

Caringbah High School

Year 122020
 Mathematics Extension 2
 HSC Course
 Assessment Task 4

General Instructions

- Reading time - 10 minutes
- Working time -3 hours
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I 10 marks

Attempt Questions 1-10
Mark your answers on the answer sheet provided. You may detach the sheet and write your name on it.
Allow about 15 minutes for this section

Section II 90 marks

Attempt Questions 11-16
Write your answers in the numbered answer booklets provided. Ensure your name or student number is clearly visible.
Allow about 2 hours and 45 minutes for this section.

Marker's Use Only								
Section I	Section II						Total	
Q 1-10	Q11	Q12	Q13	Q14	Q15	Q16		
/10	/15	/15	$/ 15$	/15	/15	/15		$/ 100$

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1. Which of the following is true for all complex numbers z ?
(A) $\operatorname{Im} z=\frac{z-\bar{z}}{2 i}$
(B) $\operatorname{Im} z=\frac{z+\bar{z}}{2}$
(C) $\operatorname{Im} z=\frac{z-\bar{z}}{2}$
(D) $\operatorname{Im} z=\frac{z+\bar{z}}{2 i}$
2. If $\int f(x) \sin x d x=-f(x) \cos x+\int 3 x^{2} \cos x d x$, which of the following could be $f(x)$?
(A) $3 x^{2}$
(B) x^{3}
(C) $-x^{3}$
(D) $-3 x^{2}$
3. Which of the following is $\frac{3 x+11}{\left(\begin{array}{ll}x & 3\end{array}\right)(x+1)}$ expressed in partial fractions?
(A) $-\frac{1}{x-3}-\frac{4}{x+1}$
(B) $\frac{5}{x \quad 3} \frac{2}{x+1}$
(C) $\frac{5}{x 3}+\frac{2}{x+1}$
(D) $-\frac{1}{x-3}+\frac{4}{x+1}$
4. \quad Given that x and y are real numbers, which of the following statements is true?
(A) $\forall y(\exists x:|x|=y)$
(B) $\quad \forall y(\exists x:|x|<y)$
(C) $\forall y(\exists x:|x|>y)$
(D) $\quad \forall y(\exists x:|x|=-y)$
5. What is the magnitude of the vector $\cos \theta \underset{\sim}{i}+\sin \theta \underset{\sim}{j}+\tan \theta \underset{\sim}{k}$ where $0<\theta<\frac{\pi}{2}$?
(A) 1
(B) $\operatorname{cosec} \theta$
(C) $\cot \theta$
(D) $\sec \theta$
6. Consider the statement $x^{2}=9 \Rightarrow x=3$. Which of the following statements is the contrapositive?
(A) $x \neq 3 \Rightarrow x^{2} \neq 9$
(B) $x^{2} \neq 9 \Rightarrow x \neq 3$
(C) $x=3 \Rightarrow x^{2}=9$
(D) $\quad x \neq 3 \Leftrightarrow x^{2} \neq 9$
7. The points A, B and C are collinear where

$$
\overrightarrow{O A}=\underset{\sim}{i}+\underset{\sim}{j}, \overrightarrow{O B}=2 \underset{\sim}{i}-\underset{\sim}{j}+\underset{\sim}{k}, \overrightarrow{O C}=3 \underset{\sim}{i}+a \underset{\sim}{j}+b \underset{\sim}{k} .
$$

What are the values of a and b ?
(A) $a=-3, b=-2$
(B) $a=3, b=-2$
(C) $a=-3, b=2$
(D) $a=3, b=2$
8. A particle is moving in simple harmonic motion about a fixed point O on a line. At time t seconds, its displacement from O is given by $x=2 \cos \pi t$ metres. What is the time taken by the particle to travel the first 100 metres of its motion?
(A) 20 seconds
(B) 25 seconds
(C) 50 seconds
(D) 100 seconds
9. A particle is projected horizontally with speed $\sqrt{g h} \mathrm{~ms}^{-1}$ from the top of a tower of height h metres. It moves under gravity where the acceleration due to gravity is $g \mathrm{~ms}^{-2}$. At what angle to the horizontal will the particle hit the ground?
(A) $\tan ^{-1} \frac{1}{2}$
(B) $\tan ^{-1} \frac{1}{\sqrt{2}}$
(C) $\tan ^{-1} \sqrt{2}$
(D) $\tan ^{-1} 2$
10. The equation $z^{5}=1$ has roots $1, \omega, \omega^{2}, \omega^{3}, \omega^{4}$ where $\omega=e^{\frac{2 \pi}{5} i}$. What is the value of $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)\left(1-\omega^{4}\right)$?
(A) $\quad-5$
(B) -4
(C) 4
(D) 5

End of Section I

Section II

90 marks
 Attempt Questions 11-16
 Allow about 2 hours 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available. For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.
(a) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, where x is given by $x=1+\cos 2 t+\sin 2 t$
(i) Express x in the form $x=1+a \cos (2 t-\alpha)$ for constants $a>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) Find correct to 2 decimal places the average speed of the particle during the time it takes to first reach O.
(b) In an Argand diagram the point P represents $z_{1}=3+2 i$, the point Q represents $z_{2}=\frac{12-5 i}{z_{1}}$ and O is the origin. z_{3} represents the centre C of the circle passing through P, Q and O.
(i) Express z_{2} in the form $a+i b$ where a and b are real.
(ii) Show that $\angle P O Q=\frac{\pi}{2}$.
(iii) Express z_{3} in the form $a+i b$ where a and b are real.

