii) $A(-x+a i)$
(c) $P \cdot P(x)=(x-x)^{2} Q(x)$
$P^{\prime}(x)=2(x-\alpha) Q(x)+(x-\alpha)^{2} Q^{\prime}(x)$
$=(x-x)\left[2 Q(x)+(x-x) Q^{\prime}(x)\right]$
$\therefore p^{\prime}(x)$ har a finctor $(x-i)$ $\therefore=\alpha$ is a root

$$
\begin{aligned}
& \text { (c) (ii) } P(x)=x^{4}-6 x^{3}+a x^{2}+b x+36 \\
& P(3)=0 \\
& 0=81-162+9 a+3 b+36 \\
& 3 a+b=15 \text {-(1) } \\
& P^{\prime}(3)=0 \\
& P^{\prime}(x)=4 x^{3}-18 x^{2}+20 x+b \\
& 0=4(27)-18(9)+6 a+b- \\
& 6 a+b=54-(3) \\
& \text { (1)- (2) }-3 a=-39 \\
& a=13, b=-24 \\
& \text { (c) (iii) } P(x)=x^{4}-6 x^{3}+13 x^{2}-94 x+36 \\
& P(x)=(x-3)^{2}\left(x^{2}+m x+n\right) \\
& =\left(x^{2}-6 x+9\right)\left(x^{2}+m x+n\right) \\
& =x^{4}+x^{3}(m-6)+x^{2}(-6 m+n+9)+\cdots \\
& +x\left(-6 n+a_{m}\right)+9 n \\
& \begin{array}{cc}
\therefore 9 n & =36, \\
n=4 & -6 m+n+9=13 \\
-6 m+13=13
\end{array} \\
& m=0 \\
& \text { Factors of } P(x) \\
& \begin{aligned}
P(x) & =(x-3)^{2}\left(x^{2}+4\right) \\
& =(x-3)^{2}(x+2)
\end{aligned} \\
& =(x-3)^{2}(x+2 i)(x-2 i) \\
& \text { OR } x^{2}-6 x+9 \frac{x^{2}+4}{x^{4}-6 x^{3}+13 x^{2}-34 x+36} \\
& \frac{x^{4}-6 x^{3}+9 x^{2}}{4 x^{2}-24 x} \\
& \begin{array}{l}
4 x^{2}-24 x+36 \\
4 x^{2}-24 x+36 \\
\hline
\end{array} \\
& \therefore P(x)=(x-3)^{2}\left(x^{2}+4\right) \\
& =(x-3)^{2}(x-2 i)(x+2 i) \\
& \text { (a) (i) }(\cos x-\sin x)^{2}=1-\sin 2 x \\
& \text { h. H.S. } \\
& \begin{array}{l}
\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x \\
=\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x
\end{array} \\
& =1 / 8 \int \frac{1}{4-x}+\frac{1}{4+x} d x \\
& \begin{array}{l}
=\cos ^{2} x+\sin ^{2} x-2 \sin x \\
=1-2 \sin x \cos x
\end{array} \\
& \begin{array}{l}
=1 i-\sin 2 x \\
\pi_{k+4} \\
\int_{0}^{1-\sin 2 x} d x \\
\sqrt{1-2} d
\end{array} \\
& =1 / 8[-\ln |4-x|+\ln |4+x|] \\
& =\int_{0}^{\pi / 4} \cos x-\sin x d x \\
& =[\sin x+\cos x]_{0}^{\pi / 4} \\
& =\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(1) \\
& =\sqrt{2}-1 \\
& =1 / 8 \ln \left|\frac{4+x}{4-x}\right|+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{(4-x)(4+x)}=\frac{A}{4-x}+\frac{B}{4+x} \\
& 7=\frac{4 A+x A+4 B-x B}{(4-x)(4+x)} \\
& \left\{\begin{array}{l}
4 A+1, B=1 \quad A-B=0 \\
A=1 / 8, B=1 / 8
\end{array}\right] \quad \operatorname{In}=\int_{1}^{e} x(\ln x)^{n} d x \quad n=0,1,2 . \\
& =\int u^{3 / 2}-u^{1 / 2} d u \\
& =2 / 5 u^{5 / 2}-2 / 3 u^{3 / 2}+c \\
& =2 / 5(1-x)^{5 / 2}-2 / 3(1-x)^{3 / 2}+c \\
& \text { (c) (i) } \int_{0}^{\pi / \pi} \frac{1}{\sqrt{16-x^{2}}} d x \\
& \text { (d) } \begin{aligned}
\text { In } & =\int_{1}^{e} x(\ln x)^{n} d x \quad n=0,1,2 \\
\text { hot } u & =(\ln x)^{n}, v^{\prime}=x \\
v & =x^{2} / 2
\end{aligned} \\
& I_{n}=u v-\int v d u \\
& =\left[(\ln x)^{n} \cdot \frac{x^{2}}{2}\right]_{1}^{e}-\int_{1}^{e} \frac{x^{2}}{2} n(\ln x)^{n-1} \cdot \frac{1}{x} \\
& \begin{array}{l}
=\int_{0}^{0} \frac{1}{\sqrt{4^{2}-x^{2}}} d x \\
=\left[\sin ^{-1} \frac{x}{4}\right]^{\pi}
\end{array}
\end{aligned}
$$

