Caringbah High School

2016
Year 12 Trial HSC Examination

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen.
- Board-approved calculators may be used.
- A reference sheet with standard formulae and integrals is provided.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.

Total marks - 100

Section I Pages 3-6

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 7-13

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section.

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1. Given that $z=5+2 i$ and $w=i-3$, what is the value of $2 \bar{w}-z$?
(A) $-11-4 i$
(B) -11
(C) $-1-4 i$
(D) -1
2. The equation $x^{2}-y^{2}-5 x y+5=0$ defines y implicity as a function of x. What is the value of $\frac{d y}{d x}$ at the point $(1,1)$?
(A) -1
(B) $\frac{-3}{7}$
(C) $\frac{3}{7}$
(D) $\frac{7}{3}$
3. What is the eccentricity of the conic described by the equation $9 x^{2}-4 y^{2}=1$?
(A) $\sqrt{\frac{5}{2}}$
(B) $\sqrt{\frac{5}{3}}$
(C) $\frac{\sqrt{13}}{2}$
(D) $\frac{\sqrt{13}}{3}$
4. $Z=x+i y$ is a complex number, represented on the Argand diagram as shown.

$$
|Z|=1 .
$$

Which of the following diagrams would represent the complex number $W=\frac{1}{\bar{Z}}$?

(A)

(B)

(C)

(D)

5. The equation $4 x^{3}-4 x^{2}-15 x+18=0$ has a double root at $x=\alpha$. The value of α is
(A) $\quad \alpha=\frac{-3}{2}$
(B) $\quad \alpha=\frac{3}{2}$
(C) $\quad \alpha=\frac{5}{6}$
(D) $\quad \alpha=\frac{-5}{6}$
6. The conic described by the equation $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ has directrices
(A) $x= \pm 12$
(B) $x= \pm \frac{169}{12}$
(C) $y= \pm 12$
(D) $y= \pm \frac{169}{12}$
7. If $z=2-\sqrt{12} i$, find the argument of z^{5}.
(A) $\frac{-\pi}{3}$
(B) $\frac{-5 \pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{5 \pi}{6}$
8. The complex number z satisfies $\arg \left(\frac{z-2}{z+2 i}\right)=\frac{-\pi}{2}$.

Find the maximum value of $|z|$.
(A) $\sqrt{2}$
(B) $2 \sqrt{2}$
(C) $2-\sqrt{2}$
(D) $2+\sqrt{2}$
9. Which of the following is an equivalent expression for $\int \frac{d x}{\sqrt{5-4 x-x^{2}}}$?
(A) $\sin ^{-1}(x+2)+C$
(B) $\sin ^{-1}\left(\frac{x+2}{3}\right)+C$
(C) $\sin ^{-1}(x-2)+C$
(D) $\sin ^{-1}\left(\frac{x-2}{3}\right)+C$
10. $\quad P(x)$ is a polynomial. The graph of $y^{2}=P(x)$ is shown below.

Which of the following graphs is the best representation of $y=P(x)$?
(A)

(B)

(C)

(D)

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)
a) If $z=1-i$, find z^{-6} in the form $x+i y$.
b) If $z=x+i y$, shade on the Argand diagram the region defined by $z \bar{z} \leq 4$.
c) Evaluate $\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}$
d) Show that $\int_{e}^{e^{4}} \ln x d x=3 e^{4}$
e) i) Show that $(z-2 i)$ is a factor of $P(z)=z^{4}+z^{3}+z^{2}+4 z-12$.
ii) Hence, find all zeros of $\mathrm{P}(\mathrm{z})$.
f) Let $A=3+4 i$ and $B=9+4 i$ be two points on the Argand diagram.
i) Sketch the locus defined by $|z-A|=5$
ii) Draw a clear sketch of the curve defined by $|z-A|+|z-B|=12$

1

2

End of Question 11

a) i) Express $3 \sin \theta+4 \cos \theta$ in the form $r \sin (\theta+\alpha)$, where r and α are constants and α is in radians correct to 3 decimal places.
ii) Hence, or otherwise, show that a particle whose displacement x metres, after t seconds, given by $x=8 \cos ^{2} t+6 \sin t \cos t-4$ is moving in simple harmonic motion.