Question 11 continues on page 6

Question 11 (continued)
(c)

$A B C$ is an acute angled triangle. The altitudes $B E$ and $C F$ intersect at O. The line $A O$ produced meets $B C$ at D. Relative to O the position vectors of A, B and C are $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{c}$ respectively.
(i) Show that $\underset{\sim}{b} \cdot(\underset{\sim}{c}-\underset{\sim}{a})=0$ and $\underset{\sim}{c} \cdot(\underset{\sim}{b}-\underset{\sim}{a})=0$
(ii) Hence show that $A D \perp B C$
(iii) What geometrical property of the triangle has been proved?

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet.
(a) Find $\int \frac{x^{2}}{x^{2}+1} d x$.
(b) (i) Use the substitution $u=x^{2}-4$ to show that

$$
\int \frac{x}{\sqrt{x^{2}-4}} d x=\sqrt{x^{2}-4}+c
$$

(ii) Hence find the exact value of $\int_{\sqrt{5}}^{\sqrt{8}} \frac{x \ln \left(x^{2}-4\right)}{\sqrt{x^{2}-4}} d x$.
(c) (i) Find the parametric equations of the line $\underset{\sim}{l}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ passing through

$$
A=(2,-1,3) \text { which is parallel to } \underset{\sim}{v}=\left(\begin{array}{r}
4 \\
3 \\
-2
\end{array}\right) \text {. }
$$

(ii) Show that the point $B=(10,5,-1)$ lies on this line.
(d) If $\underset{\sim}{a}=3 \underset{\sim}{i}+2 \underset{\sim}{j}+2 \underset{\sim}{k}$ and $\underset{\sim}{b}=-\underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k}$,
find a unit vector perpendicular to both $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
(e) It is given that $a>0$ and $b>0$ are real numbers. Consider the statement $\forall a\left(\forall b, \log _{\frac{1}{a}} \frac{1}{b}=\log _{a} b\right)$.
Prove that the statement is true.

End of Question 12

Question 13 (5 marks) Use the Question 13 Writing Booklet.
(a) It is given that $z=2 e^{\frac{\pi}{12} i}$ is a root of the equation $z^{4}=a(1+\sqrt{3} i)$, where a is real.
(i) Express $1+\sqrt{3} i$ in the form $r e^{i \theta}$ where $r>0$ and $-\pi<\theta<\pi$.

2
(ii) Find the value of a.
(iii) Find the other 3 roots of the equation in the form $r e^{i \theta}$ where $r>0$ and $-\pi<\theta<\pi$.
(b) (i) Use the substitution $t=\tan \frac{x}{2}$ to show that $\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{1}{\sin x} d x=\ln 3$.
(ii) Use the substitution $u=\pi-x$ to show that $\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{x}{\sin x} d x=\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{\pi-x}{\sin x} d x$.
(iii) Hence find the value of $\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{x}{\sin x} d x$.
(c) Let ω be the complex number satisfying $\omega^{3}=1$ and $\operatorname{Im}(\omega)>0$.

The cubic polynomial

$$
P(z)=z^{\top}+a z^{2}+b z+c, \text { has zeros } 1,-\omega \text { and }-\bar{\omega} .
$$

Find the values for a, b and c in $P(z)$.

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.
(a) Consider the equation $z^{5}+1=0$.
(i) Draw a sketch of the roots of $z^{5}+1=0$ on an Argand Diagram.
(ii) Factor $z^{5}+1$ into irreducible factors with real coefficients.
(iii) Deduce that $\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}=\frac{1}{2}$ and

$$
\cos \frac{\pi}{5} \cos \frac{3 \pi}{5}=\frac{-1}{4}
$$

(iv) Write a quadratic equation with integer coefficients which has roots $\cos \frac{\pi}{5}$ and $\cos \frac{3 \pi}{5}$.
Hence find the value of $\cos \frac{\pi}{5}$ and $\cos \frac{3 \pi}{5}$ as surds.
(b) If $I_{n}=\int_{-1}^{0} x^{n} \sqrt{1+x} d x \quad n=0,1,2, \ldots$.
(i) Find the value of I_{0}
(i) Show that $I_{n}=\frac{-2 n}{2 n+3} I_{n-1}$ for $n=1,2,3, \ldots$
(ii) Hence find the value of I_{2}.
(c) Use proof by contradiction to show that $\log _{2} 5$ is irrational.

End of Question 14

Question 15 (15 marks) Use the Question 15 Writing Booklet.
(a) Recall that $x+\frac{1}{x} \geq 2$ for any real number $x>0$.
(DO NOT PROVE THIS RESULT)
(i) Prove that $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9$
for any real numbers $a>0, b>0, c>0$.
(ii) Prove that $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}$
for any real numbers $a>0, b>0, c>0$
by using the result in (i) and transformations of the form $a \rightarrow a+b$.
(b) A particle is moving in a straight line from a fixed point O on the line, so that at time t seconds it has displacement x metres, a velocity $v \mathrm{~ms}^{-1}$ and an acceleration of $a \mathrm{~ms}^{-2}$ given by $a=e^{\frac{1}{2} x}$. Initially the particle is at O and moving with a speed of $2 \mathrm{~ms}^{-1}$ while slowing down.
(i) Show that $v=-2 e^{\frac{1}{4} x}$.
(ii) Find expression for x, v and a in terms of t.
(iii) Describe the subsequent motion of the particle.

