(a) (i) Show that $\frac{1}{e^{x}-1}=\frac{e^{-x}}{1-e^{-x}}$.

1 1
(ii) Hence find $\int \frac{1}{e^{x}-1} d x$.
(b) Find $\int \frac{x}{\sqrt{1+x}} d x$ using the substitution $u=1+x$.
(c) Use partial fractions to find $\int \frac{x^{2}+x-4}{(2 x+1)\left(x^{2}+4\right)} d x$
(d) (i) Use integration by parts to find $\int \tan ^{-1} x d x$.
(ii) Hence find $\int x \tan ^{-1}\left(x^{2}\right) d x$.
(e) (i) Find $\int \frac{d x}{x^{2}+2 x+10}$
(ii) Use the result $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ to evaluate the integral 2

$$
\int_{0}^{\pi} x \cos 2 x d x
$$

Question 2

(Begin a new page)

(a) Given $w=2+5 \mathrm{i}, z=4-3 \mathrm{i}$ and $u=a+b \mathrm{i}$, evaluate:
(i) $w+\bar{z}$
(ii) $|w+\bar{z}|$
(iii) $(w+\bar{z})(\bar{w}+z)$
(iv) If $\frac{w(9-8 \mathrm{i})}{u}$ is a real number,
(α) show that $a=2 b$,
(β) hence find u if $|u|=5$.

Question 2 (continued)

(b) A, B are the points representing the complex numbers $z_{1}=13+11 \mathrm{i}$ and $z_{2}=10+8 \mathrm{i}$ respectively. Find the complex number that is represented by the point C where A , B and C are adjacent vertices of a regular hexagon.
(c) (i) Express $z=\frac{1+\mathrm{i}}{\sqrt{3}+\mathrm{i}}$ in the form of $r \operatorname{cis} \theta$.

(ii) Find the smallest positive integer n such that z^{n} is a purely imaginary number.

Question 3

(Begin a new page)

(a) The diagram shows the graph of the function $f(x)=\frac{x-4}{x-3}$. On separate diagrams, sketch the following graphs, showing clearly any intercepts on the axes and the equations of the asymptotes.
(i) $y=f(-x)$
(ii) $y=|f(x)|$
(iii) $y=f(|x|)$
(iv) $y=e^{f(x)}$ and
(v) $y=\sqrt{f(x)}$

(b) The line $y=m x$ through the origin $\mathrm{O}(0,0)$ touches the curve $y=\frac{x-4}{x-3}$ at point $P\left(x_{1}, y_{1}\right)$.
(i) By considering the gradient of the line OP, show that

$$
x_{1}^{2}-8 x_{1}+12=0
$$

Question 3b continued on p.3...

Marks

Question 3b (continued)

(ii) Hence find the equation of the two tangents to $y=\frac{x-4}{x-3}$ from the origin.
(ii) Find the maximum modulus of the complex number z that satisfies

$$
|z-5-12 i| \leq 3 .
$$

Question 4

(Begin a new page)

(a) Given the equation of an ellipse is $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(i) Show that if the line $y=m x+c$ is a tangent to E, then $c^{2}=a^{2} m^{2}+b^{2}$.
(ii) Show that if the line $y=m x+c$ is a tangent to the circle $x^{2}+y^{2}=r^{2}$, then $c^{2}=r^{2} m^{2}+r^{2}$.
(iii) Hence or otherwise, find the equations of the common tangents to the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ and the circle $2 x^{2}+2 y^{2}=9$.
(b) $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ are two points on the rectangular hyperbola $x y=c^{2}$. The chord $P Q$ meets the asymptotes at L and M.
(i) Show that the equation of the chord $P Q$ is $x+p q y=c(p+q)$.
(ii) Prove that $P L=Q M$.

(iii) A tangent to the parabola $x^{2}=4 y$ meets the hyperbola $x y=9$ at two points P and Q.
(α) show that $1+3 p q(p+q)=0$.
(β) Hence show that the equation of the locus of N , the mid-point of PQ , is $2 x^{2}+y=0$.

Question 5

(a) The equation $x^{3}-x^{2}+3 x+4=0$ has roots α, β and γ.
(i) Find the values of $\alpha^{2}+\beta^{2}+\gamma^{2}$ and hence deduce that two of the roots must be complex.
(ii) Find the monic polynomial equation with roots α^{2}, β^{2}, and γ^{2}.
(b) (i) Show that if $x=\alpha$ is a repeated root of the polynomial equation $P(x)=0$, then it must also be a root of $P^{\prime}(x)=0$.
(ii) The hyperbola $x y=c^{2}$ touches the ellipse $\frac{(x-1)^{2}}{6}+y^{2}=1$ at point Q which lies in the $3^{\text {rd }}$ quadrant. Deduce that the equation $x^{4}-2 x^{3}-5 x^{2}+6 c^{4}=0$ has a negative repeated root α.
(iii) Hence determine the values of α and c^{4}.
(c) (i) By using the identity $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$, show that the
roots of the equation $16 x^{5}-20 x^{3}+5 x-1=0$ are $x=\cos \frac{2 r \pi}{5}, r=0,1,2$, 3, 4 .
(ii) Hence show that $\cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{4}$.

