Question 1

(a) Evaluate $\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x$
(b) Find $\int \frac{1-\sin x}{\cos ^{2} x} d x$
(c) (i) use the substitution $u=1-x^{2}$ to evaluate $\int_{0}^{\frac{\sqrt{3}}{2}} \frac{x^{3}}{\sqrt{1-x^{2}}} d x$
(ii) Hence use integrating by parts to find $\int_{0}^{\frac{\sqrt{3}}{2}} 3 x^{2} \cos ^{-1} x d x$.

2

2
(d) Use the substitution $t=\tan \frac{x}{2}$ to evaluate $\int_{0}^{\pi / 3} \frac{1}{5-4 \cos x} d x$, expressing the answer in simplest exact form.
(e) (i) Find the real numbers A and B such that

$$
\frac{x^{2}+3 x}{\left(x^{2}+1\right)(x+1)}=\frac{A x+1}{x^{2}+1}+\frac{B}{x+1}
$$

(ii) Hence find $\int \frac{x^{2}+3 x}{\left(x^{2}+1\right)(x+1)} d x$

Question 2

(a) Show that $(1+i)^{3}=2(i-1)$
(b) Show that the complex number $z=\frac{6-2 i}{3+4 i}-\frac{6}{5 i}$ is real.
(c) Sketch the region in the Argand diagram where the inequalities

$$
|z-2+2 i| \leq 2 \text { and }-\frac{\pi}{3}<\arg z \leq-\frac{\pi}{6}
$$

holds simultaneously.
(d) $\quad z=x+i y$ is a complex number such that $|z-3-4 i|=2$.
(i) Find the maximum value of $|z|$.
(ii) Find the minimum value of $\arg z$.
(e) For any non-zero complex number z,
(i) show that $\arg \left(\frac{z}{\bar{z}}\right)=2 \arg z$.
(ii) Let z be a complex number for which $z \neq 0, z \neq 1$ and

$$
\frac{z}{\bar{z}}=-\frac{z-1}{\overline{z-1}}
$$

Show that $\arg z=\arg (z-1)+\frac{\pi}{2}$ or $\arg z=\arg (z-1)-\frac{\pi}{2}$
(iii) Hence sketch the locus of all points z that satisfy

$$
\frac{z}{\bar{z}}=-\frac{z-1}{\overline{z-1}}
$$

Question 3

(a) The diagram below show the discontinuous function $y=f(x)$.

Draw large (half page), separate sketches of each of the following:
(i) $y=|f(x-1)|$
(ii) $y=\frac{1}{f(x)}$
(iii) $y=\sqrt{-f(x)}$
(iv) $y=\ln (f(x))$
(v) $y^{2}=f(x)$
(b) It is given that $3-i$ is a root of $P(z)=z^{3}+k z+60$,where k is a real number.
(i) State why $3+i$ is also a root of $P(z)$.
(ii) Solve the equation $P(z)=0$
(iii) Hence determine the value of k.
(c) For $z=r(\cos \theta+i \sin \theta)$, find r and the smallest value of θ which satisfies
the equation $2 z^{3}=9+3 \sqrt{3} i$
(a) The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad a>b>0$ has eccentricity e.
(i) Show that the line through the focus $\mathrm{F}(a e, 0)$ that is perpendicular to the directrix.
(b) Find the equation of the normal to the curve $x^{4}+3 x y-2 y^{2}+13=0$ at the point (-1, 2).
(c) The point $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right) p \neq q$ lies on the same branch of the hyperbola $x y=c^{2}$. The tangents at P and Q meet at point T .
(i) Show that the equation of the tangent to the
 hyperbola at Q is $x+q^{2} y=2 c q$.
(ii) Show that T has coordinate $\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$ locus of T is a straight line and give its equation in terms of k .
(d) In the diagram, the tangent to the ellipse at $P(\sqrt{2} \cos \theta, 2 \sqrt{2} \sin \theta)$ intersect the x -axis at R and the y -axis at S .
(i) Show that the area of $\triangle O R S$ is $\frac{4}{\sin 2 \theta}$, where O is the origin. [You may assume the equation of the tangent at P to be

$$
\left.\frac{x \cos \theta}{\sqrt{2}}+\frac{y \sin \theta}{2 \sqrt{2}}=1\right] .
$$

(ii) Find the coordinate of P where the area is a minimum.

Question 5

(a) ABC is an acute-angled triangle inscribed in a circle. P is a point on the minor arc AB of the circle. PL and PN are the perpendiculars from P to CA (produced) and CB respectively. LN cuts AB at M .
(i) Copy the diagram.
(ii) Explain why PNCL is a cyclic quadrilateral.

(iii) Show that $\angle P B M=\angle P N M$.
(iv) Hence deduce that
(α) PBNM is a cyclic quadrilateral
(β) PM is perpendicular to AB .
(b) The roots of $x^{3}+p x^{2}+q x+r=0$ form an arithmetic progression, prove that $2 p^{3}+27 r-9 p q=0$.
(c) Use the following identity to answer the following question.

$$
\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}
$$

(i) Solve the equation $x^{4}+4 \sqrt{3} x^{3}-6 x^{2}-4 \sqrt{3} x+1=0$.
(ii) Hence show that
(a) $\tan \frac{\pi}{24}+\tan \frac{7 \pi}{24}+4 \sqrt{3}=\tan \frac{5 \pi}{24}+\tan \frac{11 \pi}{24}$
(β) $\tan \frac{5 \pi}{24} \tan \frac{7 \pi}{24}=\cot \frac{\pi}{24} \cot \frac{11 \pi}{24}$

Question 6

(Begin a new page)
(a) The diagram shows the graph of the curve $y=x+e^{x}, x \geq 0$. The region bounded by the curve and the line $y=x$ between $x=0$ and $x=u$ is rotated through one complete revolution about the y-axis.
(i) use the method of cylindrical shells to show that the volume of the solid of revolution is given
by $\quad V=2 \pi \int_{0}^{u} x e^{x} d x$
(ii) Hence show that $V=2 \pi\left(3 u-u^{2}-1\right)$
(b) The base of a certain solid is the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. Every cross-section perpendicular to the x -axis is an equilateral triangle. The shaded cross-section is an equilateral triangle with base PQ .

