Question 1

Evaluate $\int_0^1 \frac{e^x}{1+e^x} dx$ (a)

(b) Find
$$\int \frac{1-\sin x}{\cos^2 x} dx$$
 2

(c) (i) use the substitution
$$u = 1 - x^2$$
 to evaluate $\int_{0}^{\frac{\sqrt{3}}{2}} \frac{x^3}{\sqrt{1 - x^2}} dx$ 2

(ii) Hence use integrating by parts to find
$$\int_{0}^{\frac{\sqrt{3}}{2}} 3x^{2} \cos^{-1} x \, dx.$$
 2

(d) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{0}^{\pi/3} \frac{1}{5 - 4\cos x} dx$, expressing **3** the answer in simplest exact form.

(e) (i) Find the real numbers A and B such that

$$\frac{x^2 + 3x}{(x^2 + 1)(x + 1)} = \frac{Ax + 1}{x^2 + 1} + \frac{B}{x + 1}$$
2

(ii) Hence find
$$\int \frac{x^2 + 3x}{(x^2 + 1)(x + 1)} dx$$
 2

(Begin a new page)

Marks

Questi	ion 2 (Begin a new page)	Marks	
(a)	Show that $(1 + i)^3 = 2(i - 1)$	1	
(b)	Show that the complex number $z = \frac{6-2i}{3+4i} - \frac{6}{5i}$ is real.	2	
(c)	Sketch the region in the Argand diagram where the inequalities		
	$ z-2+2i \le 2$ and $-\frac{\pi}{3} < \arg z \le -\frac{\pi}{6}$ holds simultaneously.		
(d)	z = x + iy is a complex number such that $ z - 3 - 4i = 2$.		
	(i) Find the maximum value of $ z $.	2	
	(ii) Find the minimum value of arg z .	2	
(e)	For any non-zero complex number <i>z</i> ,		
	(i) show that $\arg\left(\frac{z}{\overline{z}}\right) = 2 \arg z$.	1	
	(ii) Let z be a complex number for which $z \neq 0$, $z \neq 1$ and $\frac{z}{\overline{z}} = -\frac{z-1}{\overline{z-1}}$	2	
	Show that $\arg z = \arg(z-1) + \frac{\pi}{2}$ or $\arg z = \arg(z-1) - \frac{\pi}{2}$		
	(iii) Hence sketch the locus of all points z that satisfy $\frac{z}{\overline{z}} = -\frac{z-1}{\overline{z-1}}$	2	

$$\frac{z}{\overline{z}} = -\frac{z-1}{\overline{z-1}}$$

Question 3

(Begin a new page)

Marks

1

(a) The diagram below show the discontinuous function y = f(x).

Draw large (half page), separate sketches of each of the following:

(i)	y = f(x - 1)	2

(ii)
$$y = \frac{1}{f(x)}$$
 2

(iii)
$$y = \sqrt{-f(x)}$$
 2

(iv)
$$y = \ln(f(x))$$
 2

$$(\mathbf{v}) \quad \mathbf{y}^2 = f(\mathbf{x}) \tag{2}$$

- (b) It is given that 3-i is a root of $P(z) = z^3 + kz + 60$, where k is a real number.
 - (i) State why 3 + i is also a root of P(z).1(ii) Solve the equation P(z) = 01
 - (iii) Hence determine the value of k.

(c) For $z = r(\cos \theta + i \sin \theta)$, find r and the smallest value of θ which satisfies the equation $2z^3 = 9 + 3\sqrt{3}i$

Question 4

(Begin a new page)

(a) The hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 $a > b > 0$ has eccentricity *e*.