Question 15 continues

(c)

In the Argand diagram above, the points A and B represent z_{1} and z_{2} respectively. $\angle A O B=\frac{\pi}{2}$ and $O A=O B$.
(i) Express z_{2} in terms of z_{1}.
(ii) Copy the diagram and on it draw the locus L_{1} of points satisfying
$\left|z-z_{1}\right|=\left|z-z_{2}\right|$.
(iii) On your diagram draw the locus L_{2} of points satisfying $\arg \left(z-z_{2}\right)=\arg z_{1}$.
(iv) Find in terms of z_{1} the complex number representing the point of intersection of L_{1} and L_{2}.

End of Question 15

Question 16 (15 marks) Use the Question 16 Writing Booklet.
(a) Find $\int_{0}^{\ln 3} \frac{e^{2 x}}{\sqrt{e^{x}+1}} d x$
(b) A particle of mass $m \mathrm{~kg}$ falls from rest under the influence of gravity g in a medium where the resistance to motion is $m k v$ when the particle has velocity $v \mathrm{~ms}^{-1}$.
(i) Draw a diagram showing the forces acting on the particle.
(ii) Show that the equation of motion of the particle is $\ddot{x}=k(V-v)$ where 2 $V \mathrm{~ms}^{-1}$ is the terminal velocity of the particle in this medium, and x metres is the distance fallen in t seconds.
(iii) Find in terms of V and k the time T seconds for the particle to attain 50% 5 of its terminal velocity, and the distance fallen in this time.
(iv) What percentage of its terminal velocity will the particle have attained in 2 time 2T seconds? Sketch a graph of v against t showing this information.
(v) If the particle has reached 87.5% of its terminal velocity in 15 seconds, find the value of k.

End of Paper

Caringbah Ext 2 Trial 2020: Multiple Choice Q1-10
Monday, 27 July 2020 12:35 PM
Q1A, Q2b, Q3B, Q4C, Q5D, Q6A, Q7C, Q8B, Q9C, Q10D

Q1

$$
\begin{aligned}
1 \quad z & =x+c y \\
\bar{z} & =2-i y \\
\frac{z-\bar{z}}{2 i} & =\frac{2 e y}{2 \dot{c}}=y
\end{aligned}
$$

(2) $\int f(x) \sin x d x+-f(x) \cos x+\int f^{\prime}(x) \cos 3 d x$

$$
\therefore f^{\prime}(x)=3 x^{2} \quad f(x)=x^{3}
$$

(B)

$$
\text { (3) } \frac{3 x+11}{\left(x-\frac{3}{3}\right)(x+1)}=a(x+1)+b(x-3)
$$

$a+b=3$

$$
a-3 b=11
$$

$$
\frac{S}{x-3}-\frac{2}{x+1} \quad B
$$

$$
4 b=-8
$$

$$
b=-2
$$

$$
a=5
$$

4	C	No real x satisfies $\|x\| \leq-2$. Hence none of A, B, D is a true statement, If $y \leq 0, \mid 1>y$, and if $y>0,\|y+1\|>y$. Hence C is a true statement.
5	D	$\cos ^{2} \theta+\sin ^{2} \theta+\tan ^{2} \theta=1+\tan ^{2} \theta=\sec ^{2} \theta$. Magnitude is $\sec \theta\left(0<\theta<\frac{\pi}{2}\right)$
6	A	A is the contra-po
t	C	$\begin{array}{ll} \overline{A B}=i-2 j+k \text { and } \overline{A C}=2 \underset{\sim}{i}+(a-1) j+b \underset{\sim}{k} & \text { Hence } \frac{2}{1}=\frac{a-1}{-2}=\frac{b}{1} \\ \text { and } \overline{A C}=\lambda \overline{A B} \text { for some real } \lambda . & \therefore a=-3 \text { and } b=2 \end{array}$

| B | Period is 2 s and amplitude is 2 m . Hence particle travels 8 m in one |
| :---: | :--- | oscillation. $100=12 \times 8+4$ and $12 \frac{1}{2}$ oscillations takes 25 s .

9	C	$\begin{array}{llll} \ddot{x}=0 & \ddot{y}=-g & y=-h \Rightarrow t=\sqrt{\frac{2 h}{g}} & \therefore \text { hits ground at } \\ \dot{x}=\sqrt{g h} & \dot{y}=-g t & & \\ x=\sqrt{g h} t & y=-\frac{1}{2} g t^{2} & \therefore \frac{\dot{y}}{\dot{x}}=\frac{-\sqrt{2 g h}}{\sqrt{g h}}=-\sqrt{2} & \text { angle } \tan ^{-1} \sqrt{2} \end{array}$
10	D	$\begin{gathered} z^{5}-1 \equiv(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right) \equiv(z-1)(z-\omega)\left(z-\omega^{2}\right)\left(z-\omega^{3}\right)\left(z-\omega^{4}\right) \\ \therefore z^{4}+z^{3}+z^{2}+z+1 \equiv(z-\omega)\left(z-\omega^{2}\right)\left(z-\omega^{3}\right)\left(z-\omega^{4}\right) \end{gathered}$ Then putting $z=1$ gives $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)\left(1-\omega^{4}\right)=5$