(i) Show that the shaded cross-sectional area is given by

$$
A=\sqrt{3} y^{2}
$$

(ii) Hence express the cross-sectional area as a function of x.
(iii) Find the volume of the solid.
(c) The diagram shows the graph of $y=f(x)$ where $f(x)=x^{3}-3 x ; x \geq 1$

(i) Copy the diagram. On your diagram sketch the graph of the inverse function $y=f^{-1}(x)$, showing any intercepts on the coordinate axes and the coordinates of any end points. Draw in the line of $y=x$.
(ii) Find the coordinate of any point of intersection of the curve $y=f(x)$ and $y=f^{-1}(x)$.
(iii) Hence find the area of the region in the first quadrant bounded by the curve $y=f(x), y=f^{-1}(x)$ and the coordinate axes.

3

Question 7

(Begin a new page)

(a) Solve for $x, \tan ^{-1}(4 x)-\tan ^{-1}(3 x)=\tan ^{-1}\left(\frac{1}{7}\right)$
(b) A sequence of number u_{n} is defined by

$$
\begin{aligned}
& u_{n}=8 u_{n-1}-15 u_{n-2} \quad n \geq 3 \\
& \text { and } \quad u_{1}=2, \quad u_{2}=16
\end{aligned}
$$

(i) Prove that $u_{n}=5^{n}-3^{n}$ for $n \geq 1$ by the method of mathematical induction.
(ii) Hence show that

$$
u_{1}+u_{2}+\ldots . .+u_{n}=\frac{5^{n+1}-2 \times 3^{n+1}+1}{4}
$$

(c) If $I_{n}=\int_{0}^{1} x(1-x)^{n} d x \quad n=0,1,2 \ldots$
(i) Show that $I_{n}=\frac{n}{n+2} I_{n-1} \quad n=1,2 \ldots \ldots$
(ii) Hence deduce that $I_{n}=\frac{1}{2^{n+2} C_{2}} \quad n=1,2,3 \ldots$.
(iii) Find n for which $I_{n} \leq \frac{1}{132}$

Question 8

(a) Consider the polynomial $P(x)=\frac{x^{4}}{4}-\frac{x^{3}}{3}+x^{2}-2 x+p, p$ is a real number.
(i) Show that $P(x)$ has exactly one turning point for all real values of p.
(ii) For what value of p does the equation $P(x)=0$ have no real roots?
(b) A particle moves in a straight line with velocity v and its acceleration given by $a=-v \sqrt{1-v^{2}}$. The displacement x, of the particle from a fixed origin O is initially zero and its velocity at that time is V.
(i) Show that

$$
x=\sin ^{-1}\left(V \sqrt{1-v^{2}}-v \sqrt{1-V^{2}}\right)
$$

(ii) The time that has passed since the particle began its movement is given by t.

By considering $a=\frac{d v}{d t}$, show that

$$
t=\ln \left[\frac{V\left(1+\sqrt{1-v^{2}}\right)}{v\left(1+\sqrt{1-V^{2}}\right)}\right]
$$

[You may assume the following result

$$
\int \frac{d v}{v \sqrt{1-v^{2}}}=\log _{e}\left(\frac{v}{1+\sqrt{1-v^{2}}}\right) \quad, \text { DON'T PROVE IT.] }
$$

(c) Consider $f(x)=\ln (1+x)-\frac{x}{1+x}$ and $g(x)=\ln (1+x)-x, x>0$
(i) Show that $g(x)$ is a decreasing function for all positive values of x.
(ii) Deduce that $x>\ln (1+x)$
(iii) Hence show that $\frac{x}{1+x}<\ln (1+x)<x$

End of Paper

Quationi 1
a)

$$
\begin{aligned}
\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x & =\left[\log _{e}\left(1+e^{x}\right)\right]_{0}^{1} \\
& =\log _{e} \frac{1+e}{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
\int \frac{1-\sin x}{\cos ^{2} x} d x & =\int\left(\sec ^{2} x-\tan x \sec x\right) d x \\
& =\tan x-\sec x+c
\end{aligned}
$$

の (i)

$$
\begin{array}{rlrl}
u & =1-x^{2} & \therefore x^{2} & =1-u \\
d u & =-2 x d x & x d x & =-\frac{d u}{2}
\end{array}
$$

when $x=\frac{\sqrt{3}}{2,} \quad u=4$
when $x=0 \quad u=1$

$$
\begin{aligned}
\int_{0}^{\frac{\sqrt{3}}{2}} \frac{x^{3}}{\sqrt{1-x^{2}}} d x & =\int_{0}^{\frac{\sqrt{3}}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} x d x \\
& =-\int_{1}^{\frac{1}{4}} \frac{1-u}{2 \sqrt{u}} d u \\
& =\frac{1}{2} \int_{\frac{1}{4}}^{1}\left(\frac{1}{\sqrt{u}}-\sqrt{u}\right) d u \\
& =\frac{1}{2}\left[2 \sqrt{u}-\frac{2}{3} u^{\frac{3}{2}}\right]_{\frac{1}{4}}^{1} \\
& =\frac{1}{2}\left(2-\frac{2}{3}\right)-\frac{1}{2}\left(2 \cdot \frac{1}{2}-\frac{2}{3} \cdot \frac{1}{8}\right) \\
& =\frac{5}{24}
\end{aligned}
$$