- (i) Show that the line through the focus F (*ae*, 0) that is perpendicular to the asymptote $y = \frac{bx}{a}$ has equation $ax + by - a^2e = 0$
- (ii) Show that this line meets the asymptote at a point on the corresponding directrix .
- (b) Find the equation of the normal to the curve $x^4 + 3xy 2y^2 + 13 = 0$ at the **3** point (-1, 2).
- (c) The point $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right) p \neq q$ lies on the same branch of the hyperbola $xy = c^2$. The tangents at P and Q meet at point T.
 - (i) Show that the equation of the tangent to the hyperbola at Q is $x + q^2y = 2cq$.

(ii) Show that T has coordinate
$$\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$$
 2

- (iii) If P and Q move so that pq = k where k is a constant, show that the locus of T is a straight line and give its equation in terms of k.
- (d) In the diagram, the tangent to the ellipse at $P(\sqrt{2}\cos\theta, 2\sqrt{2}\sin\theta)$ intersect the x-axis at R and the y-axis at S.
 - (i) Show that the area of $\triangle ORS$ is $\frac{4}{\sin 2\theta}$, where O is the origin. [You may assume the equation of the tangent at P to be

$$\frac{x\cos\theta}{\sqrt{2}} + \frac{y\sin\theta}{2\sqrt{2}} = 1$$

Q

2

- (b) The roots of $x^3 + px^2 + qx + r = 0$ form an arithmetic progression, prove that $2p^3 + 27r - 9pq = 0$.
- (c) Use the following identity to answer the following question.

$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}$$

(i) Solve the equation
$$x^4 + 4\sqrt{3}x^3 - 6x^2 - 4\sqrt{3}x + 1 = 0$$
. 3

(ii) Hence show that

(
$$\alpha$$
) $\tan \frac{\pi}{24} + \tan \frac{7\pi}{24} + 4\sqrt{3} = \tan \frac{5\pi}{24} + \tan \frac{11\pi}{24}$ 2

(
$$\beta$$
) $\tan \frac{5\pi}{24} \tan \frac{7\pi}{24} = \cot \frac{\pi}{24} \cot \frac{11\pi}{24}$ 1

(Begin a new page)

(a) The diagram shows the graph of the curve $y = x + e^x$, $x \ge 0$. The region bounded by the curve and the line y = x between x = 0 and x = u is rotated through one complete revolution about the y- axis.

(i) use the method of cylindrical shells to show that the volume of the solid of revolution is given

by
$$V = 2\pi \int_{0}^{u} x e^{x} dx$$

Question 6

(ii) Hence show that
$$V = 2\pi (3u - u^2 - 1)$$

(b) The base of a certain solid is the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1.$ Every cross-section perpendicular to the x-axis is an equilateral triangle. The shaded cross-section is an equilateral triangle with base PQ.

1

1

2

2

(i) Show that the shaded cross-sectional area is given by

$$A = \sqrt{3} y^2$$

- (ii) Hence express the cross-sectional area as a function of x.
- (iii) Find the volume of the solid.

(c) The diagram shows the graph of y = f(x) where $f(x) = x^3 - 3x$; $x \ge 1$

(i) Copy the diagram. On your diagram sketch the graph of the inverse function $y = f^{-1}(x)$, showing any intercepts on the coordinate axes and the coordinates of any end points. Draw in the line of y = x.

(ii) Find the coordinate of any point of intersection of
the curve
$$y = f(x)$$
 and $y = f^{-1}(x)$.

(iii) Hence find the area of the region in the first
quadrant bounded by the curve
$$y = f(x)$$
, $y = f^{-1}(x)$ and
the coordinate axes. 2

CTHS Mathematics Extension 2 AP4 2005 Page 7

Question 7

(Begin a new page)

(a) Solve for x, $\tan^{-1}(4x) - \tan^{-1}(3x) = \tan^{-1}\left(\frac{1}{7}\right)$

- (b) A sequence of number u_n is defined by $u_n = 8u_{n-1} - 15u_{n-2}$ $n \ge 3$ and $u_1 = 2$, $u_2 = 16$
 - (i) Prove that $u_n = 5^n 3^n$ for $n \ge 1$ by the method of mathematical 4 induction.
 - (ii) Hence show that $u_1 + u_2 + \dots + u_n = \frac{5^{n+1} - 2 \times 3^{n+1} + 1}{4}$