Caringbah Ext 2 Trial 2020: Question 11
Monday, 27 July $2020 \quad 754 \mathrm{PM}$

Uses compound angle trigonometric identities to establish result	2
Some progress eg. correct procedure with one error	1

$$
\begin{aligned}
& \text { Answer } \\
& \qquad \begin{aligned}
\cos 2 t+\sin 2 t & =\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos 2 t+\frac{1}{\sqrt{2}} \sin 2 t\right) \\
& =\sqrt{2}\left(\cos 2 t \cos \frac{\pi}{4}+\sin 2 t \sin \frac{\pi}{4}\right) \\
& =\sqrt{2} \cos \left(2 t-\frac{\pi}{4}\right)
\end{aligned} \quad \therefore x=1+\sqrt{2} \cos \left(2 t-\frac{\pi}{4}\right)
\end{aligned}
$$

ii)

Finds distance travelled and time taken to first reach O then calculates average speed	3
Substantial progress eg. finds time to reach O and initial position	2
Some progress eg. finds time to reach O	1

Answer

$$
\begin{array}{rll}
x=0 \Rightarrow \sqrt{2} \cos \left(2 t-\frac{\pi}{4}\right)=-1 & x=1+\sqrt{2} \cos \left(2 t-\frac{\pi}{4}\right) & \text { In first } \frac{\pi}{2} \text { seconds particle moves } \\
\cos \left(2 t-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}} & v=-2 \sqrt{2} \sin \left(2 t-\frac{\pi}{4}\right) & \begin{array}{l}
\text { right from } x=2 \text { to } x=1+\sqrt{2}, \\
2 t-\frac{\pi}{4}
\end{array}=\frac{3 \pi}{4}, \frac{5 \pi}{4}, \ldots \\
t & t=0 \Rightarrow x=2, v=2 & \text { then left to } x=0 .
\end{array}
$$

Hence average speed during time it takes to first reach O is $\frac{(1+\sqrt{2})-2+(1 \div \sqrt{2})}{\left(\frac{\pi}{2}\right)}=\frac{4 \sqrt{2}}{\pi} \approx 1.80 \mathrm{~ms}^{-1}$
b) i)

Writes z_{2} in correct form	2
Some progress eg. attempts to realize denominator, but makes one error	1

Answer

$$
\frac{12-5 i}{3+2 i}=\frac{(12-5 i)(3-2 i)}{3^{2}+2^{2}}=\frac{26-39 i}{13} \quad \therefore z_{2}=2-3 i
$$

ii)

Shows required result.

Answer

$$
i z_{2}=i(2-3 i)=3+2 i=z_{1} \quad \text { Hence rotation of } \overrightarrow{O Q} \text { anti-clockwise by } \frac{\pi}{2} \text { gives } \overrightarrow{O P} . \therefore \angle P O Q=\frac{\pi}{2} .
$$

iii)

Correct value of z_{3}	2
Some progress eg. one of real, imaginary parts stated correctly	1

Answer

Interval $P Q$ must be the diameter of the circle. Hence C is the midpoint of $P Q . \therefore z_{3}=\frac{1}{2}\left(z_{1}+z_{2}\right)=\frac{5}{2}-\frac{1}{2} i$

| 2 |
| :--- | :--- |

Answer

$\overline{E B} \perp \overline{A C}$ and O lies on $E B$. Hence $\overline{O B} \cdot \overline{A C}=0 . \therefore \underset{\sim}{b} \cdot(\underset{\sim}{c}-a)=0$.

() $1 /$	Uses the given perpendicular limes to deduce the results	2
	Some progress eg. correct procedure but poorly explained	1

Answer

$\overline{E B} \perp \overline{A C}$ and O lies on $E B$. Hence $\overline{O B} \cdot \overline{A C}=0 . \quad \therefore \underset{\sim}{b} \cdot(\underset{\sim}{c}-\underset{\sim}{a})=0$.
Similarly, since $\overline{F C} \perp \overline{A B}$ and O lies on $F C, \underset{\sim}{c} \cdot(\underset{\sim}{b}-\underset{\sim}{a})=0$.

| 11 |
| :--- | :--- | :--- |$|$| Uses the result from (i) and the properties of dot products to prove the result | 2 |
| :--- | :--- |
| Some progress eg. use of dot product properties is partially correct | 1 |

Answer

$$
\begin{aligned}
& 0=\underset{\sim}{b} \cdot(\underset{\sim}{c}-\underset{a}{a})=\underset{\sim}{b} \cdot \underset{\sim}{c}-\underset{\sim}{b} \cdot \underset{\sim}{a} \quad \therefore \underset{\sim}{b} \cdot \underset{\sim}{c}=\underset{\sim}{b} \cdot \underset{\sim}{a} \quad \text { Then } \quad \underset{\sim}{a} \cdot \underset{\sim}{b}=\underset{\sim}{a} \cdot \underset{\sim}{c} \\
& 0=\underset{\sim}{c} \cdot(\underset{\sim}{b}-\underset{\sim}{a})=\underset{\sim}{c} \cdot \underset{\sim}{b}-\underset{\sim}{c} \cdot a \quad \therefore \underset{\sim}{c} \cdot \underset{\sim}{c} . \\
& \text { Then } \\
& \therefore a \cdot(b-c)=0 \\
& \text { Hence } \quad A D \perp C B
\end{aligned}
$$

iii)