(ii) $\int_{0}^{\frac{\sqrt{3}}{2}} 3 x^{2} \cos ^{-1} x d x=\int_{0}^{\frac{\sqrt{3}}{2}} \cos ^{-1} x d\left(x^{3}\right)$

$$
\begin{aligned}
& =\left[x^{3} \cos ^{-1} x\right]_{0}^{\sqrt{3 / 2}}-\int_{0}^{\frac{\pi}{2}} x^{3} d \cos ^{-1} x \\
& =\frac{3 \sqrt{3}}{8} \cdot \frac{\pi}{6}+\int_{0}^{\frac{\sqrt{3}}{1}} \frac{x^{3}}{\sqrt{1-x^{2}}} d x \\
& =\frac{\sqrt{3} \pi}{16}+\frac{5}{24}
\end{aligned}
$$

(d) Put $t=\tan \frac{x}{2}$

$$
\begin{aligned}
& d x=\frac{2 d t}{1+t^{2}} \\
& x=\frac{\pi}{3}, \quad t=\frac{1}{\sqrt{3}} \\
& x=0 \quad t=0 \\
& \int_{0}^{\frac{\pi}{3}} \frac{1}{5-4 \cos x} d x=\int_{0}^{\frac{t}{3}} \frac{2 d t}{\left(1+t^{2}\right)\left(5-\frac{4\left(1-t^{2}\right)}{1+t^{2}}\right)} \\
&=\int_{0}^{t t^{t}} \frac{2 d t}{5+5 t^{2}-4+4 t^{2}} \\
&=\int_{0}^{t} \frac{2 d t}{1+9 t^{2}} \\
&=\frac{1}{9} \int_{0}^{t} \frac{2 d t}{t+t^{2}} \\
&=\frac{2}{9} \cdot 3\left[\tan ^{-1} 3 t\right]_{0}^{1 j^{t}} \\
&=\frac{3 \pi}{9}
\end{aligned}
$$

Q1 (contd)
(e) (i)

Equating coeff of $x^{2} \quad A+B=1$

$$
\begin{aligned}
\therefore A & =1-B \\
& =2
\end{aligned}
$$

(c)

- forcircle
\checkmark for $\theta=-\frac{\pi}{6}$ \sim for $\theta=-\frac{\pi}{3}$ (dotted)

$$
\therefore B=-1
$$

d) (i) Let c be the centre of the circle

$$
\begin{aligned}
& \quad|z-3-4 i|=2 \\
& \therefore c \operatorname{cin}(3,4) .
\end{aligned}
$$

Let P be the print such that $0, C, P$ are collinear.

$$
\begin{aligned}
O P & =O C+C P \\
& =\sqrt{3^{2}+4^{2}}+2 \\
& =7
\end{aligned}
$$

Question 2
(a)

$$
\begin{aligned}
(1+i)^{3} & =1+3 i-3-i \\
& =2 i-2 \\
& =2(i-1)
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
j & =\frac{6-2 i}{3+4 i}-\frac{6}{5 i} \\
& =\frac{(6-2 i \times(3-4 i)}{(3+4 i)(3-4 i)}+\frac{6 i}{5} \\
& =\frac{18-8-30 i}{9+16}+\frac{6 i}{5} \\
& =\frac{2}{5} \text { which in real }
\end{aligned}
$$

$$
\begin{aligned}
& (A x+1)(x+1)+B\left(x^{2}+1\right)=x^{2}+3 x \\
& \operatorname{PuT} x=0 \quad B+1=0
\end{aligned}
$$

Q $2\left(\mathrm{~cm}^{\prime} \mathrm{d}\right)$
2(e)
(i) Let $z=r \operatorname{cis} \theta$,
then $\bar{z}=r \operatorname{cis}(-\theta)$

$$
\begin{aligned}
\therefore \quad \frac{z}{z} & =\frac{r \operatorname{cis} \theta}{r \operatorname{as}(-\theta)} \\
& =\operatorname{cic} 2 \theta \\
\therefore \arg \left(\frac{z}{z}\right) & =2 \arg z .
\end{aligned}
$$

(ii) from(i) $\arg \left(\frac{\xi}{z}\right)=2 \arg z$

$$
\arg \left(\frac{z-1}{z-1}\right)=2 \arg (z-1)
$$

Since given $\frac{z}{z}=-\frac{z-1}{z-1}$

$$
\begin{aligned}
& \therefore \arg \left(\frac{z}{z}\right)=\arg \left(-\frac{z-1}{z-1}\right) \\
&=\arg (-1)+\arg \left(\frac{z-1}{z-1}\right) \\
& \operatorname{\alpha arg} z=\pi+2 \arg (z-1) \text { or }-\pi+2 \arg (z-1) \\
& \therefore \arg z=\arg (z-1)+\frac{\pi}{2} \quad \text { or } \arg z=\arg (z-1)-\frac{\pi}{2}
\end{aligned}
$$

(iii) From (ii)

$$
\begin{gathered}
\arg j-\arg (z-1)= \pm \frac{\pi}{2} \\
\arg \left(\frac{z}{z-1}\right)= \pm \frac{\pi}{2}
\end{gathered}
$$

\therefore Locus of $P(3)$ is

Question 3
The graph of $y=\mid f(x-1)$ is shown below.