Question 6

(Begin a new page)

(a) (i) Find $\int x e^{-x^{2}} d x$ using the substitution $u=x^{2}$.
(ii) The region bounded between the curve $y=e^{-x^{2}}$, the x-axis, the y-axis and the line $\mathrm{L}: x=\log _{e} N$ is rotated about the y-axis. Show that the volume of the solid formed is
$\pi\left[1-\left(\frac{1}{N}\right)^{\ln N}\right]$ by using the cylindrical shell method.

Question 6 (continued)
(iii) Hence find the volume of the largest solid possible by sliding the line L indefinitely towards the right.
(b)

The solid shown above is formed in the shape of 2 identical intersecting semi-circular cylinders, each of radius 4 . The base of the solid is a square of sides 8 cm . On the front face, the equation of the semi-circle is $x^{2}+z^{2}=16, z \geq 0$, where x is the horizontal distance measured from the mid-point of the base of the front face and z is the height.

The shape of a horizontal slice of thickness δz taken at a height z is also shown above. It is a square with 4 smaller squares removed, one from each corner.
(i) Find x in terms of z.
(ii) Show that the volume of the solid is given by the expression

$$
V=\int_{0}^{4}\left\{8^{2}-4\left[4-\sqrt{16-z^{2}}\right]^{2}\right\} d z
$$

(iii) Hence find the volume of the solid.

Question 7

(Begin a new page)

(a) The air resistance encountered by a body of mass m moving at a speed v is given by kmgv where m is the mass of the body, g is the acceleration due to gravity and k is a constant.
(i) Find the terminal velocity V_{T}.
(ii) The body is projected vertically upward with an initial speed of U, show that the maximum height reached will be given by $H=\frac{U}{g k}-\frac{1}{g k^{2}} \ln (1+k U)$.

Question 7a continued on p.6...

Question 7a (continued)

(iii) Show that, if the initial speed of projection is V_{T}, then the time taken to reach the maximum height is $T=\frac{V_{T}}{g} \ln 2$.
(b) A body of mass m is projected vertically downward with a speed $\frac{1}{3} V_{T}$, where V_{T} is the terminal velocity, in a resistive medium. The resistance is $m \mathrm{k} v^{2}$, where k is a constant and v is the speed of the body t seconds after being projected. Show that it takes $\frac{V_{T}}{2 g} \ln \frac{3}{2}$ seconds to reach a speed of $\frac{1}{2} V_{T}$.
(c) The gravitational force exerted by the earth on a body of mass m at a distance x $(x \geq R)$ from its centre is given by $\frac{m k}{x^{2}}$, where R is the radius of the earth and k is a constant.
(i) Show that $k=g R^{2}$.
(ii) A body is projected vertically upward with an initial speed U. Show that the speed of the body when it is at a distance x from the centre of the earth is given by

$$
v^{2}=U^{2}+2 g R^{2}\left(\frac{1}{x}-\frac{1}{R}\right) .
$$

Question 8
 (Begin a new page)

(a) A sequence of number $\left\{u_{n}\right\}$ is defined by $u_{1}=1, u_{2}=5$ and

$$
u_{n+2}=5 u_{n+1}-6 u_{n} \quad n \geq 1
$$

Use mathematical induction to show that $u_{n}=3^{n}-2^{n} \quad n \geq 1$
(b) Show that

$$
\sin \theta+\sin 2 \theta+\ldots .+\sin n \theta=\frac{1}{2 \sin \frac{\theta}{2}}\left[\cos \frac{\theta}{2}-\cos \frac{(2 n+1) \theta}{2}\right] .
$$

[You may assume the identity $2 \sin A \sin B=\cos (A-B)-\cos (A+B)]$

Question 8 (continued)

(c) P is a point on the minor arc $\mathrm{AB} . \mathrm{L}, \mathrm{M}$ and N are the feet of perpendiculars from P to CA, AB and BC respectively.
(i) Copy the diagram.
(ii) State the reason why P, M, A and L are concyclic.
(iii) State the reason why P, B, N and M are concyclic.
(iv) Show that L, M and N are collinear.