(c) If
$$I_n = \int_0^1 x(1-x)^n dx$$
 $n = 0, 1, 2....$
(i) Show that $I_n = \frac{n}{n+2} I_{n-1}$ $n = 1, 2.....$ 2

(ii) Hence deduce that
$$I_n = \frac{1}{2^{n+2}C_2}$$
 $n = 1, 2, 3....$ 2

(iii) Find n for which
$$I_n \leq \frac{1}{132}$$
 2

Marks

(Begin a new page)

(a) Consider the polynomial $P(x) = \frac{x^4}{4} - \frac{x^3}{3} + x^2 - 2x + p$, p is a real number.

(i) Show that P(x) has exactly one turning point for all real values of p. 2

- (ii) For what value of p does the equation P(x) = 0 have no real roots?
- (b) A particle moves in a straight line with velocity v and its acceleration given by $a = -v\sqrt{1-v^2}$. The displacement x, of the particle from a fixed origin O is initially zero and its velocity at that time is V.
 - (i) Show that

$$x = \sin^{-1}(V\sqrt{1-v^2} - v\sqrt{1-V^2})$$

(ii) The time that has passed since the particle began its movement is given by t. 3 By considering $a = \frac{dv}{dt}$, show that

$$t = \ln \left[\frac{V(1 + \sqrt{1 - v^2})}{v(1 + \sqrt{1 - V^2})} \right]$$

[You may assume the following result

$$\int \frac{dv}{v\sqrt{1-v^2}} = \log_e\left(\frac{v}{1+\sqrt{1-v^2}}\right) \quad \text{, DON'T PROVE IT.]}$$

(c) Consider
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
 and $g(x) = \ln(1+x) - x$, $x > 0$

(i) Show that
$$g(x)$$
 is a decreasing function for all positive values of x. 1

(ii) Deduce that
$$x > \ln(1 + x)$$

(iii) Hence show that
$$\frac{x}{1+x} < \ln(1+x) < x$$
 2

End of Paper

Marks

2

4

$$\frac{Q_{uv}t_{0}x^{i}}{a}\int_{0}^{t}\frac{e^{x}}{1+e^{x}}dx = \left[loge(1+e^{x})\right]_{0}^{1}$$

$$= loge\frac{1+e}{2}$$

$$\frac{d_{0}}{de^{2}x}\int_{0}^{1}\frac{1-sinx}{cn^{2}x}dx = \int (ae^{2}x - tanxAecx)dx$$

$$= tanx - Aecx + C$$

$$(3) \quad (i) \quad u = 1-x^{2} \quad \therefore x^{2} = 1-u$$

$$du = -2x dx \quad x dx = -du$$

$$when \quad x = \frac{\sqrt{3}}{a}, \quad u = \frac{4}{2}$$

$$when \quad x = 0 \quad u = 1$$

$$\int_{0}^{\sqrt{2}}\frac{x^{3}}{\sqrt{1-x^{2}}}dx = \int_{0}^{\sqrt{2}}\frac{x^{2}}{\sqrt{1-x^{2}}}x dx$$

$$= -\int_{1}^{4}\frac{1-u}{2\sqrt{u}}du$$

$$= \frac{1}{2}\left[2\sqrt{u} - \frac{3}{2}u\right]_{\frac{1}{4}}^{1}$$

$$= \frac{1}{2}\left(2-\frac{a}{3}\right) - \frac{1}{2}\left(2-\frac{a}{3}-\frac{a}{3}\right)$$