(ii) The graph of $y=\frac{1}{f(x)}$ is shown below.

$\checkmark 2$ semi-circles
\checkmark excluding $z=0$ and $z=1$.

Only those values in the domain of $y=-f(x)$ for which $y \geq 0$ are included in the graph of $y=\sqrt{-f(x)}$. That is, only values of x where $-4 \leq x \leq 0$ are included.
For values of $y=-f(x)$ that are less than $1, \sqrt{-f(x)}>-f(x)$
For values of $y=-f(x)$ that are greater than $1 . \sqrt{-f(x)}<-f(x)$.
Note that $\sqrt{-f(0)}=1$ and $\sqrt{-f(-4)}=0$.
The graph of $y=-f(x)$ for $-4 \leq x \leq 0$ together with the graph of $y=\sqrt{-f}(x)$ are shown below.

The graph of $y=\ln (f(x))$ only exists for $f(x)>0$. that is. for $x<-4$ and $x>0$.
The graph of $y=\ln (f(x))$ is shown below.

\checkmark for anypise
\checkmark for correct
shape
(v) $y^{2}=f(x)$

\checkmark for $y=\sqrt{f(x)}$
\checkmark for the othen
hasp.

Q3(b)
(1) Since complex roots of any prennomal equation with real coefficients occur in conjugate pain.
\therefore if $z=3-i$ is a 1000 , then $\bar{j}=3+i$ must also be a root.
(ii) Let the other root pe β.
\therefore Rods are $3-i, 3+i, \beta$.
Sum of woos $(3-i)+(3+i)+\beta=0$

$$
\begin{aligned}
& 6+\beta=0 \\
& \therefore \beta=-6
\end{aligned}
$$

\therefore Roots are $3-i, 3+i,-6$.
(iii) Since $P(-6)=0$

$$
\begin{aligned}
\therefore(-6)^{2}+k(-6)+60 & =0 \\
-216-6 k+60 & =0 \\
\therefore t & =-26
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 2^{3} z^{3}=9+3 \sqrt{3} i \\
&=6 \sqrt{3}\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
&=6 \sqrt{3} \operatorname{cis} \frac{\pi}{6} \\
& z^{3}=3 \sqrt{3} \operatorname{cis} \frac{\pi}{6} \\
& \therefore z=\sqrt{3} \operatorname{cis}\left(\frac{\pi}{6}+2 k \pi\right. \\
& 3
\end{aligned} \quad k=0,1,2
$$

$$
\therefore \quad r=\sqrt{3}
$$

smallest value of $\theta=\frac{\pi}{18}$
Qucction 4
(a) (i) gradient of the line perpendicular to the ousputots is $-\frac{a}{b}$
\therefore Equation of the the is

$$
\begin{align*}
y-0 & =-\frac{a}{b}(x-a e) \\
y & =-\frac{a x}{b}+\frac{a^{2} e}{b} \\
b y & =-a x+a^{2} e \\
\text { ie } a x & +b y-a^{2} e=0 \tag{1}
\end{align*}
$$

(ii) when (i) meets $y=\frac{b x}{a}$

$$
\begin{aligned}
& a x+b\left(\frac{b x}{a}\right)-a^{2} e=0 \\
&\left(a^{2}+b^{2}\right) x-a^{3} e=0 \\
& x=\frac{a^{3} e}{a^{2}+b^{2}} \\
&=\frac{a^{3} e}{a^{2}+a^{2} e^{2}-a^{2}} \\
&=\frac{a}{e}
\end{aligned}
$$

\therefore They moet ar the point where $x=\frac{a}{e}$ which lies on the corresponding directrix.
$Q 4(b)$

$$
\text { (b) } \begin{aligned}
x^{4}+3 x y-2 y^{2}+13 & =0 \\
4 x^{3}+3 y+3 x y^{\prime}-4 y y^{\prime} & =0 \\
\therefore(3 x-4 y) y^{\prime} & =-\left(4 x^{3}+3 y\right) \\
y^{\prime} & =-\frac{4 x^{3}+3 y}{3 x-4 y}
\end{aligned}
$$

$$
\therefore \text { gradient at }(-1,2)=-\frac{4(-1)+3(2)}{3(-1)-4(2)}
$$

$$
=\frac{2}{11}
$$

\therefore gradient of normal $=-\frac{11}{2}$
\therefore Equation of normal is

$$
\begin{aligned}
y-2 & =-\frac{11}{2}(x+1) \\
2 y-4 & =-11 x-11 \\
11 x+2 y & +7=0
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
\text { i) } \quad x y & =c^{2} \\
\therefore y & =\frac{c^{2}}{x} \\
y^{\prime} & =-\frac{c^{2}}{x^{2}} \\
\therefore \text { at } Q y^{\prime} & =-\frac{c^{2}}{c^{2} q^{2}} \\
& =-\frac{1}{q^{2}}
\end{aligned}
$$

\therefore Equation of the targent at a is

$$
\begin{aligned}
y-\frac{c}{q} & =-\frac{1}{q^{2}}(x-c q) \\
q^{2} y-c q & =-x+c q
\end{aligned}
$$

$$
\begin{equation*}
\text { ie } \quad x+q^{2} y=2 c q \tag{1}
\end{equation*}
$$