(d)

(i) By considering the appropriate area under the graph of $y=\log _{e} x$, show that

$$
\log _{e} n<\int_{n}^{n+1} \log _{e} x d x<\log _{e}(n+1) \quad n \geq 1
$$

(ii) Hence, show that $1+\frac{1}{n}<e^{\frac{1}{n}}<\left(1+\frac{1}{n}\right)^{\frac{n+1}{n}}$

End of Paper

Solution to CTHS AP4 EXT 2 mathe
Questron 1
(a) (i)

$$
\begin{aligned}
\frac{1}{e^{x}-1} & =\frac{1}{e^{x}-1} \times \frac{e^{-x}}{e^{-x}} \\
& =\frac{e^{-x}}{1-e^{-x}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int \frac{1}{e^{x}-1} d x & =\int \frac{e^{-x}}{1-e^{-x}} d x \\
& =\int \frac{d\left(1-e^{-x}\right)}{1-e^{-x}} \\
& =\ln \left(1-e^{-x}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& u=1+x \\
& \therefore x=u-1 \\
& d x=d u \\
& \int \frac{x}{\sqrt{1-x}} d x=\int \frac{u-1}{\sqrt{u}} d u \\
&=\int \sqrt{u}-\frac{1}{\sqrt{u}} d u \\
&=\frac{2}{8} u^{3 / 2}-2 \sqrt{u}+c \\
&=\frac{2}{8}(1+x)^{\frac{3}{2}}-2 \sqrt{1+x}+c
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
\int \tan ^{-1} x d x & =x \tan ^{-1} x-\int x d\left(\tan ^{-1} x\right) \\
& =x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x \\
& =x \tan ^{-1} x-\frac{1}{2} \int \frac{d\left(1+x^{2}\right)}{1+x^{2}} \\
& =x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)+c
\end{aligned}
$$

(ii) Pur $u=x^{2}$

$$
\begin{aligned}
& d u=2 x d x \\
& \therefore \int x \tan ^{-1}\left(x^{2}\right) d x=\frac{1}{2} \int \tan ^{-1} u d u \\
&=\frac{1}{2} u \tan x-\frac{1}{4} \ln \left(1+u^{2}\right)+c \\
&=\frac{x^{2}}{2} \tan ^{-1}\left(x^{2}\right)-\frac{1}{4} \ln \left(1+x^{4}\right)+c
\end{aligned}
$$

(e) (i) $\int \frac{d x}{x^{2}+2 x+10}=\int \frac{d x}{(x+1)^{2}+9}$

$$
=\frac{1}{3} \tan ^{-1} \frac{x+1}{8}+c
$$

(ii)

$$
\begin{aligned}
\int_{0}^{\pi} x \cos 2 x d x & =\int_{0}^{\pi}(\pi-x) \cos 2(\pi-x) d x \\
& =\int_{0}^{\pi}(\pi-x) \cos 2 x d x \\
& =\pi \int_{0}^{\pi} \cos 2 x d x-\int_{0}^{\pi} x \cos 2 x d x \\
2 \int_{0}^{\pi} x \cos 2 x d x & =\pi \int_{0}^{\pi} \cos 2 x d x
\end{aligned}
$$

(c) $\operatorname{Let} \frac{x^{2}+x-4}{(2 x+1)\left(x^{2}+4\right)}<\frac{A}{2 x+1}+\frac{B x+C}{x^{2}+4}$

$$
\begin{align*}
\therefore A\left(x^{2}+4\right)+(B x+C)(2 x+1) & =x^{2}+x-4 \tag{1}\\
\text { pur } x=-\frac{1}{2} \quad A\left(\frac{1}{4}+4\right) & =\frac{1}{4}-\frac{1}{2}-4 \\
\frac{17}{4} A & =-\frac{17}{4} \\
A & =-1
\end{align*}
$$

Equating creff. of x^{2} in (1)

$$
\begin{aligned}
A+2 B & =1 \\
2 B & =1-A \\
2 B & =2 \\
B & =1
\end{aligned}
$$

$\operatorname{Par} x=0$ in (1)

$$
\begin{aligned}
4 A+C & =-4 \\
C & =-4-4 A \\
& =-4+4 \\
& =0
\end{aligned}
$$

$$
\therefore \frac{x^{2}+x-4}{(2 x+1)\left(x^{2}+4\right)}=-\frac{1}{2 x+1}+\frac{x}{x^{2}+4}
$$

$$
\therefore \int \frac{x^{2}+x-4}{(2 x+1)\left(x^{2}+4\right)} d x=-\int \frac{1}{2 x+1} d x+\int \frac{x}{x^{2}+4} d x
$$

$$
=-\frac{1}{2} \ln (2 x+1)+\frac{1}{2} \ln \left(x^{2}+4\right)+C
$$

$$
=\frac{1}{2} \ln \frac{x^{2}+4}{2 x+1}+c
$$

$$
\begin{aligned}
\therefore \int_{0}^{\pi} x \cos 2 x d x & =\frac{1}{2} \pi \int_{0}^{1} \cos 2 x d x \\
& =\frac{1}{4} \pi[\sin 2 x]_{0}^{\pi} \\
& =0
\end{aligned}
$$

Question 2
(a) (i)

$$
\begin{aligned}
w+\bar{z} & =(2+5 i)+\overline{(4-3 i)} \\
& =2+5 i+4+3 i \\
& =6+8 i
\end{aligned}
$$

(ii)

$$
\begin{aligned}
|w+\bar{z}| & =\sqrt{6^{2}+8^{2}} \\
& =10
\end{aligned}
$$

(iii)

$$
\begin{aligned}
(w+\bar{z})(\bar{w}+z) & =(w+\bar{z} \bar{Y} \overline{w+\bar{z}}) \\
& =|w+\bar{z}|^{2} \\
& =10^{2} \\
& =100
\end{aligned}
$$