States geometric property
Answer
The altitudes of a triangle are concurrent
a) $\int \frac{x^{2}}{x^{2}+1} d x=\int\left(1-\frac{1}{x^{2}+1}\right) d x=x-\tan ^{-1} x+c$
b) i)

$$
\begin{aligned}
u & =x^{2} \\
d u & =2 x d x \\
\int \frac{x}{\sqrt{x^{2}-4}} d x & =\frac{1}{2} \int \frac{1}{\sqrt{t u}} d u \\
& =u^{\frac{1}{2}}+c \\
& =\sqrt{x^{2}-4}+c
\end{aligned}
$$

$$
\int \cap
$$

$\ddot{13})$

$$
\int_{\sqrt{5}}^{\sqrt{5}} \frac{x \ln \left(x^{2}-4\right)}{\sqrt{x^{2}-4}} d x
$$

$$
=\left[\sqrt{x^{2}-4} \cdot \ln \left(x^{2}-4\right)\right]_{\sqrt{3}}^{\sqrt{3}}-\int_{\sqrt{3}}^{\sqrt{8}} \sqrt{x^{2}-4} \cdot \frac{2 x}{x^{2}-4} d x
$$

$$
=(2 \ln 4-1 \ln)-\int_{\sqrt{5}}^{\sqrt{4}} \frac{2 x}{\sqrt{x^{2}-4}} d r
$$

$$
=2 \ln 4-2\left[\sqrt{x^{2}-4}\right]_{\sqrt{5}}^{\sqrt{8}}
$$

$$
=4 \ln 2-2
$$

c) i)
(c) (i) Find the parmerric equations of the line 1 passing tivougls $A=\left(2,-1, \frac{3}{}\right) \quad 2$

$$
\text { parallel to } y=\left(\begin{array}{r}
4 \\
3 \\
-2
\end{array}\right)
$$

$$
12
$$

(ii) Show that the point $B=(10,5,-1)$ lies on this line,

$$
\begin{aligned}
10 & =2+4 \lambda-0 \\
5 & =-1+3 \lambda-(2) \\
-1 & =3-2 \lambda-仓
\end{aligned}
$$

(1) (2) gives $5=3+\lambda \therefore \lambda=2$

Sub in (3) $-1=3-2 \times 2=-1$
$\therefore(10,5,-1)$ hes on the line

$$
\begin{aligned}
& \underset{\sim}{C}=\underset{\sim}{a}+\lambda \underset{\sim}{v} \\
& \left(\begin{array}{l}
x \\
y \\
7
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right) \\
& \Rightarrow \quad x=2+4 \lambda \\
& y=-1+3 \lambda \\
& z=3-2 \lambda
\end{aligned}
$$

(d) If $\underset{\sim}{a}=3 \underset{\sim}{i}+2 \underset{\sim}{j}+2 \underset{\sim}{k}$ and $\underset{\sim}{b}=-\underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k}$ find a unit vector perpendicular to both $\underset{\sim}{a}$ and $\underset{\sim}{b}$.

Unit vector $\underset{\sim}{V}=a i+b j+c k$

$$
\begin{align*}
& \left.\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right)=0 \quad \begin{array}{l}
a \\
b \\
c
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=0 \\
& 3 a+2 b+2 c=0 \text { - } \\
& -a+b+c=0 \quad \text {-(2) } \\
& \text { (2) } \times 2 \\
& -2 a+2 b+2 a=0 \text { - (3) } \\
& \therefore \text { (1) }-(3) \\
& 5 a=0 \\
& a=0 \\
& \therefore b=-C \\
& \text { init vector means } \\
& a^{2}+b^{2}+c^{2}=1 \\
& \begin{aligned}
2 b^{2} & =1 \\
b & = \pm \frac{1}{\sqrt{2}} \quad c=-\frac{1}{\sqrt{2}}
\end{aligned} \\
& \therefore V= \pm\left(\frac{1}{\sqrt{2}} j-\frac{1}{\sqrt{2}} k\right) \tag{1}
\end{align*}
$$

d)

Uses log laws to prove statement is true	2
Some progress eg. applies log laws but one error or incomplete explanation	1

Answer
Using log laws, for $\forall a>0, \forall b>0, \log _{\frac{1}{a}} \frac{1}{b}=\frac{\log _{a} \frac{1}{b}}{\log _{a} \frac{1}{a}}=\frac{-\log _{a} b}{-1}=\log _{a} b$
a) i)

Correct expression
Some progress eg. finds the modulus

Answer

$$
1+\sqrt{3} i=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=2 e^{\frac{\pi}{3} i}
$$

ii) Correct value of a

Answer

$$
\begin{aligned}
\left(2 e^{\frac{\pi}{2} i}\right)^{4} & =2 a e^{\frac{\pi}{j} i} \\
16 e^{\frac{\pi}{3} i} & =2 a e^{\frac{\pi}{i} i}
\end{aligned} \quad \therefore a=8
$$

iii)

States other 3 roots in required form	3
Substantial progress eg. correct except that θ is not in specified domain	2
Some progress eg. finds one other root	1