1

1

V

 \checkmark

 \checkmark

$$\begin{aligned} & (ii) \int_{0}^{\frac{\pi}{2}} 3x^{2} \cos^{\frac{\pi}{2}} x \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{\frac{\pi}{2}} x \, d(x^{3}) \\ &= \left[x^{3} \cos^{\frac{\pi}{2}} x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} x^{3} \, d(\cos^{\frac{\pi}{2}} x) \\ &= \frac{3/3}{F} \cdot \frac{\pi}{6} + \int_{0}^{\sqrt{\frac{\pi}{2}}} \frac{x^{3}}{\sqrt{1-x^{2}}} \, dx \\ &= \frac{\sqrt{3\pi}}{16} + \frac{5}{24} \end{aligned}$$

$$\begin{aligned} & (d) \quad Put \quad t = \frac{1}{72n} \frac{x}{2} \\ & dx = \frac{2 \, dt}{1+t^{2}} \\ & x = \frac{\pi}{3}, \quad t = \frac{1}{3} \\ & x = 0 \qquad t = 0 \end{aligned}$$

$$\begin{aligned} & \int_{0}^{\frac{\pi}{3}} \frac{1}{5-4 \cos^{\frac{\pi}{2}}} \, dx = \int_{0}^{\frac{1}{3}} \frac{2 \, dt}{(1+t^{2})(5-\frac{4(1-t^{2})}{1+t^{2}})} \\ &= \int_{0}^{\frac{\pi}{3}} \frac{2 \, dt}{5+5t^{2}-4+4t^{2}} \\ &= \int_{0}^{\frac{\pi}{3}} \frac{2 \, dt}{1+9t^{2}} \\ &= \frac{1}{9} \int_{0}^{\frac{\pi}{3}} \frac{2 \, dt}{\frac{1}{5} + x^{2}} \\ &= \frac{2}{9} \cdot 3 \left[\frac{1}{70n^{\frac{\pi}{3}}} \frac{3t}{5} \right]_{0}^{\frac{\pi}{3}} \\ &= \frac{2\pi}{9} \end{aligned}$$

V

 \checkmark

$$R_{1} (cont/d)$$

$$I(P) (i) (Ax+1)(x+i) + B(x^{2}+i) = x^{2} + 3x$$

$$PuF x = 0 \qquad B+i = 0$$

$$\therefore B = -i \qquad \forall$$

$$Fquating Coeff of x^{2} A+B = 1$$

$$\therefore A = 1-B$$

$$= 2 \qquad \forall$$

$$Ii) \int \frac{x^{2}+3x}{(x^{2}+i)x^{x+i}} dx = \int \frac{2x+i}{x^{2}+i} - \frac{1}{x+i} dx \qquad \forall$$

$$= \log_{e}(x^{2}+i) - \log_{e}(x+i) + \tan^{2}x + C \qquad \forall$$

$$Puestein 2$$

$$Ia) (1+i)^{3} = 1+3i-3 - i$$

$$= 2i-2$$

$$= 2(i-i) \qquad \forall$$

$$I = \frac{1-2}{3+4i} - \frac{6}{5i}$$

$$= \frac{(6-2i)(3-4i)}{(3+4i)(3-4i)} + \frac{6i}{5}$$

$$= \frac{1P-P-30i}{9+i6} + \frac{6i}{5}$$

$$= \frac{3}{5} \text{ which is real} \qquad \forall$$

(c)

$$\begin{array}{c}
 & y \\
 & z \\
 & y \\
 &$$

(iv) The graph of $y = \ln(f(x))$ only exists for f(x) > 0, that is, for x < -4 and x > 0. The graph of $y = \ln(f(x))$ is shown below.

