

Caringbah High School

2019

Trial HSC Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen only (Black pen is preferred)
- NESA approved calculators may be used
- A reference sheet is provided
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks – 100

- **Section I** 10 marks Pages 2 – 5
- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II 90 marks

Pages 6 - 14

- Attempt Questions 11–16
- Allow about 2 hour and 45
- minutes for this section

Question 1 - 10 (1 mark each) Answer on page provided.

1 Let z = 1 + 2i and $\omega = 3i - 4$. What is the value of $z\overline{\omega}$?

A)
$$4 + i$$
 B) $2 - 3i$

C)
$$2 - 11i$$
 D) $-2 + 11i$

2 Let A, B and C be three consecutive terms of an arithmetic sequence.

Which of the following is a simplification of $\frac{\sin(A+C)}{\sin B}$?

A) $2\cos B$ B) $\sin 2B$

C)
$$\cot B$$
 D) 2

3 The eccentricity of the ellipse
$$\frac{x^2}{100} + \frac{y^2}{36} = 1$$
 is $e = \frac{4}{5}$.

Which of the following is the distance between the two foci?

A) 8 B) 16

C) 20 D) 25

- 4 The polynomial equation $x^3 3x^2 + 2 = 0$ has roots α, β and γ . What is the value of $\alpha^3 + \beta^3 + \gamma^3$?
 - A) 9 B) 13
 - C) 21 D) 25

5 The equation $\frac{x}{y} + \frac{y}{x} = 2$ defines y implicitly as a function of x. Which of the following graphs best represents this implicit function?

6 If $x = 1 - \cos \theta$ and $y = \theta - \sin \theta$, which is the result for $\frac{dy}{dx}$?

- A) $\frac{dy}{dx} = -\cot\frac{\theta}{2}$ B) $\frac{dy}{dx} = -\tan\frac{\theta}{2}$
- C) $\frac{dy}{dx} = \cot\frac{\theta}{2}$ D) $\frac{dy}{dx} = \tan\frac{\theta}{2}$

7 Consider the following diagram, drawn to scale, showing the complex numbers z and ω .

Which of statements below is false?

A)
$$|z + \omega| = |z - \omega|$$
 B) $\operatorname{Re}\left(\frac{\omega}{z}\right) = 0$

C)
$$z^2 = k\omega^2$$
, where k is real D) $-\pi < \arg(z - \omega) < 0$

8 Which of the following is the domain of the function $y = \cos^{-1}\left(\frac{x-a}{b}\right), b > 0$?

A)
$$a-b \le x \le a+b$$
 B) $a-1 \le x \le a+1$

C)
$$a \le x \le a + b\pi$$
 D) $-1 \le x \le 1$

9 In the diagram below, O is the centre of the circle.

It is given that $\angle OAB = 20^{\circ}$ and $\angle OCB = 52^{\circ}$.

What is the size of $\angle ABC$?

- C) 56° D) 64°
- 10 A particle is moving in a straight line with velocity at any particular time given by $v = \sin^{-1} x$.

Which of the following represents the acceleration of the particle?

A)
$$\frac{\sin^{-1} x}{\sqrt{1-x^2}}$$
 B) $\frac{-\sin^{-1} x}{\sqrt{1-x^2}}$

C)
$$\frac{1}{\sqrt{1-x^2}}$$
 D) $\frac{-\cos x}{\sin^2 x}$

END OF MULTIPLE CHOICE QUESTIONS

Section II (90 marks)

Attempt all questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW booklet.		Marks
(a)	Let $z = \sqrt{3} + i$.	
	(i) Express z in modulus – argument form.	2
	(ii) Hence find z^4 in $x+iy$ form.	2
(b)	A point $P(z)$ moving in the complex plane has its locus in terms of z	
	defined by $ z - 1 = z + 2 - 3i $.	
	Find the cartesian equation of the locus.	2
(c)	Find $\int \sin\theta \cos^5\theta d\theta$.	2
(d)	(i) Find the values of <i>A</i> , <i>B</i> and <i>C</i> so that	2
	$\frac{5}{(x+1)(x^2+4)} \equiv \frac{A}{x+1} + \frac{Bx+C}{x^2+4}.$	
	(ii) Hence find $\int \frac{5}{(x+1)(x^2+4)} dx$.	3
(e)	Consider the polynomial $P(x) = x^3 + 3x^2 - 24x + k$.	
	If $P(x) = 0$ has a zero of multiplicity 2, find all possible values of k.	2

Question 12 (15 marks) Start a NEW booklet.