(ii) Sinilarly, targent at ρ is

$$
\begin{align*}
x+p^{2} y & =2 c p \tag{2}\\
\text { (1)-(2) } \quad\left(q^{2}-p^{2}\right) y & =2 c(q-p) \\
\therefore y & =\frac{2 c(q-p)}{q^{2}-p^{2}} \\
& =\frac{2 c}{p+q}
\end{align*}
$$

pulinto (1) $x+\frac{2 c q^{2}}{p+q}=2 c q$

$$
\begin{array}{r}
\therefore x=\frac{2 c p q}{p+q} \\
\therefore T \text { is }\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)
\end{array}
$$

(iii) At T

$$
\begin{align*}
& x=\frac{2 c p q}{p+q} \tag{3}\\
& y=\frac{2 c}{p+q} \tag{4}
\end{align*}
$$

$4(c)($ cont 1 d $)$
(3)

$$
\begin{aligned}
\frac{x}{y} & =p q \\
& =k
\end{aligned}
$$

(given)

$$
\therefore \quad x=k y
$$

\therefore Locus of T is the straight line $x=k y$

$$
\text { or } y=\frac{x}{k}
$$

(d) Equation of $R S$:

$$
\frac{x \cos \theta}{\sqrt{2}}+\frac{y \sin \theta}{\alpha \sqrt{2}}=1
$$

\therefore At $R \quad y=0$.

$$
\therefore x=\frac{\sqrt{2}}{\cos \theta} \quad R\left(\frac{\sqrt{2}}{\cos \theta}, 0\right)
$$

AtS, $x=0$

$$
y=\frac{2 \sqrt{2}}{\sin \theta} \quad s\left(0, \frac{2 \sqrt{2}}{\sin \theta}\right)
$$

$$
\therefore \text { Area of } \begin{aligned}
\triangle O R S & =\frac{1}{2} O R \times O S \\
& =\frac{1}{2} \frac{\sqrt{2}}{\cos \theta} \cdot \frac{2 \sqrt{2}}{\sin \theta} \\
& =\frac{4}{2 \sin \theta \cos \theta} \\
& =\frac{4}{\sin 2 \theta}
\end{aligned}
$$

(ii) $\triangle O R S$ is minimum when $\sin 2 \theta=1 \therefore \theta=\frac{\pi}{女} \quad \checkmark$ ie $\sin \theta=\cos \theta=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
\therefore P \text { is } & \left(\sqrt{2} \cdot \frac{1}{\sqrt{2}}, 2 \sqrt{2} \cdot \frac{1}{\sqrt{2}}\right) \\
& =(1,2) .
\end{aligned}
$$

Question 5
(ii)

$$
\begin{aligned}
\angle P N C+\angle P L C & =90^{\circ}+90^{\circ} \\
& =22 t \angle 5
\end{aligned}
$$

$\therefore P N C L$ is a cyclic quad quad are supp/onentry)
(iii)

$$
\begin{aligned}
\angle P B M & =\angle P B A \\
& =\angle P C A \\
& =\angle P C \angle \\
& =\angle P N \angle \\
& =\angle P M M
\end{aligned}
$$

(L_{S} in same segment)
L' in same segment
(PNCL is a cyclic quad)
(iv) (a) $\angle P B M=\angle P N M$
(proved)
\therefore PBNM is a cyclic quad (L 's subtended by same arc in same agger ane equal),

$$
\begin{aligned}
(\beta) \quad \angle P M B & =\angle P N B \\
& =90^{\circ} \\
\therefore P M & \perp A B
\end{aligned}
$$

$$
\begin{aligned}
& \text { (L', in same segment are equal) } \\
& \text { (PBNM is a cydic quad) }
\end{aligned}
$$

(PBNM is a cyclic quad)

$$
\left(\angle P N B=90^{\circ} \text {. given }\right)
$$

Q 5 (b)
Let the roots be $\alpha-\alpha, \alpha, \alpha+\alpha$.
\therefore sum of roots: $\quad \alpha-\alpha+\alpha+\alpha+d=-p$

$$
\begin{equation*}
\therefore \quad p=-3 \alpha \tag{1}
\end{equation*}
$$

sum of not taken 2 at a time:

$$
\begin{gather*}
\alpha(\alpha-d)+\alpha(\alpha+d)+(\alpha-d)(\alpha+d)=q \\
3 \alpha^{2}-d^{2}=q \\
q=3 \alpha^{2}-d^{2} \tag{2}
\end{gather*}
$$

Product of sos

$$
\begin{gather*}
\alpha(\alpha-d)(\alpha+d)=-r \\
\alpha^{3}-\alpha d^{2}=-r \\
r=\alpha d^{2}-\alpha^{3} \tag{3}\\
\therefore 2 p^{3}+27 r-9 p q \\
=2(-3 \alpha)^{3}+27\left(\alpha d^{2}-\alpha^{3}\right)-9(-3 \alpha)\left(3 \alpha^{2}-d^{2}\right) \\
=-54 \alpha^{3}+27 \alpha d^{2}-27 \alpha^{3}+81 \alpha^{3}-27 \alpha d^{2} \\
=0
\end{gather*}
$$

