

CARINGBAH HIGH SCHOOL

2014

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I Pages 2–5 10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 6–12

90 marks

- Attempt Questions 11–16
- Allow about 2 hours and 45 minutes for this section

SECTION 1 (10 marks) Attempt Questions 1 - 10 Allow about 15 minutes for section. Use the multiple choice answer sheet for questions 1 - 10

10 1

1. If w is a non-real cube root of unity the value $\frac{1}{1+w} + \frac{1}{1+w^2}$ is equal to

(A) -1 (B) 0 (C) 1 (D) none of these

2. What is the remainder when $x^3 + x^2 + 5x + 6$ is divided by x + i

(A) 7-4i (B) 7-6i (C) 5-4i (D) 5+6i

3. The gradient of the tangent to $xy^3 + 2y = 4$ at the point (2, 1) is (A) -8 (B) $\frac{1}{8}$ (C) 8 (D) $\frac{-1}{8}$

4. The eccentricity of the ellipse $3x^2 + 5y^2 - 15 = 0$ is

(A) $\sqrt{\frac{5}{2}}$ (B) $\sqrt{\frac{2}{5}}$ (C) $\sqrt{\frac{8}{5}}$ (D) $\sqrt{\frac{5}{8}}$

5. The polynomial $3x^3 - 2x^2 + x - 7 = 0$ has roots α, β, γ . Which polynomial has roots $\frac{2}{\alpha}, \frac{2}{\beta}, \frac{2}{\gamma}$?

(A) $3x^3 - 4x^2 + 4x - 56$ (B) $7x^3 - 2x^2 + 8x - 24 = 0$ (C) $9x^3 - 2x^2 - 27x - 49 = 0$ (D) $24x^3 - 8x^2 + 2x - 7 = 0$

- 6. The arg of iz where z = 1 + i is
- (A) $\frac{-\pi}{4}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{4}$ (D) $\frac{-3\pi}{4}$

- 7. Find $\int x \sin(x^2 + 3) dx$
- (A) $-\frac{1}{2}\cos(x^2+3) + C$ (B) $-\frac{1}{2}\sin(x^2+3) + C$ (C) $\frac{1}{2}\cos(x^2+3) + C$ (D) $2x\cos(x^2+3) + C$
- 8. The polynomial equation P(x) = 0 has real coefficients, and has roots which include

$$x = -2 + i \quad \text{and} \quad x = 2.$$

What is the minimum possible degree of P(x)?

- (A) 1 (B) 2 (C) 3 (D) 4
- 9. What is the value of $\int_0^1 \frac{e^x}{1+e^x} dx$ (A) $\log_e(1+e)$ (B) 1 (C) $\log_e\left(\frac{1+e}{2}\right)$ (D) $\log_e\frac{e}{2}-2$

10. Which of the following is the sketch of $y = \log_2 x + \frac{1}{x}$?

Question 11 (15 marks)

a) Let
$$w = \sqrt{3} + i$$
 and $z = 3 - \sqrt{3} i$

- i) Find wzii) Express w in mod/arg form(2)
- iii) Write w^4 in simplest Cartesian form. (2)
- b)

i) Mark clearly on an Argand diagram the region satisfied simultaneously by (2)

$$|z+2| < 2$$
 and $0 < \arg z < \frac{3\pi}{4}$

ii) Solve simultaneously (2)

|z+2| = 2 and $\arg z = \frac{3\pi}{4}$

Write your answer in the form a + ib

- c) A polynomial P(x) has a double root at $x = \alpha$, ie $P(x) = (x \alpha)^2 Q(x)$
 - i) Prove that P'(x) also has a root at $x = \alpha$ (2)
 - ii) The polynomial $Q(x) = x^4 6x^3 + ax^2 + bx + 36$ has a double root at x = 3 (2) Find the values of a and b

(2)

iii) Factorise Q(x) over the complex field.