$$\therefore Y = \sqrt{3}$$
Smallert value of $\theta = \frac{\pi}{16}$

$$\frac{Question' 4}{(A) (i)}$$
Gradient of the line perpendicular to the asymptote in $-\frac{q}{b}$

$$\therefore Equation of the line is$$

$$Y - 0 = -\frac{a}{b}(x - ac)$$

$$Y = -\frac{ax}{b} + \frac{a^{2}c}{b}$$

$$by = -ax + a^{2}c$$

$$i^{2} ax + by - a^{2}c = 0 \qquad (i) \quad \forall$$
(ii) when (i) meets $y = \frac{bx}{a}$

$$ax + b(\frac{bx}{a}) - a^{2}c = 0$$

$$(a^{2} + b^{2})x - a^{3}c = 0$$

$$x = \frac{a^{3}c}{a^{2} + b^{2}}$$

$$= \frac{a^{3}c}{a^{2} + b^{2}}$$

$$\therefore They meet ar The point where $x = \frac{a}{c}$

$$which lies on The Companding directrix.$$$$

$$\begin{aligned} &\mathcal{A}^{4}(b) x^{4} + 3xy - 2y^{2} + 13 = 0 \\ & 4x^{3} + 3y + 3x y' - 4y y' = 0 \\ & - \cdot (3x - 4y)y' = -(4x^{3} + 3y) \\ & y' = -\frac{4x^{3} + 3y}{3x - 4y} \end{aligned}$$

$$\begin{aligned} & y' = -\frac{4x^{3} + 3y}{3x - 4y} \\ & \vdots \\ & gradient at (-1,2) = -\frac{4(-1) + 3(2)}{3(-1) - 4(2)} \\ & = -\frac{2}{11} \\ & \vdots \\ & gradient of normal = -\frac{11}{2} \end{aligned}$$

$$\begin{aligned} & \therefore & \text{Figuation of normal in} \\ & y - 2 = -\frac{11}{2} (x + 1) \\ & 2y - 4 = -11x - 11 \\ & 11x + 2y + 7 = 0 \end{aligned}$$

$$\begin{aligned} & \text{(c) (i) } & xy = c^{2} \\ & \therefore & y' = -\frac{c^{2}}{x^{2}} \\ & y' = -\frac{c^{2}}{x^{2}} \\ & \vdots & at \mathcal{A} \quad y' = -\frac{c^{2}}{c^{2}y^{2}} \\ & = -\frac{1}{2}x \end{aligned}$$

$$\therefore Equation of the largent at a is
$$\begin{aligned}
\gamma - \frac{c}{q} &= -\frac{1}{q^{-}} (x - cq) \\
q^{2}y - cq &= -x + cq \\
i'e & x + q^{2}y = 2cq (i) \\
(ii) Similarly, tangent at $p = x + cq \\
x + p^{2}y &= 2cp (2) \\
(i) - (x) & (q^{2} - p^{-})y = 2c(q - p) \\
& \therefore y = \frac{2c(q - p)}{p^{-}p^{-}} \\
&= \frac{2c}{p + q} \\
Pus into (i) & x + \frac{2cq^{2}}{p + q} = 2cq \\
& \therefore x = \frac{2cpq}{p + q} \\
(iii) At T & x = \frac{3cpq}{p + q} \\
& y = \frac{2c}{p + q} \\
& y = \frac{2c}{p + q} \\
& y = \frac{2cpq}{p + q} \\
& y = \frac{2cq}{p + q} \\$$$$$

$$\begin{array}{cccc} 44c) (control d) \\ (d) & \begin{array}{c} \frac{x}{y} = \beta g \\ & = k \\ & (given) \\ \hline & & \\ & = k \\ & (given) \\ \hline & & \\ &$$