(iv) (a)

$$
\begin{aligned}
\frac{w(9-8 i)}{u} & =\frac{(2+5 i)(9-8 i)}{a+b i} \\
& =\frac{(18+40)+(45-16) i}{a+b i} \\
& =\frac{58+29 i}{a+b i} \times \frac{a-b i}{a-b i} \\
& =\frac{(58 a+29 . b)+(29 a-58 b) i}{a^{2}-b^{2}}
\end{aligned}
$$

$\frac{w(q-g i)}{u}$ is real mly if $\operatorname{Im}\left(\frac{w(9-g i)}{u}\right)=0$

$$
i e \frac{29 a-58 b}{a^{2}-b^{2}}=0
$$

ie

$$
a=2 b
$$

(β) $\begin{aligned} u & =a+b i \\ \therefore|u| & =\sqrt{a^{2}+b^{2}}\end{aligned}$
$|u|=5$

$$
a^{2}+b^{2}=25
$$

$$
(2 p)^{2}+b^{2}=25
$$

$$
5 b^{2}=25
$$

$$
b^{2}=5
$$

$$
b= \pm \sqrt{5}
$$

$$
\therefore u= \pm \sqrt{5}(2+i)
$$

(b) $\quad \overrightarrow{B A}=Z_{1}-z_{2}$

$$
\begin{aligned}
& =(13+11 i)-(10+8 i) \\
& =3+3 i
\end{aligned}
$$

$$
\overrightarrow{B C}=\overrightarrow{B A} \times \text { cis } \frac{2 \pi}{3}
$$

$$
\begin{aligned}
& =(3+3 i)\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\
& =(3+3 i)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)
\end{aligned}
$$

ie $\frac{n \pi}{12}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}$

$$
n=6,18,30,42,
$$

\therefore The snallest prositue aregral value of $n=6$.

Quentin 3

(a)

(ii) $y=|f(x)|$

3(a)
(v) $y=\sqrt{f(x)}$

(b) (i) $m_{o p}=\frac{y_{1}}{x_{1}}$
(1)

$$
\begin{aligned}
y & =\frac{x-4}{x-3} \\
y^{\prime} & =\frac{(x-3)-(x-4)}{(x-3)^{2}} \\
& =\frac{1}{(x-3)^{2}}
\end{aligned}
$$

\therefore Gradient ar $P\left(x_{1}, y_{1}\right)$ is $\frac{1}{\left(x_{1}-3\right)^{2}}$
From(1) *(2)

$$
\frac{y_{1}}{x_{1}}=\frac{1}{\left(x_{1}-3\right)^{2}}
$$

$$
\text { but } \quad y_{1}=\frac{x_{1}-4}{x_{1}-3}
$$

(ii) $O C A$ is a straigts line where C is the ceatre of the circee

$$
\begin{aligned}
O C & =\sqrt{5^{2}+12^{2}} \\
& =13
\end{aligned}
$$

$\therefore \Delta A=13+3$

$$
=16
$$

Questim 4
(a) (i)

$$
\begin{align*}
& y=m x+c \tag{2}\\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{align*}
$$

Pur (1) intic (2)

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}+\frac{(m x+c)^{2}}{b^{2}}=1 \\
& b^{2} x^{2}+a^{2}(m x+c)^{2}=a^{2} b^{2} \\
& b^{2} x^{2}+a^{2}\left(m^{2} x^{2}+2^{m} x+c^{2}\right)=a^{2} b^{2} \\
& b^{2} x^{2}+a^{2} m^{2} x^{2}+2 a^{2} m c x+a^{2} c^{2}-a^{2} b^{2}=0 \\
& \left(b^{2}+a^{2} m^{2}\right) x^{2}+2 a^{2} m c x+\left(a^{2} c^{2}-a^{2} b^{2}\right)=0 \tag{3}\\
& \text { If (I) is a tangent to } E \text {, Then } \triangle=0
\end{align*}
$$

$$
\begin{aligned}
& \therefore \quad \frac{x_{1}-4}{x\left(x_{1}-3\right)}=\frac{1}{\left(x_{1}-3\right)^{2}} \\
& \left(x_{1}-3 x x_{1}-4\right)=x_{1} \\
& x_{1}^{2}-7 x_{1}+12=x_{1} \\
& x_{1}^{2}-8 x_{1}+12=0 \\
& x_{1}^{2}-8 x_{1}+12=0 \\
& \left(x_{1}-2\right)\left(x_{1}-6\right)=0 \\
& \therefore \quad x_{1}=2 \text { or } x_{1}=6
\end{aligned}
$$

when $x_{1}=2, y_{1}=\frac{2-4}{2-3}$

$$
=2
$$

Equation of tangent is $y=x$
when $x_{1}=6, \quad y_{1}=\frac{6-4}{6-3}$

$$
=\frac{2}{3}
$$

Equation of tangent is $y=\frac{x}{9}$
(c)

$$
\begin{array}{ll}
b^{4}+a^{2} b^{2} m^{2}-b^{2} c^{2}=0 \\
b^{2}+a^{2} m^{2}-c^{2}=0 \\
\therefore c^{2}=a^{2} m^{2}+b^{2}
\end{array} \quad \because b \neq 0
$$