(c) (i)

$$
\begin{gathered}
x^{4}+4 \sqrt{3} x^{3}-6 x^{2}-4 \sqrt{3} x+1=0 \\
\because 1-6 x^{2}+x^{4}=4 \sqrt{3} x-4 \sqrt{3} x^{3} \\
\therefore \frac{\left(4 x-4 x^{3}\right) \sqrt{3}}{1-6 x^{2}+x^{4}}=1
\end{gathered}
$$

$$
\frac{4 x-4 x^{3}}{1-6 x^{2}+x^{4}}=\frac{1}{\sqrt{3}}
$$

Let $x=\tan \theta$

$$
\begin{aligned}
\therefore & \frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}=\frac{1}{\sqrt{3}} \\
& \tan 4 \theta=\frac{1}{3} \\
\therefore 4 \theta= & \frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}, \frac{19 \pi}{6}, \frac{25 \pi}{6} \ldots \\
& \theta=\frac{\pi}{24}, \frac{2 \pi}{24}, \frac{13 \pi}{24}, \frac{19 \pi}{24}, \frac{25 \pi}{24}, \cdots
\end{aligned}
$$

\therefore solutions are $x=\tan \frac{\pi}{24}, \tan \frac{7 \pi}{24}, \tan \frac{13 \pi}{14} \tan \frac{19 \pi}{24}$
(ii) ${ }^{(\alpha)}$

$$
\begin{aligned}
& \tan \frac{\pi}{24}+\tan \frac{7 \pi}{24}+\tan \frac{13 \pi}{24}+\tan \frac{19 \pi}{24}=-4 \sqrt{3} \\
& \tan \frac{\pi}{24}+\tan \frac{7 \pi}{24}+\tan \left(\pi-\frac{11 \pi}{24}\right)+\tan \left(\pi-\frac{5 \pi}{24}\right)=-4 \sqrt{3} \\
& \tan \frac{\pi}{24}+\tan \frac{7 \pi}{24}-\tan \frac{11 \pi}{24}-\tan \frac{5 \pi}{24}=-4 \sqrt{3} \\
& \therefore \tan \frac{\pi}{24}+\tan \frac{7 \pi}{24}+4 \sqrt{3}=\tan \frac{5 \pi}{24}+\tan \frac{4 \pi}{24}
\end{aligned}
$$

(β) product of roots

$$
\tan \frac{\pi}{24} \cdot \tan \frac{7 \pi}{24}\left(-\tan \frac{5 \pi}{24}\right)\left(-\tan \frac{11 \pi}{24}\right)=1
$$

ie $\tan ^{\frac{5 \pi}{24} \tan \frac{\pi}{24}}=\frac{1}{\tan \frac{\pi}{24} \tan \frac{1 \pi \pi}{24}}$

$$
=\cot \frac{\pi}{24} \cot \frac{11 \pi}{24}
$$

Question 6
(i)

$$
\begin{aligned}
r & =x \\
h & =\left(x+e^{x}\right)-x \\
& =e^{x}
\end{aligned}
$$

\therefore Volume of the olindrical shell

$$
\begin{aligned}
\delta V & =2 \pi r h \delta x \\
& =2 \pi x e^{x} \delta x
\end{aligned}
$$

\therefore Volume $=\int d V$

$$
\begin{aligned}
& =\int_{0}^{u} 2 \pi x e^{x} d x \\
& =2 \pi \int_{0}^{u} x 0^{x} d x
\end{aligned}
$$

(ii)

$$
\begin{align*}
V & =2 \pi \int_{0}^{u} x e^{x} d x \\
& =2 \pi\left[x e^{x}\right]_{0}^{u}-2 \pi \int_{0}^{u} e^{x} d x \\
& =2 \pi u e^{u}-2 \pi\left[e^{x}\right]_{0}^{u} \\
& =2 \pi u e^{u}-2 \pi e^{u}+2 \pi \\
& =2 \pi\left(u e^{u}-e^{u}+1\right) \tag{1}
\end{align*}
$$

since $y=2$ when $x=u$ on $y=x+e^{x}$

$$
\begin{align*}
\therefore u+e^{u} & =2 \\
e^{u} & =2-u \tag{2}
\end{align*}
$$

\therefore Dur (a) into (1)

$$
\begin{aligned}
V & =2 \pi[u(2-u)-(2-u)+1] \\
& =2 \pi\left(2 u-u^{2}-2+u+1\right) \\
& =2 \pi\left(3 u-u^{2}-1\right)
\end{aligned}
$$

(b) ${ }^{(i)} P Q=2 y$

$$
\therefore Q R=P Q=P R=2 y
$$

$$
\therefore \triangle P Q R=\frac{1}{2} P Q \cdot Q R \sin \frac{\pi}{3} \frac{\sqrt{3}}{3}
$$

$$
=\frac{1}{2} \cdot 2 y \cdot 2 y \cdot \frac{\sqrt{3}}{2}
$$

$$
=\sqrt{3} y^{2}
$$

(ii)

$$
\begin{aligned}
\triangle P Q R & =\sqrt{3} \cdot 16\left(1-\frac{x^{2}}{25}\right) \\
& =\frac{16 \sqrt{3}\left(25-x^{2}\right)}{25}
\end{aligned}
$$

(iii) Volume of the slice

$$
\begin{aligned}
& \delta V=\frac{16 \sqrt{3}\left(25-x^{2}\right)}{25} \delta x \\
\therefore V & =\frac{16 \sqrt{3}}{25} \int_{-5}^{5} 25-x^{2} d x \\
& =\frac{32 \sqrt{3}}{25} \int_{0}^{5} 25-x^{2} d x \\
& =\frac{32 \sqrt{3}}{25}\left[25 x-\frac{x^{3}}{3}\right]_{0}^{5} \\
= & \frac{320 \sqrt{3}}{3} \text { unit }^{3}
\end{aligned}
$$