•

$$Q 5 (b)$$
Let the roots be $\alpha - d$, α , $\alpha + d$
... sum of roots: $\alpha - d + \alpha + \alpha + d = -p$
... $p = -3\alpha$ (1)
Num of not taken 2 at a time:
 $\alpha(\alpha - d) + \alpha(\alpha + d) + (\alpha - d)(\alpha + d) = 9$
 $3\alpha^{2} - d^{2} = 9$
 $q = 3\alpha^{2} - d^{2}$ (2)
Product of roots
 $\alpha(\alpha - d)(\alpha + d) = -r$
 $\alpha^{3} - \alpha d^{2} = -r$
 $r = \alpha d^{2} - \alpha^{3}$ (3)
 $= -54\alpha^{3} + 27r - 9pq$
 $= 2(-3\alpha)^{3} + 27(\alpha d^{2} - \alpha^{3}) - 9(-3\alpha)(3\alpha^{2} - d^{2})$
 $= -54\alpha^{3} + 27\alpha d^{2} - 27\alpha^{3} + \delta(\alpha^{3} - 37\alpha d^{2})$
 $= 0$
(c) (i) $x^{4} + 4\sqrt{3}x^{3} - 6x^{2} - 4\sqrt{3}x + 1 = 0$
 $\frac{(4x - 4x^{3})\sqrt{3}}{1 - 6x^{2} + x^{4}} = 4\sqrt{3}x - 4\sqrt{3}x^{3}$

$$\frac{4x-4x^{3}}{1-6x^{2}+x^{4}} = \frac{4}{\sqrt{3}}$$
Let $x = \tan \theta$
 $\therefore \frac{4\tan \theta - 4\tan^{3}\theta}{1-6\tan^{3}\theta + \tan^{4}\theta} = \frac{4}{\sqrt{3}}$
 $\tan 4\theta = \frac{4}{\sqrt{3}}$
 $\therefore 4\theta = \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6}, \frac{19\pi}{6}, \frac{35\pi}{24}, \frac{13\pi}{24}, \frac{19\pi}{24}, \frac{35\pi}{24}, \frac{1}{24}, \frac{$

$$\frac{\partial uestion 6}{h} = \frac{\partial uestion 6}{h} = \frac{\partial$$

/

(ii) At po of intersection. x = f(x) $\chi = \chi^2 - 3\chi$ $- \chi^{3} - 4\chi = 0$ x(x-4)=0 X (X-2XX+2) $\therefore X = 0, X = 2, X = -2$ but domain of y=f(x) is x > 1 . X=2 ... pt of interscettin is (2,2) (iii) Area = $2[\frac{1}{2}x^2 - \int x^3 - 3x dx]$ $= 2 \left[2 - \left[\frac{x^4}{4} - \frac{3x^2}{2} \right]_{13}^2 \right]$ =] unit

Question 7

v for end-pr schleriepr

r for convect

shope

tan (4x) - tan (3x) = tan (7) (A) tan (tan (4x) - tan (3x)) = 7 $\frac{4x - \partial x}{1 + (4 \times X \partial x)} = \frac{1}{7}$ $7x = /t/2x^{2}$ $\frac{1}{2x^2} - 7x + 1 = 0$ $(3\chi - 1)(4\chi - 1) = 0$:x=f or x=4 (b) when n=1 5'-3'=2when N = 2 $5^2 - 3^2 = 16$ -: Un = 5 - 3 no true for x=1, 2. Assume it is true for n= R+, R-2. $U_{R-1} = 5^{R-1} - 3^{R-1}$ $U_{R-2} = 5^{R-2} - 3^{R-2}$ Ĩe – · Up = PUp - 15 Up-2 $= \theta(5^{R-1}-3^{R-1}) - 15(5^{R-2}-3^{R-2})$ = 40.5 - 24.3 - 15.5 + 15.3 +- 15.3 = 25.5 t-2 9.3 t-2 = 5 R - 3 R