(ii) Substiture $a^{2}=b^{2}=r^{2}$ ito $c^{2}=a^{2} m^{2}+b^{2}$

$$
\therefore \quad c^{2}=r^{2} m^{2}+r^{2}
$$

(iii) If $y=m x+c$ is a comman targens.

$$
(1)
$$

then $c^{2}=a^{2} m^{2}+b^{2}=r^{2} m^{2}+r^{2}$
ie $\quad 6 m^{2}+3=\frac{9}{2} m^{2}+\frac{9}{2}$

$$
\begin{aligned}
12 m^{2}+6 & =9 m^{2}+9 \\
3 m^{2} & =3 \\
m & = \pm 1
\end{aligned}
$$

wren $m=1, c^{2}=6+3$

$$
=9
$$

$$
c= \pm 3
$$

\therefore The equationo of the comum targubare when $m=-1, \quad c^{2}=6+3$

$$
\left(2 a^{2} m c\right)^{2}-4\left(b^{2}+a^{2} m^{2}\right)\left(a^{2} c^{2}-a^{2} b^{2}\right)=0
$$

$$
4 a^{4} m^{2} c^{2}-4 a^{2}\left(b^{2}+a^{2} m^{2}\right)\left(c^{2}-b^{2}\right)=0
$$

\therefore The equations are $y=-x \pm 3$.

$$
a^{2} m^{2} c^{2}-b^{2} c^{2}+b^{4}-a^{2} m^{2} c^{2}+a^{2} b^{2} m^{2}=0
$$

(b) $P\left(c p, \frac{c}{p}\right), Q\left(c q, \frac{c}{q}\right)$
\therefore Equation of chond $P Q$ is

$$
\begin{aligned}
& \frac{y-c}{q} \\
& x-c q=\frac{\frac{c}{p}-\frac{c}{q}}{c p-c q} \\
& y-\frac{c}{q}=\frac{\frac{1}{p}-\frac{1}{q}}{p-q}(x-c q) \\
& p q\left(y-\frac{c}{q}\right)=p q \frac{\frac{1}{p}-\frac{1}{q}}{p-q}(x-c q) \\
& p q y-c p=\frac{q-p}{p-q}(x-c q) \\
& p q y-c p=e q-x
\end{aligned}
$$

ie $x+p q y=c(p+q)$
(ii) At $L, y=0$

$$
\begin{array}{ll}
\therefore & x=c(p+q) \\
\therefore & L \text { is }(c(p+q), \sigma)
\end{array}
$$

At $M, X=0$,
fron(1) $\quad p q y=c(p+q)$

$$
\begin{array}{r}
\therefore y=\frac{c(p+q)}{p q} \\
\therefore \quad M \text { i }\left(0, \frac{c(p+q)}{p q}\right) \\
x+\frac{p q x^{2}}{4}=3(p+q) \\
4 x+p q x^{2}=12(p+q) \\
p q x^{2}+4 x-12(p+q)=0
\end{array}
$$

Since $P Q$ is a tangent is $x^{2}=4 y$

$$
\therefore \quad \Delta=0
$$

ie $\quad 4^{2}+4 p q(12)(p+q)=0$

$$
\begin{gather*}
16+48 p q(p+q)=0 \\
1+3 p q(p+q)=0 \tag{3}
\end{gather*}
$$

(B) At N.

$$
\begin{align*}
x & =\frac{3}{2}(p+q) \tag{4}\\
y & =\frac{3}{2}\left(\frac{1}{p}+\frac{1}{q}\right) \\
& =\frac{3(p+q)}{2 p q} \tag{5}
\end{align*}
$$

$\frac{(4)}{(5)} \quad p q=\frac{x}{y}$
Fron (3) $\quad p+q=\frac{2 x}{3}$
pur (6) क(7) axt (3)

$$
\begin{gathered}
1+3\left(\frac{x}{y}\right)\left(\frac{2 x}{3}\right)=0 \\
1+\frac{2 x^{2}}{y}=0
\end{gathered}
$$

mid-pt of $P Q$ is

$$
\begin{aligned}
& N\left(\frac{c(p+q)}{2}, \frac{c}{2}\left(\frac{1}{p}+\frac{1}{q}\right)\right) \\
& =\left(\frac{c(p+q)}{2}, \frac{c}{2} \cdot \frac{p+q}{p q}\right) \\
& =\left(\frac{c(p+q)}{2}, \frac{c(p+q)}{2 p q}\right)
\end{aligned}
$$

mid-pr of $\angle M$ is

$$
\begin{aligned}
& N^{\prime}=\left(\frac{c(p+q)}{2} \frac{c(p+q)}{2 p q}\right) \\
& \therefore \quad N=N^{\prime}
\end{aligned}
$$