Question 12 (cont'd)
(t) $I_{n}=\left[(1-e)^{n} \cdot \frac{e^{2}}{2}\right]-\frac{n}{2} \int I_{n-1}$

$$
I_{n}=\frac{e^{2}}{2}-\frac{n}{2} I_{n-1}
$$

i) $\int_{1}^{e} x(\ln x)^{3} d x$

$$
\begin{aligned}
& I_{r}=\frac{e^{2}}{2}-\frac{3}{2}\left[\int_{1}^{e} x(\ln x)^{2} d x\right] \\
&=\frac{e^{2}}{2}-\frac{3}{2}\left[\frac{e^{2}}{2}-I_{1}\right] \quad \begin{aligned}
a+p & =\frac{-a^{2} b \tan \theta}{v^{2} a \sec \theta} \\
& 0-\frac{a}{v} \sin \theta
\end{aligned} \\
& \therefore \text { Eq, } 1 \text { of normal }
\end{aligned}
$$

Questron 13
(a) (i) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\frac{d y}{d x}=\frac{b^{2} x}{a^{2} y}$
Grad of mormal

$$
\begin{aligned}
= & \frac{-a^{2} y}{b^{2} x} \\
a+P & =\frac{-a^{2} b \tan \theta}{v^{2} a \sec \theta} \\
& =\frac{-a}{v} \sin \theta
\end{aligned}
$$

\therefore Eqn of normal

$$
=\frac{e^{2}}{2}-\frac{3}{2} \cdot \frac{e^{2}}{2}+\frac{3}{2} I_{1}
$$

$$
y-b \tan \theta=\frac{-a}{b} \sin \theta(x-a \sec \theta)
$$

$$
=\frac{e^{2}}{2}-\frac{3 e^{2}}{4}+\frac{3}{2}\left[\frac{e^{2}}{2}-\frac{1}{2} e^{0}\right]
$$

$$
b y-b^{2} \tan \theta=-a x \sin \theta+a^{2} \sin \theta \sec \theta
$$

$$
a x \sin \theta+b y=\left(a^{2}+b^{2}\right) \tan \theta
$$

(ii) $A+A, y=0$

$$
x=\frac{a^{2}+b^{2}}{a \sin \theta} \cdot \tan \theta
$$

$A+B, x=0$

$$
y=\frac{a^{2}+b^{2}}{v} \tan \theta
$$

$$
\text { (ii) } \begin{align*}
x & =\frac{1}{2}\left[\frac{a^{2}+b^{2}}{a} \sec \theta+0\right] \\
& =\frac{a^{2}+b^{2}}{2 a} \sec \theta \\
y & =\frac{1}{2}\left[\frac{a^{2}+b^{2}}{b} \tan \theta+0\right] \\
y & =\frac{a^{2}+b^{2}}{2 v} \tan \theta-2
\end{align*}
$$

(v) If $a=6$

$$
\begin{aligned}
& 4 a^{2} x-4 a^{2} y^{2}=4 a^{4} \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{u^{2}}=1
\end{aligned}
$$

$$
=\frac{e^{2}}{2}-\frac{3 e^{2}}{4}+\frac{3 e^{2}}{4}-\frac{3}{4} \int_{1}^{e} x d x
$$

whem $a=b$

$$
=\frac{a^{2}+b^{2}}{a} \sec \theta
$$

$$
x^{2}-y^{2}=a^{2}
$$

$$
=\frac{e^{2}}{2}-\frac{3}{4}\left[\frac{x^{2}}{2}\right]_{1}^{e}
$$

Rectangulal Hyperbola
(b) $\Delta v=\left[\pi(2-x)^{2}-\pi[2-(x+-\infty x)]^{2} \cdot \frac{x}{x+1}\right.$

$$
=\frac{e^{2}}{2}-\frac{3}{4}\left[e^{2} / 2-1 / 2\right]
$$

$$
=\frac{e^{2}}{2}-\frac{3 e^{2}}{8}+\frac{3}{8}
$$

$$
=\frac{e^{2}+3}{8}
$$

$$
\begin{aligned}
\delta V & =T_{1}\left\{(2-x)^{2}-[2-(x+8 x)]^{2}\right\} \cdot \frac{x}{x+1} \\
& =\pi\{\delta x[4-2 x-8 x]\} \cdot \frac{x}{x+1} \\
& =2 \pi\{(2-x) \delta x\} \cdot \frac{x}{x+1}
\end{aligned}
$$