Q6 (c)
(i)

(ii) Ar pt of intersection.

$$
\begin{aligned}
& x=f(x) \\
& x=x^{3}-3 x \\
& \therefore x^{3}-4 x=0 \\
& x\left(x^{2}-4\right)=0 \\
& x(x-2 x(x+2) \\
& \therefore x=0, x=2, \quad x=-2
\end{aligned}
$$

but domain of $y=f(x)$ is $x \geqslant 1$

$$
\therefore \quad x=2
$$

$\therefore p t$ of intencetion is $(2,2)$
(iii)

$$
\begin{aligned}
\text { Area } & =2\left[\frac{1}{2} \times 2 \times 2-\int_{\sqrt{3}}^{2} x^{3}-3 x d x\right] \\
& =2\left[2-\left[\frac{x^{4}}{4}-\frac{3 x^{2}}{2}\right]_{\sqrt{3}}^{2}\right] \\
& =\frac{7}{2} \text { unit }^{2}
\end{aligned}
$$

Question 7
(a)

$$
\begin{gathered}
\tan ^{-1}(4 x)-\tan ^{-1}(3 x)=\tan ^{-1}\left(\frac{1}{7}\right) \\
\frac{\tan \left(\tan ^{-1}(4 x)-\tan ^{-1}(3 x)\right)=\frac{1}{7}}{1+(4 x)(3 x)}=\frac{1}{7} \\
7 x=1+12 x^{2} \\
\therefore 12 x^{2}-7 x+1=0 \\
(3 x-1)(4 x-1)=0 \\
\therefore x=\frac{1}{3} \text { or } x=\frac{1}{4}
\end{gathered}
$$

(b) when $n=1 \quad 5^{\prime}-3^{\prime}=2$
when $n=2 \quad 5^{2}-3^{2}=16$

$$
\therefore u_{n}=5^{n}-3^{n} \text { s true for } x=1,2
$$

Assume it is true for $n=t \rightarrow 1, k-2$.

$$
\text { ie } \begin{aligned}
& u_{k-1}=5^{k-1}-3^{k-1} \\
& u_{k-2}=5^{k-2}-3^{k-2} \\
& \therefore \quad \begin{aligned}
u_{k} & =8 u_{k-1}-15 u_{k-2} \\
& =8\left(5^{k-1}-3^{k-1}\right)-15\left(5^{k-2}-3^{k-2}\right) \\
& =40 \cdot 5^{k-2}-24 \cdot 3^{k-2}-15 \cdot 5^{k-2}+15 \cdot 3^{k-2} \\
& =95 \cdot 5^{k-2}-9 \cdot 3^{k-2} \\
& =5^{k}-3^{k}
\end{aligned} \text {. }
\end{aligned}
$$

\therefore It wisd be true for $n=k$ if \dot{u} is true for $n=k-1, n=k-2$
since it is proven the for $k=1,2$, it in wee be tine for $n=3,4,5, \ldots$ ie true for all pusitwe integer n n.
(ii)

$$
\begin{aligned}
& u_{1}+u_{2}+u_{3}+\cdots+u_{n} \\
= & (5-3)+\left(5^{2}-3^{2}\right)+\left(5^{3}-3^{3}\right)+\cdots+\left(5^{n}-3^{n}\right) \\
= & \left(5+5^{2}+5^{3}+\cdots+5^{n}\right)-\left(3+3^{2}+3^{3}+\cdots+3^{n}\right) \\
= & \frac{5\left(5^{n}-1\right)}{5-1}-\frac{3\left(3^{n}-1\right)}{3-1} \\
= & \frac{5^{n+1}-5}{4}-\frac{3^{n+1}-3}{2} \\
= & \frac{5^{n+1}-5-2 \times 3^{n+1}+6}{4} \\
= & \frac{5^{n+1}-2 \times 3^{n+1}+1}{4}
\end{aligned}
$$

(e) (i)

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} x(1-x)^{n} d x \\
& =\left[\frac{x^{2}}{2}(1-x)^{n}\right]_{0}^{1}-\int_{0}^{1} \frac{x^{2}}{2} d(1-x)^{n} \\
& =\frac{n}{2} \int_{0}^{1} x^{2}(1-x)^{n-1} d x
\end{aligned}
$$

$$
\begin{aligned}
& 2 I_{n}=n \int_{0}^{1} x^{2}(1-x)^{n-1} d x \\
&=n \int_{0}^{1} x[1-(1-x)](1-x)^{n-1} d x \\
&=n \int_{0}^{1} x(1-x)^{n-1} d x-n \int_{0}^{1} x(1-x)^{n} d x \\
&=n I_{n-1}-n I_{n} \\
&(n+2) I_{n}=n I_{n-1} \\
& \therefore I_{n}=\frac{n}{n+2} I_{n-1}
\end{aligned}
$$

(ii)

$$
\begin{gathered}
I_{0}=\int_{0}^{1} x d x=\frac{1}{2} \\
I_{1}=\frac{1}{3} I_{0} \\
I_{2}=\frac{2}{4} I_{1} \\
I_{3}=\frac{3}{5} I_{2} \\
\vdots \\
\vdots \\
I_{n-1}=\frac{n-1}{n+1} I_{n-2} \\
I_{n}=\frac{n}{n+2} I_{n-1}
\end{gathered}
$$

muetilying

$$
I_{n}=\frac{n(n-1)(n-2) \cdots 1}{(n+2)(n+1) \cdots 5 \cdot 4 \cdot 3 \cdot} \cdot \frac{1}{2}
$$

ie

$$
\begin{aligned}
I_{n} & =\frac{n!2!}{(n+2)!2} \\
& =\frac{1}{2^{n+2} C_{2}}
\end{aligned}
$$