Question 12 (15 marks)

a)

- i) Show that $(\cos x \sin x)^2 = 1 \sin 2x$ (1)
- ii) Evaluate

$$\int_{0}^{\frac{\pi}{4}} \sqrt{1-\sin 2x} \, dx$$

b) Using the substitution u = 1 - x, find $\int x\sqrt{1 - x} \, dx$ (3)

J

c)

i) Find the value of the integral (2)

$$\int_{0}^{\pi} \frac{1}{\sqrt{16-x^2}} dx$$

$$\int \frac{1}{16 - x^2} dx$$

d) If
$$I_n = \int_1^e x(\ln x)^n dx$$
, $n = 0, 1, 2, 3, \dots$
i) Show that $I_n = \frac{e^2}{2} - \frac{n}{2}I_{n-1}$, $n=1, 2, 3, \dots$ (3)

ii) Hence evaluate

(2)

(2)

(2)

$$\int_{1}^{e} x(\ln x)^{3} dx$$

Question 13 (15 marks)

a)

- i) Show that the equation of the normal to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (3) at the point $P(a \sec \theta, b \tan \theta)$ is $ax \sin \theta + by = (a^2 + b^2) \tan \theta$
- ii) If the normal in part (i) intersects the x axis at A and the y axis at B, find the (2) co-ordinates of A and B.
- iii) Show that the co-ordinates of M, the midpoint of AB are given by $x = \frac{1}{2a}(a^2 + b^2) \sec \theta, \qquad y = \frac{1}{2b}(a^2 + b^2) \tan \theta$ (2)
- iv) Hence find the equation of the locus of M in Cartesian form. (2)
- v) If a = b, what can you say about the locus in part (iv) (1)
- b) The region bounded by the portion of the curve $y = \frac{x}{x+1}$, and the x axis is rotated about the line x = 2

i) Using the method of cylindrical shells, show that the volume δV of a typical (1) shell at a distance x from the origin and with thickness δx is given by

$$\delta V = 2\pi(2-x) \cdot \frac{x}{1+x} \cdot \delta x$$

ii) Hence find the volume of this solid.

(4)

Question 14 (15 marks)

- a) Consider the function f(x) = (3 x)(x + 1) on separate axes sketch, showing the important features the graphs of
 - $i) \quad y = f(x) \tag{1}$

$$ii) \quad y = |f(x)| \tag{1}$$

$$\text{iii) } y = f|(x)| \tag{1}$$

$$iv) |y| = f(x) \tag{1}$$

v)
$$y^2 = f(x)^3$$
 (2)

b) Given a + b = m, prove that, for a > 0, b > 0, and m > 0

i) $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{m}$ (2)

ii)
$$\frac{1}{a^2} + \frac{1}{b^2} \ge \frac{8}{m^2}$$
 (2)

c) Evaluate
$$\frac{lim}{\theta \to 0} = \frac{1 - \cos \theta}{\theta}$$
 (2)

d)

- i) Use De Moivre's Theorem to express $\cos 3\theta$ and $\sin 3\theta$ in terms of (2) powers of $\sin \theta$ and $\cos \theta$
- ii) Hence express $\tan 3\theta$ as a rational function of t, where $t = \tan \theta$ (1)

Question 15 (15 marks)

a) As shown below, a circle has two chords AB and MN intersecting at F.
 Perpendiculars are drawn to these chords at A and at N, intersecting at K.
 KF produced, meets MB at T.

Prove that *KT* is perpendicular to *MB* (Hint: Join *AN* and let $\angle ANF = \theta^{\circ}$)

- b) If $V_1=1, V_2=5$ and $V_n=5V_{n-1}-6V_{n-2}$ for $n\geq 3$, show that $V_n=3^n-2^n$ for $n\geq 1$
- c) Consider the curve $y = \ln x$ sketched below.

Use the method of slicing to find the volume obtained by rotating the region bounded by (3) $1 \le x \le e$, $0 \le y \le \ln x$, about the *y* axis.

(4)

(3)

Question 15 (Cont'd)

d) The equation $x^3 - 3x^2 - x + 2 = 0$ has roots α, β, γ . Find equations with roots

i)
$$2\alpha + \beta + \gamma$$
, $\alpha + 2\beta + \gamma$, $\alpha + \beta + 2\gamma$ (3)

ii) Find the value of the sum of the squares of the roots of the equation formed in (i) (2)

(3)

Question 16 (15 marks)

a) Find $\int \sin^5 \theta \cos^4 \theta \, d\theta$

b) If $x^2 + y^2 + xy = 3$

c)

i) If $x_1 > 1$ and $x_2 > 1$ show that $x_1 + x_2 > \sqrt{x_1 x_2}$ (3)

ii) Use the Principal of Mathematical Induction to show that, For $n \ge 2$, if $x_j > 1$ where $j = 1, 2, 3, \dots, n$ then, $\ln(x_1 + x_2 + \dots + x_n) > \frac{1}{2^{n-1}} (\ln x_1 + \ln x_2 + \dots + \ln x_n)$ (4)