Hence $\quad P N=Q N$

$$
\begin{aligned}
\angle N & =M N \\
P N-L N & =Q N-M N \\
\therefore P L & =Q M
\end{aligned}
$$

(iii) $(\alpha) x y=9 \quad c=3$
\therefore Let $p+a$ th the ats $\left(3 p, \frac{3}{4}\right)+\left(39, \frac{3}{2}\right)$ reryectively.
$B y$ result of (i) eq of $P Q$ io

$$
\begin{equation*}
x+p q y=3(p+q) \tag{2}
\end{equation*}
$$

when this line meets the qaralile $x^{2}=4 y$,

$$
\begin{equation*}
\text { pur } y=\frac{x^{2}}{4} \quad \text { into (2) } \tag{P. 7}
\end{equation*}
$$

ie $\quad 2 x^{2}+y=0$
\therefore Equation of the loceno of N is $2 x^{2}+y=0$
Quedtion 5
(a) (i)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2} 2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =1-2(3) \\
& =-5
\end{aligned}
$$

Since sum of squares of real numbers must be non-negatwie, hence nor all $\alpha, \beta \times r$ arereal, v but cmplex nots of a prlynoaial equatesi occer in conjugate pairs, \therefore exactly 2 of $\alpha, \beta+\gamma$ are complex
(ii) Ler $y=x^{2}$
$\therefore x^{3}-x^{2}+3 x+4=0$ is raneformed soto

$$
\begin{gathered}
y \sqrt{y}-y+3 \sqrt{y}+4=0 \\
\sqrt{y}(y+3)=y-4 \\
y(y+3)^{2}=(y-4)^{2} \\
y\left(y^{2}+6 y+9\right)=y^{2}-8 y+16 \\
y^{3}+6 y^{2}+9 y=y^{2}-8 y+16 \\
y^{3}+5 y^{2}+17 y-16=0
\end{gathered}
$$

\therefore Equation whore vort ane $\alpha^{2}, \beta^{2}, \gamma^{2}$ is

$$
x^{3}+5 x^{2}+17 x-16=0
$$

(b) (i) Let $P(x)=(x-\alpha)^{2} Q(x)$

$$
\begin{aligned}
P^{\prime}(x) & =2(x-\alpha) Q(x)+(x-\alpha)^{2} Q^{\prime}(x) \\
& =(x-\alpha)\left[2 Q(x)+(x-\alpha) Q^{\prime}(x)\right] \\
\therefore P^{\prime}(\alpha) & =0
\end{aligned}
$$

hence $x=\alpha$ mast also be a wot of $P^{\prime}(x)=0$
(ii) When $x y=c^{2}$ mats $\frac{(x-1)^{2}}{6}+y^{2}=1$

$$
\begin{align*}
& \frac{(x-1)^{2}}{6}+\left(\frac{c^{2}}{x}\right)^{2}=1 \\
& x^{2}(x-1)^{2}+6 c^{4}=6 x^{2} \\
& x^{2}\left(x^{2}-2 x+1\right)+6 c^{4}=6 x^{2} \\
& x^{4}-2 x^{3}+x^{2}+6 c^{4}-6 x^{2}=0 \\
& x^{4}-2 x^{3}-5 x^{2}+6 c^{4}=0 \tag{1}
\end{align*}
$$

Since $x y=c^{2}$ fondles $\frac{(x-1)^{2}}{6}+y^{2}=1$ ar Q
\therefore equation (1) must howe a repeated not.
Q lias is the $s^{\text {rod }}$ quadrant, $-x$-coordinate
of A nuder be negative

$$
\therefore \quad \alpha<0
$$

\therefore (1) must have a negative repealed rod α
(ii) Product of roots of $16 x^{5}-20 x^{3}+5 x-1=$

$$
\begin{gathered}
\therefore \quad \cos 0 \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{6 \pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{16} \\
\cos \frac{2 \pi}{5} \cos \left(\pi-\frac{\pi}{5}\right) \cos \left(\pi+\frac{\pi}{5}\right) \cos \left(2 \pi-\frac{2 \pi}{5}\right)=\frac{1}{16} \\
\cos \frac{2 \pi}{5}\left(-\cos \frac{\pi}{5}\right)\left(-\cos \frac{\pi}{5}\right) \cos \frac{2 \pi}{5}=\frac{1}{16} \\
\left(\cos \frac{\pi}{5} \cos \frac{2 \pi}{5}\right)^{2}=\frac{1}{16} \\
\cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{4}
\end{gathered}
$$

Since $\cos \frac{\pi}{5}>0, \cos \frac{2 \pi}{5}>0$

Question 6
(a) (i)

$$
\begin{aligned}
u & =x^{2} \\
d u & =2 x d x \\
\therefore \int x e^{-x^{2}} d x & =\frac{1}{2} \int e^{-u} d u \\
& =-\frac{1}{2} e^{-u}+c \\
& =-\frac{1}{2} e^{-x^{2}}+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& r=x, \\
& h=y=e^{-x^{2}}
\end{aligned}
$$