Suesteon 14

Questwon 14
(b) (i) $\frac{1}{a}+\frac{1}{v}-\frac{4}{m}=\frac{1}{a}+\frac{1}{v}-\frac{4}{a+b}$
R.H.S. $\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}$

$$
=\frac{b(a+b)+a(a+b)-4 a b}{a b(a+b)}
$$

$$
=\frac{(a+b)^{2}-4 a b}{a b(a+b)}
$$

$$
=\frac{a^{2}-2 a b+b^{2}}{a b-(a+b)}
$$

$$
=\frac{(a-b)^{2}}{a b(a+b)}
$$

(ii)
from (1)

$$
\begin{aligned}
& \frac{1}{a^{2}}+\frac{1}{v^{2}} \geqslant \frac{2}{\frac{m^{2}}{4}} \\
& \frac{1}{a^{2}}+\frac{1}{v^{2}} \geqslant \frac{8}{m^{2}}
\end{aligned}
$$

wesforn lis cont'd

$$
\begin{aligned}
& \text { (i) }(\operatorname{cis} \theta)^{3}=(\cos \theta+i \sin \theta)^{3} \\
& \text { (is } \theta)^{3}=\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta+3 i \cos ^{2} \theta \sin \theta-i \sin ^{3} \theta \\
& =\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta+i\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)
\end{aligned}
$$

Equate real \& Imaginary

$$
\begin{align*}
& \cos 3 \theta=\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta \\
& \sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta \tag{2}
\end{align*}
$$

$\tan 3 \theta=\frac{(2)}{(1)}$

$$
\tan 3 \theta=\frac{3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta}{\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta}
$$

$\div R+t s$ tor \ddagger bottom by $\cos ^{2} \theta$

$$
\begin{aligned}
& =\frac{3 \sin \theta}{\cos \theta}-\frac{\sin ^{3} \theta}{\cos ^{3} \theta} \\
& 1-\frac{3 \sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{3 \tan \theta-\tan ^{3} \theta}{1-2 \tan ^{2} \theta} \\
& =\frac{3 t-t^{3}}{1-3 t^{2}}
\end{aligned}
$$

where $t=\tan \theta$

Questcon 15
(a) $\angle A N M=\angle A B M=\theta$ (angles at sircumference on same cherd AM)
$\angle K N F+\angle K A F=180^{\circ}$
$\therefore K N F A$ is a cyclic quad
$\angle A K F=\angle A N F=\theta$ (ascyles at cerciemparence oor sarne chord of cuicte through. $K N F A$)
$\angle K F A=90-8$ (angle scem $\triangle A K F$)

$$
\begin{aligned}
\angle B F T & =\angle K F A=90-0 \text { (vent opp L's) } \\
\angle F T B & =180-(\angle B F T+\angle F B M) \\
\angle A B M & =\angle F B M(\text { same cungle }) \\
\angle F T B & =180-[(90-\theta)+\theta] \\
& =90^{\circ} \\
\therefore K F & \perp M B .
\end{aligned}
$$

(b)

$$
\text { ()) } \begin{aligned}
v_{1} & =1, v_{2}=5 \quad V_{n}=3^{n}-2^{n}, n \geqslant 1 \\
V_{n} & =5 v_{n-1}-6 v_{n-2} \\
v_{1} & =3^{\prime}-2^{1} \\
& =1 \\
V_{2} & =3^{2}-2^{2} \\
& =5
\end{aligned}
$$

Assume true for $n=k$

$$
V k=3^{k}-2^{k} \quad k \geqslant 1
$$

$-\operatorname{costan} \operatorname{si}\left(c^{-2+} d\right)$
rene the for $n=k+1$

$$
\begin{aligned}
k+1 & =5 v_{k-1-1}-6 v_{k+1-2} \\
& =5 v_{k}-6 v_{k-i} \\
& =5\left[3^{k}-2^{k}\right]-6\left[3^{k-1}-2^{k-i}\right] \\
& =5.3^{k}-5 \cdot 2^{k}-6\left[2 \cdot 3^{k}-3 \cdot 2^{k}\right] \\
& =53^{k}-5 \cdot 2^{k}-2.3^{k}+3 \cdot 2^{k} \\
& =3 \cdot 3^{k}-2 \cdot 2^{k} \\
& =3^{k+1}-2^{k+1}
\end{aligned}
$$