END OF PAPER

Find
$$\int x \sin(x^2 + 3) dx$$

(A) $-\frac{1}{2} \cos(x^2 + 3) + c$
(B) $-\frac{1}{2} \sin(x^2 + 3) + c$
(C) $\frac{1}{2} \cos(x^2 + 3) + c$
(D) $2x \cos(x^2 + 3) + c$

¢.,

If ω is a non-real cube root of unity the value of $\frac{1}{1+\omega} + \frac{1}{1+\omega^2}$ is equal to (a) -1 (B) 0 (C) 1 (D) None of these

$$\frac{k_{x}c_{z}}{(1+x)} \frac{201k}{(2+x)} \frac{(24mm)bh}{(2+x)} \frac{4k_{y}}{k_{y}} \frac{52k_{x}c_{z}}{k_{x}} \frac{(0, 0)}{(1+x)} \frac{1}{k_{y}} \frac{1}{k_{y}}$$

4

*

$$\frac{(1)(Cis \theta)^{2}}{(1)(Cis \theta)^{2}} = (0s\theta + isu\theta)^{3}$$

$$2is \theta)^{3} = (0s^{3}\theta - 3su^{2}\theta \cos \theta + 3i(\sigma^{2}\theta \sin \theta - isu^{3}\theta)$$

$$= (0s^{3}\theta - 3su^{2}\theta (\cos \theta + 3i(\sigma^{2}\theta \sin \theta - su^{3}\theta))$$

$$= (0s^{3}\theta - 3su^{2}\theta (\cos \theta - i)(3\sigma^{2}\theta \sin \theta - su^{3}\theta)$$

$$= (0s^{3}\theta - 3su^{3}\theta (\cos \theta - (i)))$$

$$Sun 3\theta = \frac{2}{10}$$

$$fan 3\theta = \frac{2}{10}$$

$$fan 3\theta = \frac{2}{10}$$

$$fan 3\theta = \frac{3(0s^{3}\theta \sin \theta - su^{3}\theta)}{(0s^{3}\theta - 3su^{2}\theta \cos \theta)}$$

$$= \frac{3(0s^{3}\theta - su^{3}\theta)}{(0s^{3}\theta - 3su^{2}\theta \cos \theta)}$$

$$= \frac{3su^{3}\theta}{(0s^{3}\theta - 3su^{2}\theta)}$$

$$= \frac{3su^{3}\theta}{(0s^{3}\theta - su^{3}\theta)}$$

$$= \frac{3su^{3}\theta}{(0s^{3}\theta - su^{3}\theta)}$$

$$= \frac{3tan\theta - tan^{3}\theta}{(1 - 3ta^{2}\theta)}$$

$$= \frac{3t - t^{3}}{(1 - 3t^{2})}$$

 \bigcirc

Ľ

where t = tan O

Question IS
(Q) LANM = LABM =
$$\Theta$$
 (angles at sircumference on
Same chord AM)
LKNF + LKAF = 180°
.: KNFA is a cyclic qued
LARF = LANF = Θ (angles at consumptions on
Same chord of cucle through
KNFA)
LKFA = 90 - Θ (angle sum $\triangle AKF$)
LBFT = LKPA = 90 - θ (ust opp L's)
LFTB = 180 - (LBFT + LFBM)
LABM = LFBM (same angle)
LFTB = 180 - [(90 - Θ) + Θ]
= 90°
.: KF \perp MB.
W) $V_1 = 1$, $V_2 = S$ $V_n = S^n - 2^n$, $n \ge 1$
 $V_1 = SV_{n-1} - 6V_{n-2}$
 $V_1 = S^2 - 2^2$
 $= 5$
Assume true for $n = K$
 $V_K = 3^K - 2^K$ $K \ge 1$

$$\frac{-1}{100} \frac{15(cont^{2}d)}{100}$$

$$\frac{1}{100} \frac{1}{100} \frac{1}{100}$$

Plus stratement on M. I. proof

$$J_{V} = \left[\overline{\pi} e^{2} - \overline{\pi} (e^{H})^{2} \right] J_{Y} \qquad \left[\begin{array}{c} Y = \log e^{2} \\ e^{H} = z \end{array} \right]$$

$$J_{V} = \overline{\pi} \left[e^{2} - e^{2H} \right] J_{Y} \qquad \left[e^{H} = z \end{array} \right]$$

$$V = \overline{\pi} \left[ye^{2} - \frac{1}{2}e^{2H} \right] J_{0} \qquad V = \overline{\pi} \left[ye^{2} - \frac{1}{2}e^{2H} \right] J_{0} \qquad V = \overline{\pi} \left[(e^{2} - ye^{2}) - (0 - y_{2}) \right]$$

$$= \overline{\pi} \left[\frac{ye^{2}}{2} + \frac{y}{2} \right] = \overline{\pi} \left[\frac{ye^{2}}{2} + \frac{y}{2} \right] \qquad u^{3} \qquad .$$