Volume of the cylindrical shell is

(iii)

Let $P(x)=x^{4}-2 x^{3}-5 x^{2}+6 c^{4}$

$$
\begin{gathered}
p^{\prime}(x)=4 x^{3}-6 x^{2}-10 x \\
p^{\prime}(x)=0 \\
2 x\left(2 x^{2}-3 x-5\right)=0 \\
2 x(2 x 5)(x+1)=0 \\
\therefore x=0, \frac{5}{2} \text { or }-1 .
\end{gathered}
$$

Since $\quad \alpha<0$

$$
\begin{aligned}
& \therefore \quad \alpha=-1 \\
& p(-1)=0 \\
&(-1)^{4}-2(-1)^{3}-5(-1)^{2}+6 c^{4}=0 \\
& 1+2-5+6 c^{4}=0 \\
& 6 c^{4}=2 \\
& \therefore c^{4}=\frac{1}{3}
\end{aligned}
$$

(c) (i) $\cos 5 \theta-16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$

$$
\text { Put } \quad x=\cos \theta
$$

- Roots of $\cos 5 \theta=1=\operatorname{cis} 0$
are $\cos \theta=\operatorname{cis} \frac{2 r \pi}{5} \quad r=0,1,2,3,4$
\therefore Porto of $16 x^{5}-20 x^{3}+5 x=1$

$$
\text { ie } \quad 16 x^{5}-2 \cdot x^{3}+5 x-1=0
$$

are $\quad x=\operatorname{cis} \frac{2 \gamma \pi}{5} \quad r=0,1,2,3,4$.

$$
\begin{aligned}
\delta V & =2 \pi r h \delta x \\
& =2 \pi x e^{-x^{2}} \delta x \\
\therefore \text { Volume } & =\lim _{\delta x \rightarrow 0} \sum \delta V \\
& =\lim _{\delta x \rightarrow 0} \sum 2 \pi x \theta^{-x^{2}} \delta x \\
& =2 \pi \int_{0}^{\ln N} x e^{-x^{2}} d x \\
& =2 \pi\left[-\frac{1}{2} e^{-x^{2}}\right]_{0}^{\ln N} \\
& =\pi\left(1-e^{-(\ln N)^{2}}\right] \\
& =\pi\left[1-e^{(-\ln N) \ln N}\right] \\
& =\pi\left[1-\left(\frac{1}{N}\right)^{\ln N}\right]
\end{aligned}
$$

(from (i)
(iii)

Let $u=\left(\frac{1}{N}\right)^{\ln N}$

$$
\begin{aligned}
\therefore \ln u & =\ln N \ln (\lambda) \\
& =-(\ln N)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \lim _{N \rightarrow \infty} \pi\left[1-\left(\frac{1}{N}\right)^{\ln N}\right] & =\pi(1-0) \\
& =\pi
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
x^{2}+z^{2} & =16 \\
x^{2} & =16-z^{2} \\
x & =\sqrt{16-z^{2}}
\end{aligned}
$$

(ii) Each side of the square $=8$

$$
\begin{aligned}
A B & =2 x \\
& =2 \sqrt{16-x^{2}}
\end{aligned}
$$

\therefore Length of each side of the smaller quares
or the comers

$$
\begin{aligned}
& =\frac{1}{2}\left[8-2 \sqrt{16-z^{2}}\right] \\
& =4-\sqrt{16-z^{2}}
\end{aligned}
$$

\therefore Sum of areas of the squares at the corners

$$
=4\left[4-\sqrt{16-7^{2}}\right]^{2}
$$

\therefore Area of the slice $=8^{2}-4\left[4-\sqrt{16-z^{2}}\right]^{2}$
\therefore Volume of the slice $\delta V=\left\{8^{2}-4\left[4-\sqrt{16-z^{2}}\right]^{2}\right\} \delta z$
\therefore Volume of the solid

$$
\begin{aligned}
& V=\lim _{d z \rightarrow 0} \sum \delta V \\
&=\int_{0}^{4}\left\{\delta^{2}-4\left[4-\sqrt{16-z^{2}}\right]\right\} d z \\
& v \frac{d v}{d x}=-g(1+k v) \\
& \int_{u}^{0} \frac{v d v}{1+k v}=-\int_{0}^{H} g d x \\
& \frac{1}{k} \int_{u}^{0}\left(1-\frac{1}{1+k v}\right) d v=-g[x]_{0}^{H} \\
& \frac{1}{k}\left[v-\frac{1}{k} \ln (1+k v)\right]_{u}^{0}=-g H \\
& \frac{1}{k}\left[\left(0-\frac{1}{k} \ln 1\right)-u+\frac{1}{k} \ln (1+k u)=-g H\right. \\
& \therefore H=\frac{1}{g k}\left[u-\frac{1}{k} \ln (1+k u)\right] \\
&=\frac{u}{g k}-\frac{1}{g k^{2}} \ln (1+k u)
\end{aligned}
$$