:. It will be true for
$$n = k$$
 if it is true for
 $n = k - l$, $n = k - 2$.
Since it is proven true for $k = l$, 2 , -1 it will be
true for $n = 3$, 4 , 5 , $- \cdots$ is true for all public
integers n .
(ii) $U_{1} + U_{2} + U_{3} + \cdots + U_{n}$
 $= (5 - 3) + (5^{2} - 3^{2}) + (5^{2} - 3^{3}) + \cdots + (5^{n} - 3^{n})$
 $= (5 + 5^{2} + 5^{2} + \cdots + 5^{n}) - (3 + 3^{2} + 3^{2} + \cdots + 3^{n})$
 $= \frac{5(5^{n} - 1)}{5 - 1} - \frac{3(3^{n} - 1)}{3 - 1}$
 $= \frac{5^{n+1} - 5}{4} - \frac{3^{n+1} - 3}{2}$
 $= \frac{5^{n+1} - 5 - 3x 3^{n+1} - 6}{4}$
 $= \frac{5^{n+1} - 2x 3^{n+1} + 1}{4}$
(c) (i) $T_{n} = \int_{0}^{1} x (1 - x)^{n} dx$
 $= \left[\frac{x^{2}}{2}(1 - x)^{n}\right]_{0}^{1} - \int_{0}^{1} \frac{x^{2}}{2} d(1 - x)^{n}$

$$2I_{n} = \lambda \int_{0}^{t} \chi^{2}(1-\chi)^{n-1} d\chi$$

$$= \lambda \int_{0}^{t} \chi \left[1 - (1-\chi) \right] (1-\chi)^{n-1} d\chi$$

$$= \lambda \int_{0}^{t} \chi (1-\chi)^{n-1} d\chi - \lambda \int_{0}^{t} \chi (1-\chi)^{n} d\chi$$

$$= \lambda I_{n-1} - \lambda I_{n}$$

 $(\eta + \chi) I_{n} = \lambda I_{n-1}$
 $\vdots I_{n} = \frac{\lambda}{n+2} I_{n-1}$
(ii) $I_{0} = \int_{0}^{t} \chi d\chi = \frac{1}{2}$
 $I_{1} = \frac{1}{3} I_{0}$
 $I_{2} = \frac{\lambda}{4} I_{1}$
 $I_{3} = \frac{\lambda}{5} I_{2}$
 \vdots
 $I_{n} = \frac{n}{n+2} I_{n-1}$
 $I_{n} = \frac{n}{n+2} I_{n-1}$
 $Multiply ug$
 $I_{n} = \frac{n(h-1)(n-2)\cdots 1}{(\lambda + 2)(n+1)\cdots 5 \cdot 4 \cdot 3} \cdot \frac{1}{2}$

 \checkmark

$$ie I_{n} = \frac{n! 2!}{(n+2)! 2}$$

$$= \frac{1}{2} \frac{1}{n+2}C_{2}$$
(iii) $I_{n} \leq \frac{1}{132}$

$$\frac{1}{\sqrt{2}n+2}C_{2} \leq \frac{1}{132}$$

$$\frac{1}{\sqrt{2}n+2}C_{2} \leq \frac{1}{132}$$

$$ie \frac{(n+2\chi n+1)}{2} \geq 66$$

$$n^{2}+3n+2 \geq 132$$

$$n^{2}+3n-130 \geq 0$$

$$(n-10)(n+13) \geq 0$$

$$\therefore n \leq -13 \quad 0 \leq n \geq 10$$

~

V

 \checkmark

$$\begin{aligned} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \\ \frac{\partial}$$

Q

$$\begin{aligned} \theta(c)(cmld) &= \frac{1+\chi - 1}{(1+\chi)^2} \\ &= \frac{\chi}{(1+\chi)^2} > 0 \qquad \forall \chi > 0 \\ \therefore f(\chi) \text{ is an increasing function } \quad & \text{for all } \chi > 0 \\ \therefore f(\chi) > f(0) \qquad & \text{for all } \chi > 0 \\ \qquad & \text{ln}(1+\chi) - \frac{\chi}{1+\chi} > 0 \\ \qquad & \text{ln}(1+\chi) - \frac{\chi}{1+\chi} > 0 \\ \qquad & \text{ln}(1+\chi) > \frac{\chi}{1+\chi} \\ \qquad & \text{but from } (c)(ii) \\ \qquad & \chi > \ln(1+\chi) < \chi \end{aligned}$$