 \bigcirc

$$\frac{\text{Question 15}}{(4) 2^{3} - 3x^{2} - x + 2 = 0} - (T)$$

$$x + p + \gamma = 3.$$

$$(j) 2x + p + \gamma = 4 + 2p + \gamma, x + p + 2\gamma$$

$$x = x + 3$$

$$\therefore x = x - 3.$$
Such into (T)
$$(x - 3)^{3} - 3(x - 3)^{2} - (x - 3) + 2 = 0$$

$$x^{3} - 12x^{2} + 44x - 4q = 0$$

$$(j) x^{2} + p^{2} + \gamma^{2}$$

$$= (x + p + \gamma)^{2} - 2(x + p + \gamma) + p = (\frac{12}{1})^{2} - 2(\frac{4}{1})$$

$$= 144 - 88$$

$$= 56$$

 $\widehat{}$

÷

ς.

$$\frac{3 \operatorname{construction} 16}{\int \operatorname{Sun}^{5} \Theta \left(\operatorname{cons}^{5} \Theta \right) 4\Theta} = \int \operatorname{Sun}^{5} \Theta \left(\operatorname{cons}^{5} \Theta \right) 4\Theta} \left[= 1 - 2 \operatorname{cons}^{5} \Theta + 2 \operatorname{c$$

r

4

Ð

- · ·

.

3m

.

$$1 + \omega + \omega^2 = 0$$
$$\omega = 1$$

$$= \frac{1+\omega^2 + 1+\omega}{(1+\omega^2)}$$

$$= \frac{1}{1 + \omega^{2} + \omega + \omega^{3}}$$
$$= \frac{1}{1}$$
$$= 1$$

$$P(-i) = 2i^{3} + 2^{2} + 52 + 6$$

$$P(-i) = (-i)^{2} + (-i)^{2} + 5(-i) + 6$$

$$= i - 1 - 5i + 6$$

$$= 5 - 4i$$

$$37 \qquad x \cdot y^{3} + 2y = 4$$

$$y^{3} \cdot 1 \cdot dx + x \cdot 3y^{2} \cdot dy + 2 \cdot dy = 0$$

$$y^{3} + 3x \cdot y^{2} dy + 2 \cdot dy = 0$$

$$y^{3} + dy (3x \cdot y^{2} + 2) = 0$$

$$dy = -\frac{y^{3}}{3xy^{2} + 2}$$

 $7, \int 2c \sin(2i^2 + 3) dx.$ $= -\frac{1}{2}\cos(22+3) + C$ Â)

10 (A)

EXT 2 trial mark breakdown 2014 NAME

COMPLEX		ABERS	CONICS		GRAPI	IS
question mark		question mark		questi	on mark	
,	1	/1	. 3	/1		10 /1
	2	/1	4	/1	14ai	/1
	6	/1	13ai	/3	14aii	/1
11ai		/1	13aii	/2	14aiii	/1
11aii		/2	13aiii	/2	14aiv	/1
11aiii		/2	13aiv	/2	14av	/2
11bi		/2	13av	/1	16bi	/2
11bii		/2			16bii	/3
14di		/2				
14dii		/1				
TOTAL		/15	TOTAL	/12	ΤΟΤΑΙ	. /12
POLYNOMIALS		VOLUMES		INTEG	INTEGRATION	
question mark		question mark		questi	on mark	
	5	/1				7 /1
	8	/1	13bi	/1		9 /1
11ci		/2	13bii	/4	12ai	/1
11cii		/2	15c	/3	12aii	/2
11ciii		/2			12b	/3
15di		/3			12ci	/2
15dii		/2			12cii	/2
					12di	/3
TOTAL		/13	TOTAL	/8	12dii	/2
					16a	/3

/3 /20 TOTAL

HARDER 3	U	SUMMARY		
question	mark	COMPLEX NUMBERS	/15	
14bi	/2	CONICS	/12	
14bii	/2	GRAPHS	/12	
14c	/2	POLYNOMIALS	/13	
15a	/4	VOLUMES	/8	
15b	/3	HARDER 3U	/20	
16ci	/3	INTEGRATION	/20	
16cii	/4			
		TOTAL	/100	
TOTAL	/20			