(a) Find
$$\int \frac{x^2}{x+1} dx$$
. 2

(b) The diagram below shows the graph of y = f(x).

On separate sketches, showing any important features, neatly draw the graphs of

(i)
$$y = f(-x)$$
 1

(ii)
$$y = \sqrt{f(x)}$$
 1

(iii)
$$y = \left[f(x)\right]^2$$
 2

(iv)
$$y = \frac{1}{f(x)}$$
 2

(v)
$$y = \log_e \left[f(x) \right]$$
 2

(vi)
$$y = 1 + \frac{d}{dx} \left[f(x) \right]$$
 2

Question 12 continues on page 8

Question 12 (continued)

(c) On the Argand diagram shade the region defined by

$$|z-i| \le 2$$
 and $0 \le \arg(z-1) \le \frac{3\pi}{4}$.

End of Question 12

3

Question 13 (15 marks) Start a NEW booklet.

(a) Consider the hyperbola
$$x^2 - 9y^2 = 1$$
. Find:

- (i) the eccentricity.
 - (ii) the coordinates of the foci. 1
 - (iii) the equation of the directrices.

(b) Consider the ellipse
$$E: \frac{x^2}{9} + \frac{y^2}{4} = 1$$
.

Normals to *E* at the points $P(3\cos\alpha, 2\sin\alpha)$ and $Q(3\cos\beta, 2\sin\beta)$ are at right angles to each other.

(i) Show that the gradient of the normal at *P* is
$$\frac{3\sin\alpha}{2\cos\alpha}$$
. 2

- (ii) Hence or otherwise, find the value of $\cot \alpha \cot \beta$. 2
- c) If α, β and γ are the roots of the equation $x^3 + 6x + 1 = 0$, find in **3** simplest form the polynomial equation with roots $\alpha\beta, \beta\gamma$ and $\alpha\gamma$.

d) Consider the function
$$f(x) = x - \ln(1 + x^2)$$
.

(i) Explain why f(x) is an increasing function for all x except one value.
 3 Find this value and state what happens on the curve at this value.

(ii) Hence show that
$$e^x \ge 1 + x^2$$
 for $x \ge 0$. 2

1

1

Question 14 (15 marks) Start a NEW booklet.

(a) (i) If
$$\omega$$
 is a non-real cube root of unity show that $1 + \omega + \omega^2 = 0$. 1

(ii) Hence evaluate
$$(1 - 3\omega + \omega^2)(1 + \omega - 8\omega^2)$$
. 2

(b) It is given that *a*, *b* and *c* are any real numbers.

(i) Prove that
$$a^2 + b^2 + c^2 \ge ab + bc + ca$$
. 2

(ii) Hence or otherwise, prove that
$$3(a^2 + b^2 + c^2) \ge (a + b + c)^2$$
. 2

(c) (i) Find
$$\frac{d}{dx} \left[\ln \left(\cos x^2 \right) \right]$$
. 1

(ii) The region in the plane which is bounded by the curve $y = tan(x^2)$,

the *x* - axis and the line $x = \frac{\sqrt{\pi}}{2}$, shown in the diagram below,

is rotated about the y - axis to produce a solid S.

By using the method of cylindrical shells, find the volume of S in exact form.

Question 14 continues on page 11

Question 14 (continued)

(d) Let
$$I_n = \int_0^1 (1 - x^2)^n dx$$
 for $n \ge 1$.

(i) Show that
$$I_n = \frac{2n}{2n+1} I_{n-1}$$
 3

(ii) Hence evaluate I_2 . 1

End of Question 14

Question 15 (15 marks) Start a NEW booklet.

(a) (i) Show that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
. 2

(ii) Hence deduce that
$$\int_{0}^{\frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \sin 2x} \, dx = \int_{0}^{\frac{\pi}{4}} \tan^2 x \, dx$$
 2

(iii) Hence evaluate
$$\int_{0}^{\frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \sin 2x} dx.$$
 2

(b)
$$P\left(cp,\frac{c}{p}\right)$$
 and $Q\left(cq,\frac{c}{q}\right)$ where $p,q>0$ are two distinct points

on the Hyperbola, H, $xy = c^2$.