Bus stritament on M.I. prod

$$
\begin{aligned}
& J u=\left[\pi e^{2}-\pi\left(e^{4}\right)^{2}\right] d y \quad\left[\begin{array}{l}
y=\log e^{x} \\
e^{y}=x
\end{array}\right] \\
& S v=\pi\left[e^{2}-e^{2}-1\right] S_{G} \\
& V=\pi \int_{0}^{1} e^{2}-e^{24} f y \\
& V=\pi\left[y e^{2}-\frac{1}{2} e^{2, y}\right]_{0}^{1} \\
& V=\pi\left[\left(e^{2}-1 / 2 e^{2}\right)-(0-1 / 2)\right] \\
& =\pi\left[y x^{2}+1 y\right] \\
& =\pi / 2\left[e^{2}+1\right] u^{3} .
\end{aligned}
$$

Question 15
(d) $x^{3}-3 x^{2}-x+2=0$

$$
\alpha+\beta+y=3 .
$$

(i)

$$
\begin{aligned}
& 2 \alpha+\beta+y, \alpha+2 \beta+y, \alpha+\beta+2 y \\
& x=\alpha * \alpha+\beta+y \\
& x=\alpha+3 \\
& \therefore \alpha=x-3 .
\end{aligned}
$$

sun into (1)

$$
\begin{gathered}
(x-3)^{3}-3(x-3)^{2}-(x-3)+2=0 \\
x^{3}-12 x^{2}+44 x-49=0
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& \alpha^{2}+\beta^{2}+y^{2} \\
= & (\alpha+\beta+y)^{2}-\alpha(\alpha \beta+\alpha y+\beta y) \\
= & \left(\frac{12}{1}\right)^{2}-2\left(\frac{44}{1}\right) \\
= & 144-88 \\
= & 56
\end{aligned}
$$

mestee 16

$$
\begin{array}{ll}
\int \sin ^{5} \theta \cos ^{4} \theta d \theta & \begin{array}{l}
\sin ^{4} \theta \\
\\
=\left(1-\cos ^{2} \theta\right)^{2} \\
=1-2 \cos ^{2} \theta+\cos ^{4} \theta \\
-\int \sin ^{4} \theta \cos ^{4} \theta(-\sin \theta) d \theta
\end{array} \\
-\int \cos ^{4} \theta(-\sin \theta) d \theta+2 \int \cos ^{6} \theta(-\sin \theta) d \theta-\int \cos ^{5} \theta(-\sin \theta) d \theta \\
= & -1 / 5 \cos ^{5} \theta+\frac{2}{7} \cos ^{7} \theta-1 / 9 \cos ^{9} \theta+c \\
x^{2}+y^{2}+x y=3 \\
\frac{d y}{d x}=-\frac{(2 x+y)}{x+2 y}
\end{array}
$$

The tangents at the critical points $(-1,2)$ and $(1,-2)$ are ionzontal
The tangents at the critical points $(-2,1)$ and $(2,-1)$ are vertical

Question 16
(c) (i) $x_{1}>1, x_{2}>1$

Consider

$$
\begin{gathered}
\left(\sqrt{x_{1}}-\sqrt{x_{2}}\right)^{2}>0 \\
x_{1}-2 \sqrt{x_{1} x_{2}}+x_{2}>0 \\
x_{1}+x_{2}>2 \sqrt{x_{1} x_{2}} \\
x_{1}+x_{2}>\sqrt{x_{1} x_{2}}
\end{gathered}
$$

(C) (ii)

To prove $\ln \left(x_{1}+x_{2}+\cdots+x_{n}\right)>\frac{1}{2^{n-1}}\left(\ln x_{1}+\ln x_{2}+\cdots+\ln x_{n}\right.$
when $n=2$ we known

$$
\begin{aligned}
x_{1}+x_{2} & >\sqrt{x_{1} x_{2}} \\
\ln \left(x_{1}+x_{2}\right) & >\ln \sqrt{x_{1} x_{2}} \quad \text { since } x_{1}, x_{2} \text { are both }>1 \\
\ln \left(x_{1}+x_{2}\right) & >\ln \left(x_{1} x_{2}\right)^{1 / 2} \\
\ln \left(x_{1}+x_{2}\right) & >\frac{1}{2} \ln \left(x_{1} x_{2}\right) \\
\ln \left(x_{1}+x_{2}\right) & >\frac{1}{2}\left(\ln x_{1}+\ln x_{2}\right)
\end{aligned}
$$