Answer

b) i)

$$
\begin{aligned}
t & =\tan \frac{x}{2} \\
d t & =\frac{1}{2} \sec ^{2} \frac{x}{2} d x \\
2 d t & =\left(1+\tan ^{2} \frac{x}{2}\right) d x \\
\frac{2}{1+t^{2}} d t & =d x \\
x & =\frac{\pi}{3} \Rightarrow t=\frac{1}{\sqrt{3}} \\
x & =\frac{2 \pi}{3} \Rightarrow t=\sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{1}{\sin x} d x & =\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1+t^{2}}{2 t} \cdot \frac{2}{1+t^{2}} d t \\
& =\int_{-\frac{3}{3}}^{\sqrt{3}} \frac{1}{t} d t \\
& =[\ln t]_{-3}^{\sqrt{3}} \\
& =\frac{1}{2} \ln 3-\left(-\frac{1}{2} \ln 3\right)
\end{aligned}
$$

$$
\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{1}{\sin x} d x=\ln 3
$$

ii) $: \quad u=\pi-x \Rightarrow d u=-d x$

$$
\begin{aligned}
\int_{\frac{\pi}{3}}^{\frac{\pi \pi}{5}} \frac{1}{\sin x} \cdot d x & =\int_{\frac{2 \pi}{3}}^{\frac{\pi}{4}} \frac{\pi-u}{\sin (\pi-u)} \cdot d u \\
& =\int_{\frac{x}{3}}^{\frac{\pi x}{3}} \frac{\pi-u}{\sin u} \cdot d u
\end{aligned}
$$

$$
\int_{\frac{1}{3}}^{\frac{1 \pi}{3}} \frac{x}{\sin x} d x=\int_{\frac{\pi}{5}}^{\frac{2 \pi}{3}} \frac{\pi-x}{\sin x} d x
$$

$$
\begin{aligned}
& \arg z^{4}=\frac{\pi}{3}+2 k \pi, \quad k=0, \pm 1, \pm 2, \ldots \\
& \arg z=\frac{\pi}{12}+k \frac{\pi}{2} \\
& |z|=2 \\
& 2 e^{\left(\frac{\pi}{2}-\frac{\pi}{2}\right)}=2 e^{\frac{7 \pi}{12}} \\
& \text { Other roots are } 2 e^{\left.\left(\frac{\pi}{2} \frac{\pi}{2}\right) \right\rvert\,}=2 e^{-\frac{5 \pi}{12} i} \\
& 2 e^{\left(\frac{\pi}{12}-\pi\right)}=2 e^{-\frac{-4}{12} t}
\end{aligned}
$$

iii)

Let $\quad I=\int_{\frac{\pi}{4}}^{\frac{3}{3}} \frac{x}{\sin x} d x=\int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{\pi-x}{\sin x} d x$
Then $2 I=\int_{f}^{2 \pi}\left(\frac{x}{\sin x}+\frac{\pi-x}{\sin x}\right) d x$

$$
=\int_{\frac{\pi}{4}}^{\frac{2 x}{4}} \frac{x}{\sin x} d x
$$

$$
=\pi \ln 3
$$

Hence $\quad I=\int_{\frac{\pi}{3}}^{\frac{3}{4}} \frac{x}{\sin x} d x=\frac{\pi}{2} \ln 3$

$$
\text { c) } P(z)=z^{3}+a z^{2}+b z+c
$$

ambiod

and $\ln (a)+0$,

$$
\omega \cos \frac{2 \pi}{3}+\sin \frac{2 \pi}{3}
$$

$$
\bar{\omega} \pi \operatorname{sos} \frac{2 x}{3} \cos \sin \frac{2 \pi}{3}
$$

$\therefore \rho(z)=(x-1)(z+\omega)(z+\pi)$
$=[z-1)\left[y^{3}+(\alpha+\pi) z+\omega \bar{\omega}\right]$
$=(2-1)\left(x^{2}-3+1\right)$
$x x^{3}-2 x^{2}+2-1$.

ARTHOLT

sum of roexs
$n=a(1+(-\omega)+(-\bar{a})$

$$
\begin{aligned}
& =1-\{(\alpha+\overline{3}) \\
& =1-(-5)
\end{aligned}
$$

$$
\begin{aligned}
& =1-(-2) \\
& =2
\end{aligned}
$$

$\therefore A=-2$

$=-(b+a)+\infty d$
$=-(-1)+1$
$=2$
Forestef noas
$-x=1(-\pi) \times(-4]$

$\therefore x^{2 a n+1}$
Henec $P\left(-x^{3}=x^{2}-2 z^{2}+2 z+1\right.$.
G) i)

17

$$
\begin{aligned}
& \alpha=\cos \frac{\pi}{5}+i \sin \frac{\pi}{5} \Rightarrow \alpha \bar{\alpha}=|\alpha|^{2}=1, \alpha+\bar{\alpha}=2 \cos \frac{\pi}{5} \\
& \beta=\cos \frac{3 \pi}{3}+i \sin \frac{3 \pi}{5} \Rightarrow \beta \bar{\beta}=|\beta|^{2}=1, \beta+\bar{\beta}=2 \cos \frac{3 \pi}{5} \\
& \quad(z-\alpha)(z-\bar{\alpha})=z^{2}-(\alpha+\bar{\alpha}) z+\alpha \bar{\alpha} \\
& z^{5}+1=(z+1)(z-\alpha)(z-\bar{\alpha})(z-\beta)(z-\bar{\beta}) \\
& \therefore z^{5}+1=(z+1)\left(z^{2}-2 \cos \frac{\pi}{5} \cdot z+1\right)\left(z^{2}-2 \cos \frac{3 \pi}{5} \cdot z+1\right)
\end{aligned}
$$

iii) Equating coefficients of z :

$$
\begin{equation*}
0=1-2 \cos \frac{\pi}{5}-2 \cos \frac{3 \pi}{5} \tag{1}
\end{equation*}
$$