- (i) Show that the equation of the tangent to *H* at *P* is given by $x + p^2 y = 2cp$.
- (ii) The tangents to H at P and Q meet at T. 2 Find the coordinates of T.
- (iii) Show that the equation of the chord PQ is given by x + pqy = c(p+q).
- (iv) The chord PQ passes through the point (2c, 0). 1 Find the relationship between p and q.
- (v) Hence, find the equation of the locus of *T*.2For full marks a complete description must be given.

Question 16 (15 marks) Start a NEW booklet.

a) Let $P(z) = 2z^3 - 5z^2 + qz - 5$, where q is a real number.

(i) If
$$P(1-2i) = 0$$
, solve $P(z) = 0$. 2

(ii) Hence determine the value of q if
$$P(1-2i) = 0$$
. 1

 b) Lachlan's sculpture, "The Wedge", was obtained by cutting a right cylinder of radius 4 units at 45° through a diameter of its base as shown below.

A rectangular slice *ABCD*, of thickness δx , is taken perpendicular to the base of the wedge at a distance x from the y – axis.

(i) Show that the area of *ABCD* is given by
$$2x\sqrt{16 - x^2}$$
.

(ii) Find the exact volume of the wedge.

Question 16 continues on page 14

3

Question 16 (continued)

(c) The equation $x^2 - x + 1 = 0$ has roots α and β , and $A_n = \alpha^n + \beta^n$ for $n \ge 1$.

- (i) Without solving the equation, show that $A_1 = 1$ and $A_2 = -1$. 2
- (ii) Show that $A_n = A_{n-1} A_{n-2}$ for $n \ge 3$. **2**

(iii) Use mathematical induction to prove that
$$A_n = 2\cos\frac{n\pi}{3}$$
 for $n \ge 1$. 3

END OF EXAM

Candidate Name/Number: _____

Multiple choice answer page. Fill in either A, B, C or D for questions 1-10.

This page must be handed in with your answer booklets

1.	
2.	
3.	
4.	
5.	

6.	
7.	
8.	
9.	
10.	

CHS YEAR 12 EXTENSION 2 2019	TRIAL HSC SUGGESTED SOLUTIONS
Multiple Choice Section:	Question 6.
1.C 2.A 3.B 4.C 5.B	$x = 1 - \cos \theta, \ y = \theta - \sin \theta$
6.D 7.D 8.A 9.B 10.A	$\frac{dx}{d\theta} = \sin \theta, \ \frac{dy}{d\theta} = 1 - \cos \theta$
Question 1.	
(1+2i)(-4-3i) = 2 - 11iC	$\therefore \frac{dy}{dx} = \frac{1 - \cos\theta}{\sin\theta}$
Question 2.	$2\sin^2\frac{\theta}{2}$
$B - A = C - B \rightarrow 2B = A + C$	$= \frac{2}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = \tan\frac{\theta}{2} \qquad \qquad$
$\frac{\sin(A+C)}{\sin B} = \frac{\sin 2B}{\sin B}$	Question 7.
$=\frac{2\sin B\cos B}{\sin B}=2\cos B$	$\arg(z - \omega)$ is positive (scale drawing) D
Question 3.	Question 8.
$e = \frac{4}{5}, a = 10 \rightarrow ae = 8$	$-1 \le \frac{x-a}{b} \le 1$
\therefore -ae to ae = 16B	$\therefore -b \le x - a \le b$
Question 4.	$\therefore a-b \le x \le a+b \qquad \qquad$
Since α, β, γ satisfy $x^3 - 3x^2 + 2 = 0$	Question 9
Then $\alpha^3 = 3\alpha^2 - 2$	
$\beta^3 = 3\beta^2 - 2$ $r^3 = 3r^2 - 2$	$\angle BAO + \angle AOC = \angle ABC + \angle OCB$ (exterior angle)
Hence $\alpha^{3} + \beta^{3} + \gamma^{3} = 3(\alpha^{2} + \beta^{2} + \gamma^{2}) - 6$	$\angle AOC = 2 \angle ABC \ (\angle \text{at centre} = \text{twice} \angle \text{at circum})$
$= 3(\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha) - 6$	$\therefore 2x + 20 = x + 52 \rightarrow x = 32^0 \qquadB$
$= 3(3)^{2} - 2(0) - 6$	Question 10.
= 21 <u>C</u>	$a = \frac{d}{dv} \left(\frac{1}{2} v^2 \right) = \frac{d}{dv} \left(\frac{1}{2} (\sin^{-1} x)^2 \right)$
Question 5.	ax(2) ax(2) ()
$\frac{x}{y} + \frac{y}{x} = 2 \rightarrow (x - y)^2 = 0 [x \neq 0, y \neq 0]$	$=\frac{1}{2} \times 2\sin^{-1}x \times \frac{1}{\sqrt{1-x^2}} \qquad $
$\therefore y = x \qquad \qquad$	