You may assume that $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$
b) The graph of $y=f(x)$ is shown.

On separate diagrams, show the following graphs, clearly indicating important features.
i) $y=\frac{1}{f(x)}$
ii) $y=[f(x)]^{2}$
iii) $y=\log _{e}(f(x))$

Question 12 (continued)
c) The complex number $z=x+i y$, with x and y real, satisfies $|z-i|=\operatorname{Im}(z)$.
i) Show that the locus of the point P, representing z, has the

Cartesian equation $y=\frac{x^{2}+1}{2}$
ii) By finding the gradients of the tangents to this curve that pass through 3 the origin, state the set of possible values for the principal argument of z.

End of Question 12

a) The base of a solid is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

4

Cross-sections perpendicular to the x-axis are right isosceles triangles with one of the equal sides in the base of the solid.

Show that the volume of the solid is $\frac{8 a b^{2}}{3}$ units 3.
b) Sketch the curve $y=x \ln (x)$, showing any turning points.

2
c) i) If z is a complex number defined by $z=\cos \theta+i \sin \theta$, show that $\frac{d z}{d \theta}=i z$
ii) By integrating $\frac{d z}{d \theta}=i z$ with respect to z and θ, show that z can be written in the form $z=e^{i \theta}$.
d) i) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x+\sin x}$ using the substitution $t=\tan \frac{x}{2}$.
ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \frac{x d x}{1+\cos x+\sin x}$
using the substitution $u=\frac{\pi}{2}-x$.

End of Question 13

Page | $\mathbf{1 0}$
a) Sketch on the Argand diagram, the locus defined by $\arg (z-1+i)=\frac{\pi}{4}$
b) Two points, $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$, lie on the rectangular hyperbola $x y=c^{2}$.
i) Show that the equation of the tangent at P is $x+p^{2} y=2 c p$.
ii) The tangents at P and Q meet in T. Find the coordinates of T in terms of c, p and q.
iii) The point T lies on another hyperbola $x y=k^{2}$, for all positions of P and Q.

Show that $\frac{p q}{(p+q)^{2}}=\frac{k^{2}}{4 c^{2}}$
c) i) Let $I_{n}=\int_{1}^{e} x(\ln x)^{n} d x$. Show that $I_{n}=\frac{e^{2}}{2}-\frac{n}{2} I_{n-1}, n=1,2,3, \ldots$
ii) Hence evaluate $\int_{1}^{e} x(\ln x)^{2} d x$
d) The area bounded by the curve $y=\sin x^{2}$ and the x-axis, in the domain $-\sqrt{\pi} \leq x \leq \sqrt{\pi}$, is rotated about the y-axis.

By using the method of cylindrical shells, find the volume of the solid formed.

End of Question 14

Page | $\mathbf{1 1}$
a) $\quad \alpha, \beta$ and γ are roots of the cubic equation $x^{3}+m x+n=0$.
i) Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$ in terms of m and n.
ii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$ in terms of m and n.
iii) Determine the cubic equation with roots α^{2}, β^{2} and γ^{2}.

2
b) For the ellipse $E: 4 x^{2}+9 y^{2}=36$.
i) Sketch the ellipse E indicating the position of its foci S and S^{\prime}, and draw in it directrices.
ii) Show that the point $P(3 \cos \theta, 2 \sin \theta)$ lies on E. 1
iii) Derive the equation of the tangent to E at the point P.
iv) Find the coordinates of the point Q where the tangent cuts the major axis.
v) The equation of the normal at P is $\frac{3 x}{\cos \theta}-\frac{2 y}{\sin \theta}=5$ and it cuts 2 the major axis at R. A line parallel to the y-axis through P cuts the x-axis at T. Show that $O Q \times R T$ is constant for all positions of P.

End of Question 15

a)

$A B C$ is an acute-angled triangle inscribed in a circle. P is a point on the minor arc $A B$ of the circle. $P L$ and $P N$ are the perpendiculars from P to $C A$ produce and $C B$ respectively. $L N$ cuts $A B$ at M.
i) Copy the diagram in to your answer booklet. ($1 / 3$ page)
ii) Explain why $P N C L$ is a cyclic quadrilateral.