(iii)

$$
\begin{gathered}
I_{n} \leqslant \frac{1}{132} \\
\frac{1}{2^{n+2} C_{2}} \leqslant \frac{1}{132} \\
66 \leqslant{ }^{n+2} C_{2} \\
\text { ie } \frac{(n+2)(n+1)}{2} \geqslant 66 \\
n^{2}+3 n+2 \geqslant 132 \\
n^{2}+3 n-130 \geqslant 0 \\
(n-10)(n+13) \geq 0 \\
\therefore \quad n \leqslant-13 \text { or } n \geq 10 \\
\therefore n \geq 10
\end{gathered}
$$

Question' δ
(a) $p(x)=\frac{x^{4}}{4}-\frac{x^{3}}{3}+x^{2}-2 x+p$
(i)

$$
\begin{aligned}
P^{\prime}(x) & =x^{3}-x^{2}+2 x-2 \\
& =x^{2}(x-1)+2(x-1) \\
& =\left(x^{2}+2\right)(x-1)
\end{aligned}
$$

when $p^{\prime}(x)=0$

$$
\begin{aligned}
& \left(x^{2}+2\right)(x-1)=0 \\
& x=1 \quad x^{2}+2 \neq 0 .
\end{aligned}
$$

\therefore There is only one turningpoint.
(ii) Since $f(x)$ is a quartic polprosial, \& $P^{\prime \prime}(x)=3 x^{2}-2 x+2$

$$
f^{\prime \prime}(1)=3>0
$$

\therefore The terming pr is a minimum limning $p t$.
The equation $p(x)=0$ will ave no red roots if the graph if $y=P(x)$ does not touch or cut the x-axis, ie when $P(1)>0$
ie $\frac{1}{4}-\frac{1}{3}+1-2+p>0$

$$
p>\frac{13}{12}
$$

Q 8 (b)
(i)

$$
\begin{gathered}
a=-v \sqrt{1-v^{2}} \\
\therefore v \frac{d v}{d x}=-v \sqrt{1-v^{2}} \\
\int_{V}^{v} \frac{d v}{\sqrt{1-v^{2}}}=-\int_{0}^{x} d x \\
{\left[\sin ^{-1} v\right]_{\nabla}^{v}=-x} \\
\therefore x=\sin ^{-1} V-\sin ^{-1} v
\end{gathered}
$$

$$
\begin{aligned}
x & =\alpha-\beta \\
\sin x & =\sin (\alpha-\beta) \\
& =\sin \alpha \cos \beta-\sin \beta \cos \alpha \\
& =V \sqrt{1-v^{2}}-v \sqrt{1-V^{2}} \\
\therefore x & =\sin ^{-1}\left[V \sqrt{1-v^{2}}-v \sqrt{1-V^{2}}\right]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& a=\frac{d v}{d t}=-v \sqrt{1-v^{2}} \\
& \int_{v}^{v} \frac{d v}{v \sqrt{1-v^{2}}}=-\int_{0}^{t} d t
\end{aligned}
$$

$$
\begin{aligned}
\therefore & {\left[\ln V-\ln \left(1+\sqrt{1-V^{2}}\right)\right]_{V}^{v}=-t } \\
\therefore t= & {\left[\ln V-\ln \left(1+\sqrt{1-V^{2}}\right)\right] } \\
& -\left[\ln v-\ln \left(1+\sqrt{1-V^{2}}\right)\right] \\
= & \ln \frac{V}{v}+\ln \frac{1+\sqrt{1-v^{2}}}{1+\sqrt{1-V^{2}}} \\
= & \ln \frac{V\left(1+\sqrt{1-V^{2}}\right)}{V\left(1+\sqrt{1-V^{2}}\right)}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
g(x) & =\ln (1+x)-x \\
g^{\prime}(x) & =\frac{y}{1+x}-1 \\
& =-\frac{x}{1+x}<0
\end{aligned}
$$

since $x>0$
$\therefore g(x)$ is a decreasing function for all $x>0$
(ii) $\therefore g(x)>g(0)$ for all $x>0$

$$
\begin{aligned}
\therefore & \ln (1+x)-x>0 \\
& \ln (1+x)>x \quad \forall x>0
\end{aligned}
$$

(iii)

$$
\begin{aligned}
f(x) & =\ln (1+x)-\frac{x}{1+x} \\
& =\ln (1+x)-\left[1-\frac{1}{1+x}\right] \\
f^{\prime}(x) & =\frac{1}{1+x}-\frac{1}{(1+x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 8(c)\left(\text { conf }{ }^{\prime} \text { d }\right)=\frac{1+x-1}{(1+x)^{2}} \\
& =\frac{x}{(1+x)^{2}}>0 \quad \forall x>0
\end{aligned}
$$

$\therefore f(x)$ is an increasing function of x for all $x>0$

$$
\left.\begin{array}{c}
\therefore f(x)>f(0) \quad \text { for all } x>0 \\
\ln (1+x)-\frac{x}{1+x}>0 \\
\ln (1+x)>\frac{x}{1+x} \\
\text { but from (c) (ii) } \\
x>\ln (1+x) \\
\therefore \frac{x}{1+x}<\ln (1+x)<x
\end{array}\right\}
$$