Equating coefficients of z^{2} :

$$
\begin{equation*}
0=1+1+4 \cos \frac{\pi}{5} \cos \frac{3 \pi}{5}-2 \cos \frac{\pi}{5}-2 \cos \frac{3 \pi}{5} \tag{2}
\end{equation*}
$$

(1) $\quad \Rightarrow \quad \cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}=\frac{1}{2}$
(2) $-(1) \quad \Rightarrow \quad \cos \frac{\pi}{5} \cdot \cos \frac{3 \pi}{5}=-\frac{1}{7}$

$\cos \frac{\pi}{5}$ and $\cos \frac{3 \pi}{5}$ are roots of
$4 x^{2}-2 x-1=0$
$x=\frac{2 \pm \sqrt{20}}{8}=\frac{1 \pm \sqrt{5}}{4}$.
$\cos \frac{\pi}{5}>0 \Rightarrow \cos \frac{\pi}{5}=\frac{1+\sqrt{5}}{4}$
$\cos \frac{3 \pi}{5}<0 \Rightarrow \cos \frac{3 \pi}{5}=\frac{1-\sqrt{5}}{4}$

Answer

$$
I_{1}=\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1} x\right]_{0}^{1}=\frac{\pi}{4}
$$

i)

$$
I_{1}=\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1} x\right]_{0}^{1}=\frac{\pi}{4}
$$

ii) | | Applies integration by parts and rearranges result into required form | 3 |
| :--- | :--- | :---: |
| | Substantial progress eg. correct procedure but with one error in execution | 2 |
| Some progress eg. applies integration by parts | 1 | |

Answer

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} 1 \cdot \frac{1}{\left(1+x^{2}\right)^{n}} d x \\
& =\left[\frac{x}{\left(1+x^{2}\right)^{n}}\right]_{0}^{1}-\int_{0}^{1} x \cdot \frac{-2 n x}{\left(1+x^{2}\right)^{n+1}} d x \\
& =2^{-n}+2 n \int_{0}^{1} \frac{\left(1+x^{2}\right)-1}{\left(1+x^{2}\right)^{n+1}} d x \\
I_{n} & =2^{-n}+2 n\left\{I_{n}-I_{n+1}\right\} \\
2 n I_{n+1} & =2^{-n}+(2 n-1) I_{n}
\end{aligned}
$$

Applies recurrence formula to evaluate as required
Some progress eg. one error in application of recurrence formula
Answer

$$
4 I_{3}=2^{-2}+3 I_{2}=2^{-2}+\frac{3}{2}\left(2^{-1}+I_{1}\right)=1+\frac{3 \pi}{8} \quad \therefore I_{3}=\frac{8+3 \pi}{32}
$$

c)

Uses the definition of a rational number to construct a proof by contradiction
Some progress eg. quotes the condition for $\log _{2} 5$ to be rational

Answer

$5>1 \therefore \log _{2} 5>0$. Hence $\log _{2} 5$ is rational $\Rightarrow \exists$ positive integers p, q with no common factor such that $\log _{2} 5=\frac{p}{q}$. Then

$$
\begin{aligned}
& \quad q \log _{2} 5=p \\
& \therefore \quad \log _{2} 5^{g}=p \\
& \therefore \quad 5^{q}=2^{p}
\end{aligned}
$$

But 5 and 2 are prime numbers, so this last statement cannot be tue for any positive integers p, q. Hence by contradiction $\log _{2} 5$ is irrational.
a) i)

Expands and regroups to establish result	2
Some progress eg. expands	1

Answer

$$
\begin{aligned}
(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) & =3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right) \\
& \geq 3+2+2+2 \\
& =9
\end{aligned}
$$

Maces an appropriate trausformation to establish required result
Substantial progress eg. appropriate transformation, and almost completes proof
Some progress eg. appropriate transformation with some attempt to expand

Answer

$a \rightarrow a+b$

$$
2(a+b+c)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \geq 9
$$

$b \rightarrow b+c$ gives

$$
\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{c+a}+\frac{a}{c+a}\right) \geq \frac{9}{2}
$$

$$
\therefore\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)+1+1+1 \geq \frac{9}{2}
$$

$$
\therefore \quad \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}
$$

b) i)

Uses appropriate expression for a and integration to produce required expression for v	2
Some progress eg. correct procedure but neglects to explain -ve sign	1

Auster

Initially $v<0$ since $a>0$ and particle is slowing down.

$$
\left.\begin{array}{rl}
\frac{d\left(\frac{1}{2} v^{2}\right)}{d x} & =e^{\frac{1}{2} x} \\
\frac{1}{2} \nu^{2} & =2 e^{\frac{1}{2} x}+c \\
t=0 \\
x=0 \\
v=-2
\end{array}\right\} \Rightarrow \begin{gathered}
c=0 \\
v^{2}=4 e^{\frac{1}{2} x} \\
v=-2 e^{\frac{1}{4 x}}
\end{gathered}
$$

ii) | Finds x in terms of t by integration, then states v and a in terms of t | 3 |
| :--- | :---: |
| Substantial progress eg. finds x in terms of t by integration | 2 |
| Some progress eg. uses integration to find x in terms of t, but makes one error | 1 |