Assume true for $n=k$

$$
\ln \left(x_{1}+x_{2}+\cdots x_{k}\right)>\frac{1}{2^{k-1}}\left(\ln x_{1}+\ln x_{2}+\cdots+\ln x_{k}\right)
$$

when $n=k+1$

$$
\begin{aligned}
& \text { L.H.S. } \ln \left(x_{1}+x_{k}\right.\left.+\cdots x_{k}+x_{k+1}\right)>\frac{1}{2}\left[\ln \left(x_{1}+x_{2}+\cdots+x_{k}\right)+\ln x_{1}\right. \\
&>\frac{1}{2}\left[\frac{1}{2^{k-1}}\left(\ln x_{1}+\ln x_{2}+\ldots \ln x_{k}\right)+\ln x_{k+1}\right] \\
&>\frac{1}{2}\left[\frac{1}{2^{k-1}\left(\ln x_{1}+\ln x_{2}+\cdots \ln x_{k}+\frac{1}{k-1} \ln x_{k+1}\right]}\right. \\
& \ln \left(x_{1}+x_{2}+\ldots+x_{k}+x_{k+1}\right)>\frac{1}{2^{k}}\left[\ln x_{1}+\ln x_{2}+\ldots \ln x_{k}+\ln x_{k+1}\right]
\end{aligned}
$$

* Plus Mix statement

Multiple Choice. Solutions

$$
\begin{array}{lr}
1, \frac{1}{1+\omega}+\frac{1}{1+\omega^{2}} & 1+\omega+\omega^{2}=0 \\
=\frac{1+\omega^{2}+1+\omega}{(1+\omega)\left(1+\omega^{2}\right)} & =1 \\
=\frac{1}{1+\omega^{2}+\omega+\omega^{3}} \\
=\frac{1}{1} \\
=1
\end{array}
$$

2

$$
\begin{align*}
P(x) & =x^{3}+x^{2}+5 x+6 \\
P(-i) & =(-i)^{3}+(-i)^{2}+5(-i)+6 \\
& =i-1-5 i+6 \\
& =5-4 i
\end{align*}
$$

$$
\begin{gather*}
3, y^{3}+2 y=4 \\
y^{3} \cdot 1 \cdot d x+x \cdot 3 y^{2} \cdot d y+2 \cdot d y=0 \\
y^{3}+3 x y^{2} \frac{d x}{d x}+2 \frac{d y}{d x}=0 \\
y^{3}+\frac{d y}{d x}\left(3 x y^{2}+2\right)=0 \\
\frac{d y}{d x}=\frac{-y^{3}}{3 x y^{2}+2}
\end{gather*}
$$

when $x=2, y=1 \quad \frac{d y}{d x}=\frac{-1}{8}$

$$
\begin{gather*}
4 / 3 x^{2}+5 y^{2}-15=0 \\
\frac{x^{2}}{5}+\frac{y^{2}}{3}=1 \\
e^{2}=a^{2}\left(1-e^{2}\right) \\
\frac{3}{5}=1-e^{2} \\
e=\sqrt{2 / 5} \tag{B}
\end{gather*}
$$

5, Let $y=\frac{2}{\alpha}$

$$
\begin{gathered}
x=\frac{2}{y} \\
3\left(\frac{2}{y}\right)^{3}-2(2 / y)^{2}+\frac{2}{y}-7=0 \\
\frac{24}{y^{3}}-\frac{8}{y^{2}}+\frac{2}{y}-7=0 \\
24-8 y+2 y^{2}-7 y^{3}=0 \\
7 y^{3}-2 y^{2}+8 y-24=0
\end{gathered}
$$

(B)

6

$$
\begin{aligned}
z & =1+i \\
i z & =i-1
\end{aligned}
$$

7

$$
\begin{aligned}
& \int x \sin \left(x^{2}+3\right) d x \\
& =-\frac{1}{2} \cos \left(x^{2}+3\right)+c
\end{aligned}
$$

(A)

8, Rools in conjergale pairs sunce coeftruents real. $\therefore 3$
(C)
$q, \int_{0}^{1} \frac{e^{x}}{1+e^{x}}$

$$
\begin{aligned}
& =\left[\ln \left(1+e^{x}\right)\right]_{0}^{1} \\
& =\ln (1+e)-\ln 2 \\
& =\ln \left(\frac{1+e)}{2}\right.
\end{aligned}
$$

10
(A)