1
iii) Hence show $P B N M$ is also a cyclic quadrilateral.
iv) Hence show that $P M$ is perpendicular to $A B$.
b) i) Write expressions for $\cos \frac{2 \pi}{n}$ and $\sin \frac{2 \pi}{n}$ in terms of $\cos \frac{\pi}{n}$ and $\sin \frac{\pi}{n}$
ii) By using De Moivre's theorem, show that

$$
\left(1+\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}\right)^{n}=-2^{n}\left(\cos \frac{\pi}{n}\right)^{n}
$$

c) i) If a and b are both positive numbers, prove that $a+b \geq 2 \sqrt{a b}$.

Hence, or otherwise, prove that when a, b and c are all positive

$$
\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right) \geq 8
$$

End of Examination

Page | $\mathbf{1 3}$

CHS 2016 TRIAL HS
MATHEMATICS EXT 2.

1) A
2) B
3) C 4$) \mathrm{A}$
4) B
5) B
6) C
7) B
8) B
9) B

Question 11
a) $z=1-i=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$

$$
\begin{aligned}
z^{-6} & =(\sqrt{2})^{-6} \operatorname{cis}\left(\frac{6 \pi}{4}\right) \\
& =\frac{1}{8} \operatorname{cis}\left(\frac{-\pi}{2}\right) \\
& =-\frac{i}{8}
\end{aligned}
$$

b)

$$
\begin{aligned}
& (x+i y)(x-i y)=x^{2}+y^{2} \\
& z \cdot \bar{z} \leqslant 4
\end{aligned}
$$

c)

$$
\begin{aligned}
\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5} & =\int_{-1}^{1} \frac{d x}{(x+1)^{2}+4} \\
& =\frac{1}{2}\left[\tan ^{-1}\left(\frac{x+1}{2}\right)\right]_{-1}^{1} \\
& =\frac{1}{2}\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \\
& =\frac{\pi}{8}
\end{aligned}
$$

d) $\int_{e}^{e^{4}} \ln x d x$

$$
\begin{array}{ll}
u=\ln x & d v=d x \\
d u=\frac{1}{x} d x & v=x .
\end{array}
$$

$$
=\left.x \ln x\right|_{e} ^{e^{4}}-\int_{e}^{e^{4}} x \times \frac{1}{x} d x
$$

$$
=\left[e^{4} x \ln e^{4}-e_{x} \ln e\right]-[x]_{e}^{e^{4}}
$$

$$
=4 e^{4}-e-e^{4}+e
$$

$$
=3 e^{4}
$$

$$
\text { e)i) } \begin{aligned}
P(2 i) & =(2 i)^{4}+(2 i)^{3}+(2 i)^{2}+4 \times 2 i-12 \\
& =16-8 i-4+8 i-12 \\
& =0
\end{aligned}
$$

$\therefore(z-2 i)$ is a factor of $P(z)$.
ii) $P(z)$ has real coefficients $\therefore(z+2 i)$ is a factor

$$
\begin{aligned}
& z^{4}+z^{3}+z^{2}+4 z-12=\left(z^{2}+4\right)\left(z^{2}+z-3\right) \\
& \text { roots are } \pm 2 i, \frac{-1 \pm \sqrt{1+12}}{2}=\frac{-1 \pm \sqrt{13}}{2}
\end{aligned}
$$

Question 12
a)i) $3 \sin \theta+4 \cos \theta$.

$$
=r \sin \theta \cos \alpha+r \cos \theta \sin \alpha .
$$

$r \cos \alpha=3 \quad r \sin \alpha=4$
$4 \mathrm{~A}_{2}$

$$
\begin{aligned}
r=5 \quad \tan \alpha & =\frac{4}{3} \\
\alpha & =0.927
\end{aligned}
$$