Question 11
a) i)
$$2cis\left(\frac{\pi}{6}\right)$$

ii) $\left[2cis\left(\frac{\pi}{6}\right)\right]^4 = 16cis\left(\frac{2\pi}{3}\right) [DMT]$
 $= 16\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = -8 + i8\sqrt{3}$
b) Let $z = x + iy$.
 $\therefore [(x + 2) + i(y - 3)] = [(x - 1) + iy]$
 $\therefore x^2 - 2x + 1 + y^2 = x^2 + 4x + 4 + y^2 - 6y + 9$
 $\therefore x^2 - 2x + 1 + y^2 = x^2 + 4x + 4 + y^2 - 6y + 9$
 $\therefore x - y + 2 = 0$
c) $\int \sin\theta \cos^3\theta \, d\theta$
Let $u = \cos\theta \rightarrow du = -\sin\theta d\theta$
 $\therefore I = -\int u^5 du = -\frac{u^6}{6}$
 $\therefore I = -\int u^5 du = -\frac{u^6}{6}$
 $\therefore I = -\int u^5 du = -\frac{u^6}{6}$
 $\vdots I = t = -i \ln^* : 5 = 5A \rightarrow A = 1$
Let $x = 0$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 0$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 0$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A \rightarrow A = 1$
Let $x = 1$ in *: $5 = 5A + 2B + 2C \rightarrow B = -1$
ii) $\int \frac{5}{(x+1)(x^2+4)} \, dx = \int \frac{1}{x+1} + \frac{1-x}{x^2+4} \, dx$
 $= \ln(x+1) - \frac{1}{2}\ln(x^2 + 4) + \frac{1}{2}\tan^{-1}(\frac{x}{2}) + c$
 $= \ln\left(\frac{x+1}{\sqrt{x^2+4}} + \frac{1}{2}\tan^{-1}(\frac{x}{2}) + c$

a) $x^2 - 9y^2 = 1 \implies x^2 - 9y^2 = 1$ i) $b^2 = a^2 \left(e^2 - 1 \right) \rightarrow \frac{1}{9} = e^2 - 1$ $\therefore e = \frac{\sqrt{10}}{3}$ ii) Foci $\left(\pm \frac{\sqrt{10}}{3}, 0\right)$ iii) directrices $\therefore x = \pm \frac{3}{\sqrt{10}}$ b i) $\frac{x^2}{9} + \frac{y^2}{4} = 1 \rightarrow \frac{2x}{9} + \frac{2yy'}{4} = 0$ $\therefore y' = -\frac{4x}{9y}$ [gradient of tangent] hence gradient of the normal is $\frac{9y}{4x}$ $\therefore \text{ at } P: m_N = \frac{9 \times 2\sin\alpha}{4 \times 3\cos\alpha} = \frac{3\sin\alpha}{2\cos\alpha}$ ii) Similarly the gradient of the normal at Q is

$$m_N = \frac{3\sin\beta}{2\cos\beta}$$

and as the normals are at right angles then:

$$\frac{3\sin\alpha}{2\cos\alpha} \times \frac{3\sin\beta}{2\cos\beta} = -1$$

$$\therefore \quad \frac{3}{2}\tan\alpha \times \frac{3}{2}\tan\beta = -1$$

$$\therefore \quad \cot\alpha \cot\beta = -\frac{9}{4}$$

c) The required roots are $\alpha\beta$, $\beta\gamma$ and $\alpha\gamma$ which is the same as $\frac{\alpha\beta\gamma}{\gamma}$, $\frac{\alpha\beta\gamma}{\alpha}$ and $\frac{\alpha\beta\gamma}{\beta}$. Using sum of the roots $\alpha\beta\gamma = -1$, hence the required roots are $\frac{-1}{\alpha}$, $\frac{-1}{\beta}$ and $\frac{-1}{\gamma}$. Let $x = \frac{-1}{\alpha} \rightarrow \alpha = \frac{-1}{x}$ \therefore the required equation is given by $\therefore \left(\frac{-1}{r}\right)^3 + 6\left(\frac{-1}{r}\right) + 1 = 0$ $\therefore \quad \frac{-1}{r^3} - \frac{6}{r} + 1 = 0$ $\therefore x^3 - 6x^2 - 1 = 0$ c) $f(x) = x - \ln(1 + x^2)$ i) $f'(x) = 1 - \frac{2x}{1 + x^2}$ $f'(x) = \frac{1 + x^2 - 2x}{1 + x^2} = \frac{(x - 1)^2}{1 + x^2}$ hence $f'(x) = \frac{(x-1)^2}{1+x^2} \ge 0$ thus is an increasing function for all x except x = 1 where it is stationary. ii) Since $f(0) = 0 - \ln 1 = 0$ then $x - \ln(1 + x^2) \ge 0$ for $x \ge 0$. $\therefore \quad x \ge \ln\left(1 + x^2\right)$

 $\therefore e^x \ge e^{\ln(1+x^2)}$

 $e^x \ge 1 + x^2$

Question 14.

a) i) Since ω is a non-real cube root of unity then it satisfies $z^3 = 1$ but $\omega \neq 1$. $\therefore \quad \omega^3 = 1 \quad \rightarrow \quad (\omega - 1)(\omega^2 + \omega + 1) = 0$ $\therefore \omega^2 + \omega + 1 = 0$ ii) $(1-3\omega+\omega^2)(1+\omega-8\omega^2) = (-\omega-3\omega)(-\omega^2-8\omega^2)$ $=(-4\omega)(-9\omega^2)$ $= 36\omega^3 = 36.$ b) i) $(a-b)^2 \ge 0$ $\therefore a^2 - 2ab + b^2 \ge 0$ $a^2 + b^2 \ge 2ab$ similarly $\therefore b^2 + c^2 \ge 2bc$ and $\therefore c^2 + a^2 \ge 2ca$ hence on adding $\therefore 2(a^2+b^2+c^2) \ge 2(ab+bc+ca)$ $\therefore \quad a^2 + b^2 + c^2 \ge ab + bc + ca.$ ii) Using (i) $2(a^2 + b^2 + c^2) \ge 2ab + 2bc + 2ca.$ $\therefore \quad 3(a^2 + b^2 + c^2) \ge a^2 + b^2 + c^2 + 2ab + 2bc + 2ca.$ and since $a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca = (a + b + c)^{2}$ then $3(a^2 + b^2 + c^2) \ge (a + b + c)^2$.

c) i)
$$\frac{d}{dx} \Big[\ln \Big(\cos x^2 \Big) \Big] = \frac{-2x \sin \Big(x^2 \Big)}{\cos \Big(x^2 \Big)}$$

 $= -2x \tan \Big(x^2 \Big)$
ii) $\frac{\delta x}{2}$
 $\frac{\delta x}{2}$
Take a typical shell at a distance x units from O.
Thus the area of the annulus is given by
 $A = \pi \Big(x + \frac{\delta x}{2} + x - \frac{\delta x}{2} \Big) \Big(x + \frac{\delta x}{2} - \Big(x - \frac{\delta x}{2} \Big) \Big)$
 $= \pi (2x) \Big(\delta x \Big)$
 $= 2\pi x \delta x$
 \therefore Volume of the shell $= 2\pi x \delta x y$
Total Volume $= \lim_{\delta x \to 0} \sum_{x=0}^{\frac{\sqrt{\pi}}{2}} 2\pi xy \delta x$
 $= 2\pi \int_{0}^{\frac{\sqrt{\pi}}{2}} x \tan \Big(x^2 \Big) dx$
 $= -\pi \Big[\ln \Big(\cos x^2 \Big) \Big]_{0}^{\frac{\sqrt{\pi}}{2}}$
 $= -\pi \Big[\ln \Big(\cos \frac{\pi}{4} \Big) - \ln(\cos 0) \Big]$
 $= \pi \ln \Big(\sqrt{2} \Big) = \frac{\pi}{2} \ln 2 u^3$