Answer

$$
\frac{d x}{d t}=-2 e^{\frac{1}{4} x}
$$

Finds x in terms of t by integration, then states v and a in terms of t
3

Substantial progress eg. finds x in terms of t by integration 2
Some progress eg. uses integration to find x in terms of t, but makes one error
1
Answer

$$
\begin{aligned}
& \frac{d x}{d t}=-2 e^{\frac{1}{x} x} \\
& \int e^{-\frac{1}{4} x} d x=\int-2 d t \\
& -4 e^{\frac{-1}{1} x}=-2 t+c \\
& \left.\begin{array}{l}
t=0 \\
x=0
\end{array}\right\} \Rightarrow \begin{array}{c}
c=-4 \\
e^{-\frac{1}{4} x}=\frac{t+2}{2}
\end{array} \\
& \begin{aligned}
v & =-2 e^{\frac{1}{4} x} \\
\therefore v & =\frac{-4}{2+t}
\end{aligned} \\
& a=e^{\frac{1}{2} x} \\
& x=4 \ln \left(\frac{2}{2+t}\right) \quad \therefore a=\frac{4}{(2+t)^{2}} \\
& a= \\
& =\left(e^{\frac{1}{4} x}\right)^{2}
\end{aligned}
$$

Correct description

Answer

Particle continues to move in the initial direction of travel without bound, but slowing down at an ever decreasing rate with velocity and acceleration both approaching 0 .
c) i)

\cdots

Correct expression

Answer $\quad z_{2}=i z_{1}$
ii)

Sketches the perpendicular bisector of $A B$	1

Answer

L_{1} is the perpendicular bisector of $A B$. If C is such that $O A C B$ is a square, then L_{1} is the line $O C$.

iii

Answer

L_{2} is a ray from B (excluding the point B) that is parallel to the vector $\overline{O A}$. This ray will pass through the vertex C of the square $O A C B$.

Answer

L_{2} is a ray from B (excluding the point B) that is parallel to the vector $\overrightarrow{O A}$. This ray will pass through the vertex C of the square $O A C B$.

iv)

```
Correct answer
```


Answer

The intersection of L_{1} and L_{2} is the vertex C of the square $O A C B$ and C represents $z_{1}+z_{2}=(1+i) z_{1}$.
a) $\int_{0}^{\ln 3} \frac{e^{x}}{\sqrt{e^{x}+1}} d x$

$$
\left.=\frac{2 u^{3}}{3}-2 u\right]_{\sqrt{2}}^{2}
$$

$$
=\frac{16}{3}-4-\left(\frac{4 \sqrt{2}}{3}-2 \sqrt{2}\right)
$$

$$
=\frac{4+2 \sqrt{2}}{3} 1
$$

(a) i)

Forces on particle

$$
\int_{m g v} \quad\left[\begin{array}{l}
x=0 \\
v=0
\end{array} \quad \begin{array}{l}
x=0 \\
x
\end{array}\right.
$$

ii)
iii) $\quad v \frac{d v}{d x}=k(V-v)$

$$
\begin{aligned}
& m \ddot{x}=m g-m k v \\
& \ddot{x}=k\left(\frac{g}{k}-v\right) \\
& \dot{r}=k(\underline{g}-v) \quad \text { As } y \rightarrow \frac{g}{k}, \quad \ddot{x} \rightarrow 0 . \\
& \text { Hence terminal velocity } V=\frac{g}{k} \\
& \therefore \ddot{x}=k(\underline{y}-v) \\
& \frac{d v}{d x}=k \frac{V-\dot{v}}{v}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d v}{d x} & =k \frac{V-v}{v} \\
-k \frac{d x}{d v} & =\frac{-v}{V-v} \\
& =1+V \frac{-1}{V-v} \\
-k x & =v+V \ln \{(V-v) B\}, B \text { constant } \\
\left.\begin{array}{rl}
x=0 \\
v=0
\end{array}\right\} & \Rightarrow B=\frac{1}{V} \\
-k x & =v+V \ln \left(\frac{V-v}{V}\right) \\
x & =\frac{1}{k}\left\{-v+V \ln \left(\frac{V}{Y-v}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
&-k \frac{d t}{d v}=\frac{-1}{V-v} \\
&-k t=\ln \{(V-v) A\}, A \text { constant } \\
&\left.\begin{array}{l}
t=0 \\
v=0
\end{array}\right\} \Rightarrow A=\frac{1}{V} \\
&-k=\ln \left(\frac{V-v}{V}\right) \\
& t=\frac{1}{k} \ln \left(\frac{V}{V-v}\right)
\end{aligned}
$$

Particle attains 50% of terminal velocity when $v=\frac{1}{2} V, t=T=\frac{\ln 2}{k}$ and $x=\frac{V}{2 k}(2 \ln 2-1)$.
$(V-v)=V e^{-k} \Rightarrow(V-v)$ is decaying exponentially. Hence $(V-v)$ hal vex every T seconds . Hence particle reaches 75% of terminal velocity in $2 T$ seconds.

V),$v=87.5 \%$ of V after $3 T$ seconds.

$$
3 T=15 \Rightarrow T=\frac{\ln 2}{k}=5
$$

$$
\therefore k=\frac{1}{3} \ln 2
$$