$3 \sin \theta+4 \cos \theta=5 \sin (\theta+0.927)$
ii)

$$
\begin{aligned}
x & =8 \cos ^{2} t+6 \sin t \cos t-4 \\
& =8 \cos ^{2} t+3 \sin 2 t-4 \\
\dot{x} & =-16 \cos ^{2} \sin t+6 \cos 2 t \\
& =-8 \sin 2 t+6 \cos 2 t \\
\ddot{x} & =-16 \cos ^{2} t-12 \sin 2 t \\
& =-16\left(2 \cos ^{2} t-1\right)-24 \sin t \cos t \\
& =-32 \cos ^{2} t-24 \sin t \cos t+16 \\
& =-4\left(8 \cos ^{2} t+6 \sin t \cos t-4\right) \\
& =-4 x \\
& \therefore \text { SHA, } n=2, T=\pi
\end{aligned}
$$

iii)

c) i)

$$
\begin{gathered}
|z-i|=\operatorname{Im} z \\
\left.\sqrt{\left(x^{2}+(y-1)^{2}\right.}\right)=y \\
x^{2}+y^{2}-2 y+1=y^{2} \\
x^{2}-2 y+1=0 \\
2 y=x^{2}+1 \\
y=\frac{x^{2}+1}{2}
\end{gathered}
$$

ii) $y=\frac{x^{2}}{2}+\frac{1}{2}$
$\frac{d y}{d x}=x$ If itpasses through 0 , then gradient $=\frac{y}{x}$

$$
\begin{aligned}
& \frac{y}{x}=x \\
& y=x^{2} \\
& \frac{x^{2}+1}{2}=x^{2} \\
& x^{2}=1 \quad \therefore x= \pm 1, y=1
\end{aligned}
$$

ie tangents inclined at $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$

$$
\therefore \frac{\pi}{4} \leqslant \arg (z) \leqslant \frac{3 \pi}{4}
$$

Question 13

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
y^{2}=b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)
$$

$$
=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)
$$

$$
V=\frac{4 b^{2}}{a^{2}} \int_{0}^{a}\left(a^{2}-x^{2}\right) d x
$$

$$
=\frac{4 b^{2}}{a^{2}}\left[a^{2} x-\frac{x^{3}}{3}\right]_{0}^{a}
$$

$$
=\frac{4 b^{2}}{a^{2}}\left[\left(a^{3}-\frac{a^{3}}{3}\right)-0\right]
$$

$$
=\frac{4 b^{2}}{a^{2}}+\frac{2 a^{3}}{3}
$$

$$
=\frac{8 a b^{2}}{3} /
$$

b)

$$
\begin{aligned}
& y=x \ln x \Rightarrow x>0 \\
& y^{\prime}=x \times \frac{1}{x}+\ln x \\
&=1+\ln x \\
& y^{\prime}=0 \ln x=-1 \\
& x=e^{-1} \\
&=\frac{1}{e} \\
& y=-\frac{1}{e} \\
& y^{\prime \prime}=\frac{1}{x} \therefore \min T P_{i} t\left(\frac{1}{e},-\frac{1}{e}\right) \\
& \text { as } x>0 \Rightarrow g^{\prime \prime}>0
\end{aligned}
$$

ie always concave up.

13c)i) $z=\cos \theta+i \sin \theta$

$$
\begin{aligned}
\frac{d z}{d \theta} & =-\sin \theta+i \cos \theta \\
i z & =i(\cos \theta+i \sin \theta) \\
& =i \cos \theta-\sin \theta \\
& =\frac{d z}{d \theta}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d z}{d t} & =i z \\
\int \frac{d z}{z} & =\int i d \theta \\
\ln z & =i \theta+c \\
\theta & =0 z=\cos 0+i \sin 0 \\
& =1 \\
\text { so } \ln 1 & =0+c \quad \therefore i=0
\end{aligned}
$$

$$
\ln z=i \theta
$$

$z=i \theta$
$z=e^{i \theta}$$\quad\left[\begin{array}{c}\text { A useful extension to } \\ \text { complex numbers! }]\end{array}\right.$
\qquad