d) i)
$$I_n = \int_0^1 (1 - x^2)^n dx$$
 for $n \ge 1$.
Using *IBP*: Let $u = (1 - x^2)^n$, $v' = 1$
 $u' = -2nx(1 - x^2)^{n-1}$, $v = x$
 $\therefore I_n = x(1 - x^2)^n \Big]_0^1 + \int_0^1 2nx^2(1 - x^2)^{n-1} dx$
 $= 0 - 2n \int_0^1 ((1 - x^2) - 1)(1 - x^2)^{n-1} dx$
 $= -2n \int_0^1 (1 - x^2)^n - (1 - x^2)^{n-1} dx$
 $\therefore I_n = -2n \Big[I_n - I_{n-1} \Big]$
 $\therefore I_n + 2nI_n = 2nI_{n-1}$
 $\therefore I_n (1 + 2n) = 2nI_{n-1}$
 $I_n = \frac{2n}{2n+1} I_{n-1}$
ii) $I_2 = \frac{4}{5} I_1$
 $I_1 = \int_0^1 1 - x^2 dx$
 $= x - \frac{x^3}{3} \Big]_0^1 = \frac{2}{3}$
 $\therefore I_2 = \frac{4}{5} \times \frac{2}{3} = \frac{8}{15}$
Question 15.

a) i) Let
$$I = \int_0^a f(x) dx$$
 and let $u = a - x$
 $\therefore x = a - u \quad \rightarrow \quad dx = -du$
When $x = 0, \ u = a; \ x = a, \ u = 0$
 $\therefore I = \int_a^0 f(a - u) \cdot -du$
 $= \int_0^a f(a - u) du = \int_0^a f(a - x) dx$

ii) Using (i)

$$\int_{0}^{\frac{\pi}{4}} \frac{1-\sin 2x}{1+\sin 2x} dx = \int_{0}^{\frac{\pi}{4}} \frac{1-\sin 2\left(\frac{\pi}{4}-x\right)}{1+\sin 2\left(\frac{\pi}{4}-x\right)} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1-\sin\left(\frac{\pi}{2}-2x\right)}{1+\sin\left(\frac{\pi}{2}-2x\right)} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1-\cos 2x}{1+\cos 2x} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1-(1-2\sin^{2}x)}{1+(2\cos^{2}x-1)} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{2\sin^{2}x}{2\cos^{2}x} dx = \int_{0}^{\frac{\pi}{4}} \tan^{2}x dx$$
iii)
$$\int_{0}^{\frac{\pi}{4}} \tan^{2}x dx = \int_{0}^{\frac{\pi}{4}} \sec^{2}x - 1 dx$$

$$= [\tan x - x]_{0}^{\frac{\pi}{4}} = 1 - \frac{\pi}{4}$$
b) i)
$$y = \frac{c^{2}}{x} \rightarrow \frac{dy}{dx} = -\frac{c^{2}}{x^{2}}$$
at
$$x = cp, \frac{dy}{dx} = m = -\frac{1}{p^{2}}$$

$$\therefore y - \frac{c}{p} = -\frac{1}{p^{2}}(x - cp)$$

$$\therefore p^{2}y - cp = -x + cp$$

$$\therefore x + p^{2}y = 2cp - - - - []$$

ii) Similiarly
$$x + q^2 y = 2cq - - - - [2]$$

 $\boxed{2} - \boxed{1}: (p^2 - q^2) y = 2c(p - q)$
And since $p \neq q$
 $(p + q) y = 2c \rightarrow y = \frac{2c}{p + q}$
Subbing into $\boxed{1}$ gives $x = \frac{2cpq}{p + q}$
 $\therefore T\left(\frac{2cpq}{p + q}, \frac{2c}{p + q}\right)$
iii) $m_{PQ} = \frac{\frac{c}{q} - \frac{c}{p}}{cq - cp}$
 $= \frac{c(p - q)}{pq} = -\frac{1}{pq}$
 $\therefore y - \frac{c}{p} = -\frac{1}{pq}(x - cp)$
 $pqy - cq = -x + cp$
 $\therefore x + pqy = c(p + q)$
iv) Using (iii) $2c + 0 = c(p + q)$
 $\therefore p + q = 2$
v) Using (iv) T becomes $\left(\frac{2cpq}{2}, \frac{2c}{2}\right) \rightarrow T(cpq, c)$
Hence the locus of T is $y = c$ for $0 < x < c$
Note: $p + q = 2$, both $p,q > 0$ and $p \neq q$
 $\therefore pq < 1$
Also the tangents must meet outside of H in the first quadrant.
Also when $y = c, x = c$.

Question 16.

a) i) Since the coefficients are real, the roots occur in complex conjugate pairs.