$$
\begin{aligned}
& t=\tan \frac{x}{2} \\
& \sin x=\frac{2 t}{1+t^{2}} \cos x=\frac{1-t^{2}}{1+t^{2}} \\
& p=2 \tan ^{-1} t
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{i} \frac{\frac{2 d t}{1+t^{2}}}{1+\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}} \\
& \int_{0}^{1} \frac{2 d t}{1+t^{2}+1-t^{2}+2 t}
\end{aligned}
$$

$$
\int_{0}^{1} \frac{2 d t}{2+2 t}
$$

$$
\int_{0}^{1} \frac{d t}{1+t}=[\ln |1+t|]_{0}^{1}
$$

$$
=\ln 2-\ln 1
$$

$$
=\ln 2
$$

Question 14

bi) $y=\frac{c^{2}}{x} \quad \frac{d y}{d x}=\frac{-c^{2}}{x^{2}}$
at $x=c p \quad m=\frac{-c^{2}}{c^{2} p^{2}}$
En of tangent

$$
\begin{gathered}
\left(y-\frac{c}{p}\right)=\frac{-1}{p^{2}}(x-c p) \\
p^{2} y+c p=-x+c p \\
x+p^{2} y=2 c p
\end{gathered}
$$

ii)

$$
\begin{aligned}
& x+p^{2} y=2 c p-\quad \text { ennsof tangents } \\
& x+q^{2} y=2 c q \\
& y\left(p^{2}-q^{2}\right)=2 c(p-q) \\
& y(p-q)(p+q)=2 c(p-q)
\end{aligned}
$$

As $(p-q) \neq 0$

$$
y(p+q)=2 c
$$

$x=2 c p-p^{2} y$

$$
y=\frac{2 c}{p+q}
$$

$$
=2 c p-\frac{2 c p^{2}}{p+q}
$$

$$
=\frac{2 c p^{2}+2 c p q}{p+q}-\frac{2 c p^{2}}{p+q}
$$

$$
=\frac{2 c p q}{p+q} \operatorname{coord} \cot T\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)
$$

iii)

$$
\begin{aligned}
x y=k^{2} \Rightarrow & \frac{2 c p q}{(p+q)} \times \frac{2 c}{(p+q)}=k^{2} \\
& \frac{4 c^{2} p q}{(p+q)^{2}}=k^{2} \\
& \frac{p q}{(p+q)^{2}}=\frac{k^{2}}{4 c^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } \int_{0}^{\pi / 2} \frac{x d x}{1+\cos x+\sin x}=\int_{\frac{\pi}{2} / 2}^{\infty} \frac{\left(\frac{\pi}{2}-u\right)(-d u)}{1+\cos \left(\frac{\pi}{2}-u\right)+\sin \left(\frac{\pi}{2}-u\right)} \\
& u=\pi_{2}-3 \\
& d u=-d x \quad=\int_{\frac{\pi}{2}}^{0} \frac{-\pi / \pi_{2} d u}{1+\sin u+\cos u}-\int_{\frac{\pi}{2}}^{0} \frac{-u d u}{1+\cos 4-\sin 2} \\
& x=0 \quad u=\frac{\pi}{2} \quad=\frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{d u}{1+\cos u+\sin u}-\int_{0}^{\frac{\pi}{2}} \frac{2}{1+\cos u+\sin u} \\
& \text { let } \mu=x \text {. } \\
& 2 I=\frac{\pi}{2} \times \ln 2[\text { (rom i)] } \\
& I=\frac{\pi}{4} \ln 2
\end{aligned}
$$

14c)

$$
\text { ic) } \left.I_{n=}=\int_{1}^{e} x(\ln x)^{n} d x \quad u=(\ln x)^{n} \quad d v=x d x\right]
$$

$$
\text { a) } \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\alpha \beta+B \gamma+\alpha \gamma}{\alpha \beta \gamma}
$$

$$
I_{n}=\left.\frac{x^{2}}{2}(\ln x)^{n}\right|_{1} ^{e}-\int_{1}^{e} \frac{n x^{2}}{2}(\ln x)^{n-1} * \frac{1}{x} d x
$$

$$
x^{3}+0 x^{2}+m x+n=0
$$

$$
-\frac{b}{a}=0, \frac{c}{a}=m-\frac{d}{a}=-\eta
$$

$$
=\left[\frac{e^{2}}{2}(\ln e)^{n}-\frac{1}{2}(\ln 1)^{n}\right]-\frac{n}{2} \int_{1}^{e} x(\ln x)^{n-1} d x
$$

So $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{-m}{n}$

$$
\ln e=1 \ln 1=0
$$

$$
=\frac{e^{2}}{2}-\frac{n}{2} I_{n-1}
$$

ii) $n=2$

$$
\begin{aligned}
& I_{2}=\frac{e^{2}}{2}-I_{1} \\
& n=1 \\
& I_{1}=\frac{e^{2}}{2}-\frac{1}{2} I_{0}
\end{aligned}
$$

Question 15
ii)

$$
\begin{array}{rlrl}
\alpha^{3} & =-m \alpha-n \\
\beta^{3}=-m \beta-n & \alpha^{3}+\beta^{3}+\gamma^{3} & =-m(\alpha+\beta+\gamma)-3 n \\
\gamma^{3}=-m \gamma-n & & \alpha+\beta+\gamma=0 \\
& =-3 n
\end{array}
$$

$$
I_{0}=\int_{1}^{e} x(\ln x)^{0} d x=\left[\frac{1}{2} x^{2}\right]_{1}^{e}
$$

$$
=\frac{e^{2}}{2}-\frac{1}{2}
$$

$$
\therefore I_{2}=\frac{e^{2}}{2}-\left[\frac{e^{2}}{2}-\frac{1}{2}\left(\frac{e^{2}}{2}-\frac{1}{2}\right)\right]^{2}
$$

$$
=\frac{e^{2}}{4}-\frac{1}{4} \text { or } \frac{e^{2}-1}{4}
$$

$$
\text { iii) } \begin{aligned}
& \text { Sub } x=\sqrt{x} . \\
& (\sqrt{x})^{3}+m \sqrt{x}+n=0 \\
& x \sqrt{x}+m \sqrt{x}=-n \\
& \sqrt{x}(x+m)=-n \\
& \text { squaring both sides } \\
& x(x+m)^{2}=n^{2} \\
& x^{3}+2 m x^{2}+m^{2} x-n^{2}=0 \\
& 1 b)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \\
& a=3 \quad b=2 \\
& \vec{x} b^{2}=a^{2}\left(1-e^{2}\right) \\
& \frac{4}{9}=1-e^{2} \\
& e=\frac{\sqrt{5}}{3}
\end{aligned}
$$

$$
v_{x}=\frac{-9}{\sqrt{5}}
$$

ii) $\frac{(3 \cos \theta)^{2}}{9}+\frac{(2 \sin \theta)^{2}}{4}=\frac{9 \cos ^{2} \theta}{4}+\frac{4 \sin ^{2} \theta}{4}$

$$
=\cos ^{2} \theta+\sin ^{2} \theta
$$

$$
=1
$$

\therefore Plies on E.

$$
x=0 \quad u=0
$$

iii)

$$
x=\sqrt{\pi} \mu=\pi
$$

$$
\begin{aligned}
& \text { iii) } \begin{array}{l}
4 x^{2}+9 y^{2}=36 \\
8 x+18 y \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\frac{-8 x}{18 y} \\
=\frac{-4 x}{9 y} \quad \text { at }=m=\frac{-4(3 \cos \theta)}{9(2 \sin \theta)} \\
\begin{aligned}
& \text { Egn } 6 \operatorname{tangent} \\
&(y-2 \sin \theta)=\frac{-2 \cos \theta}{3 \sin \theta}(x-3 \cos \theta) \\
& 3 \sin \theta y-6 \sin ^{2} \theta=-2 x \cos \theta+6 \cos ^{2} \theta \\
& 2 \cos \theta x+3 \sin \theta y\left.=6 \sin ^{2} \theta+\cos ^{2} \theta\right) \\
& \cos \theta x \\
& 3
\end{aligned}+\frac{\sin \theta y}{2}=6
\end{array}
\end{aligned}
$$