Using sum of the roots:

 $1+2i+1-2i+\alpha=0 \rightarrow \alpha=\frac{1}{2}$ Hence the roots are z = 1 + 2i, z = 1 - 2i, $z = \frac{1}{2}$ ii) Since $z = \frac{1}{2}$ is a solution then $P\left(\frac{1}{2}\right) = 0$. $\therefore \frac{1}{4} - \frac{5}{4} + \frac{q}{2} - 5 = 0 \quad \rightarrow \quad q = 12$ b) i) x 45 Area of $ABCD = x \times 2y$ $= x \times 2y$ The base is half of the circle centre (0,0), radius 4 Hence has equation $x^2 + y^2 = 4^2 \rightarrow y = \sqrt{16 - x^2}$ $\therefore \text{ Area of } ABCD = x \times 2\sqrt{16 - x^2}$ $= 2x\sqrt{16 - x^2}$

ii)

$$V_{s} = x \times 2\sqrt{16 - x^{2}} \, \delta x$$

$$\therefore \quad V = \lim_{\delta x \to 0} \sum_{x = -4}^{4} 2x\sqrt{16 - x^{2}} \, \delta x$$

$$= 2\int_{-4}^{4} x\sqrt{16 - x^{2}} \, dx$$

Let $u = 16 - x^{2} \rightarrow du = -2xdx$
When $x = 0, u = 16; x = 4, u = 0$

$$\therefore V = -\int_{16}^{0} u^{\frac{1}{2}} du$$

$$= \int_{0}^{16} u^{\frac{1}{2}} du$$

$$= \left[\frac{2}{3}u^{\frac{3}{2}}\right]_{0}^{16}$$

$$= \frac{128}{3}u^{3}$$
c) i) $A_{1} = \alpha^{1} + \beta^{1} = \text{sum of roots}$

$$= -\frac{b}{a} = -\left(\frac{-1}{1}\right) = 1$$

$$A_{2} = \alpha^{2} + \beta^{2}$$

$$= (\alpha + \beta)^{2} - 2\alpha\beta$$

$$= 1^{2} - 2 \times 1 = -1$$
ii) Since α, β satisfy $x^{2} - x + 1 = 0$
then $\alpha^{2} - \alpha + 1 = 0 - - - -1$
 $\beta^{2} - \beta + 1 = 0 - - - -2$

$$\boxed{1} \times \alpha^{n-2} \rightarrow \alpha^{n} - \alpha^{n-1} + \alpha^{n-2} = 0$$
 $\therefore \alpha^{n} = \alpha^{n-1} - \alpha^{n-2} - - - -3$

$$\boxed{2} \times \beta^{n-2} \rightarrow \beta^{n} = \beta^{n-1} - \beta^{n-2} - - - -4$$

$$\boxed{3} + [4] \text{ gives:}$$

$$\alpha^{n} + \beta^{n} = (\alpha^{n-1} + \beta^{n-1}) - (\alpha^{n-2} + \beta^{n-2})$$
 $\therefore A_{n} = A_{n-1} - A_{n-2}$
c) $A_{1} = 2\cos\frac{\pi}{3} = 2 \times \frac{1}{2} = 1$
 $A_{1} = 2\cos\frac{2\pi}{3} = 2 \times -\frac{1}{2} = -1$
 \therefore true for $n = 1$ and $n = 2$.

Assume true for $n = k$ <i>i.e.</i> $A_k = 2\cos\frac{k\pi}{3}$	
and $n = k - 1$ <i>i.e.</i> $A_{k-1} = 2\cos(k - 1)\frac{\pi}{3}$	
:. $A_{k+1} = A_k - A_{k-1}$ { using (b) }	
$=2\cos\frac{k\pi}{3}-2\cos(k-1)\frac{\pi}{3}$	
$= 2\cos\frac{k\pi}{3} - 2\cos\frac{k\pi}{3}\cos\frac{\pi}{3} - 2\sin\frac{k\pi}{3}\sin\frac{\pi}{3}$	
$=\cos\frac{k\pi}{3} - 2\sin\frac{k\pi}{3}\sin\frac{\pi}{3}$	
$=2\cos\frac{k\pi}{3}\cos\frac{\pi}{3}-2\sin\frac{k\pi}{3}\sin\frac{\pi}{3}$	
$=2\cos(k+1)\frac{\pi}{3}$	
Therefore if true when $n = k$, $k - 1$ then it is also true when $n = k + 1$.	
Hence by induction is true for all $n \ge 1$.	