$$
\begin{array}{rl|l}
V & =\pi \int_{0}^{\pi} \sin u d u \\
& =\pi[-\cos u]_{0}^{\pi} \\
& =\pi[1+1]_{3}
\end{array} \quad \begin{aligned}
\frac{d y}{d x} & =\frac{-8 x}{18 y} \\
& =-\frac{4 x}{9 y}
\end{aligned}
$$

$$
=2 \pi u^{3}
$$

15biv) $y=0 \quad 2 \cos \theta x=6$

$$
\begin{aligned}
O Q & =\frac{3}{\cos \theta} \\
O T & =3 \cos \theta \\
O R & =\frac{5 \cos \theta}{3} \\
R T & =O T-O R \\
& =3 \cos \theta-\frac{5 \cos \theta}{3} \\
& =\frac{4 \cos \theta}{3}
\end{aligned}
$$

$$
O Q \times R T=\frac{3}{\cos \theta} \times \frac{4 \cos \theta}{3}
$$

$=4$ ie constant for all positions at P.

ii) $\angle P L C=\angle P N C=90^{\circ}$ (per ondiculuns) \therefore opp angles of quadrilateral are supplementary.
$\therefore P N C L$ is a cyclic quad.
iii) AS PNCL are conalic (from:) $\angle P N L=\angle P C L$ angles atcircumfterace standingor chord PL
APBE are concyclic so $\angle P B A=\angle P C A$ angles at circum. $\begin{aligned} & \text { standing on chord } P A\end{aligned}$ standing on chord P P
$\angle P C L$ is also $\angle P C A$
So $\angle P N L=\angle P C L=\angle P C A=\angle P B A$

$$
\text { or } \angle P N L=\angle P B A
$$

$\angle P N \angle$ can be named $\angle P N M$
$\angle P B A$ can be rained $\angle P B M$
So $\angle P N M=\angle P B M$
\therefore PBNM is a cyclic quad equal angles at circumference on chord PM.
iii) $\angle B N P$ and $\angle B M P$ stand on chord $B P$ in circle PBNM (from ii).

$$
\therefore \angle B N P=\angle B M P
$$

as $P N \perp B C$ (given.

$$
\angle P M B=90^{\circ}
$$

ie $P M+A B$.
b) i)

$$
\begin{aligned}
& \cos \frac{2 \pi}{n}=\cos ^{2} \frac{\pi}{n}-\sin ^{2} \frac{\pi}{n} \\
& \sin \frac{2 \pi}{n}=2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}
\end{aligned}
$$

bi)

$$
\left.\begin{array}{rl}
1+\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}= & \left(\cos ^{2} \frac{\pi}{n}+\sin \frac{2}{n}\right)+\left(\cos \frac{\pi}{n}-\sin \frac{1}{n}\right)+ \\
& \left(2 i \sin \frac{\pi}{n} \cos \frac{\pi}{n}\right)
\end{array}\right)
$$

c) i) $(a-b)^{2} \geqslant 0$

$$
\begin{array}{r}
(a-b)^{2}=a^{2}+b^{2}-2 a b \geqslant 0 \\
(a+b)^{2}-4 a b \geqslant 0 \\
(a+b)^{2} \geqslant 4 a b \\
a+b \geqslant 2 \sqrt{a b}
\end{array}
$$

(positive case as a, b are both positive)
ii)

$$
\begin{aligned}
&\left(\frac{1}{a}-1\right)=\frac{1-a}{a} \quad \text { If } a+b+c=1 \\
&=\frac{1-(1-b-c)}{a} \\
&=\frac{b+c}{a} \\
&\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)=\frac{(b+c)}{a} \frac{(a+c)}{b} \frac{(a+b)}{c}
\end{aligned}
$$

from i) $a+b \geqslant 2 \sqrt{a b}$

$$
\begin{aligned}
& \geqslant \frac{2 \sqrt{b c}}{a} \times \frac{2 \sqrt{a c}}{b} \times \frac{2 \sqrt{a b}}{c} \\
& \geqslant \frac{8 \sqrt{a^{2} b^{2} c^{2}}}{a b c} \\
& \geqslant \frac{8 a b c}{a b c} \\
& \geqslant 8
\end{aligned}
$$