(iii) for upward motion:

$$
\begin{gathered}
\ddot{x}=-g(1+k v) \\
\frac{d v}{d t}=-g(1+k v) \\
\int_{V_{T}}^{0} \frac{d v}{1+k v}=-\int_{0}^{T} g d t \\
\frac{1}{k}[\ln (1+k v)]_{V_{T}}^{0}=-[g t]_{0}^{T}
\end{gathered}
$$

(iii)

$$
\begin{aligned}
V & =\int_{0}^{4}\left(64-16+4 \sqrt{16-z^{2}}\right) d z \\
& =\int_{0}^{4}\left(48+4 \sqrt{16-z^{2}}\right) d z \\
& =[48 z]_{0}^{4}+2 \times \text { area of semi-circle gradiar } 4 \\
& =192+2 \times \frac{1}{2} \pi\left(4^{2}\right) \\
& =192+16 \pi
\end{aligned}
$$

Question 7
(a) when the body is mining doumwad, take downward as positive direction.

$$
\begin{aligned}
m \dot{x} & =m g-k m g v \\
& =m g(1-k v)
\end{aligned}
$$

$\left\{\begin{array}{l}\text { Resistance } \\ =\text { Ringer }\end{array}\right.$
at terminal velocity, $\ddot{x}=0$

$$
\begin{aligned}
\therefore 1-k V_{T} & =0 \\
V_{T} & =\frac{1}{k}
\end{aligned}
$$

(ii) Take upward as positive direction.

$$
\begin{aligned}
& m \ddot{x}=-m g+k m g v \\
&=-m g(1+k v) \\
& \ddot{x}=-g(1+k v) \\
& \frac{1}{k} \ln \left(1+k V_{T}\right)=g T \\
& \therefore T=\frac{1}{g k} \ln \left(1+k V_{T}\right)
\end{aligned}
$$

but $V_{T}=\frac{1}{k}$

$$
\begin{aligned}
\therefore T & =\frac{V_{T}}{g} \ln \left(1+k \cdot \frac{1}{x}\right) \\
\therefore \quad T & =\frac{V_{T}}{g} \ln 2
\end{aligned}
$$

(b)

$$
\text { b) } \begin{gathered}
m \ddot{x}=m g-m R v^{2} \\
\ddot{x}=q-k v^{2} \\
\frac{d v}{d t}=g-k v^{2} \\
\int_{\frac{v_{T}}{3}}^{\frac{v_{r}}{2}} \frac{d v}{g-k v^{2}}=\int_{0}^{T} d t \\
\frac{1}{k} \int_{r_{r} / 3}^{\frac{k_{r}}{2}} \frac{d v}{\frac{g}{k}-v^{2}}=T \\
T=\frac{1}{k} \int_{\frac{v_{T}}{3}}^{\frac{k}{2}} \frac{d v}{\left(\sqrt{\frac{g}{k}}-v\right)\left(\sqrt{\frac{g}{k}+v}\right)}
\end{gathered}
$$

when Terminal velocity is attained

$$
\ddot{x}=0
$$

P_{12}

$$
\begin{aligned}
& g-k V_{T}^{2}=0 \\
& \therefore V_{T}=\sqrt{\frac{g}{2}} \\
& \therefore T= \frac{1}{k} \int_{\frac{V_{T}}{3}}^{\frac{V_{T}}{2}} \frac{d V}{\left(V_{T}-V\right)(V+v)} \quad \text { or } k=\frac{g}{V_{T}^{2}} \\
&=\left.\frac{1}{2 k V_{T}} /_{\frac{V_{T}}{3}}^{\frac{V_{T}}{V_{T}}-V}+\frac{1}{V_{T}+V}\right) d V \\
&= \frac{1}{2 k V_{T}}\left[\ln \left(V_{T}+V\right)-\ln \left(V_{T}-V\right)\right]_{\frac{V_{T}}{3}}^{V_{T / 2}} \\
&= \frac{1}{2 k V_{T}}\left[\ln \left(\frac{V_{T}+V}{V_{T}-V}\right)\right]_{\frac{V_{T}}{3}}^{\frac{V_{T}}{2}} \\
&= \frac{1}{2 k V_{T}}\left[\ln \left(\frac{V_{T}+\frac{V_{T}}{2}}{V_{T}-\frac{V_{T}}{2}}\right)-\ln \left(\frac{V_{T}+\frac{V_{T}}{3}}{V_{T}-\frac{V_{T}}{3}}\right)\right] \\
&= \frac{1}{2 k V_{T}}[\ln 3-\ln 2] \\
&= \frac{1}{2 V_{T}} \cdot \frac{V_{T}^{2}}{g} \ln \frac{3}{2} \\
&= \frac{V_{T}}{2 g} \ln \frac{3}{2}
\end{aligned}
$$

Question 8
(a) $\quad u_{n}=3^{n}-2^{n}$
when $x=1, \quad u_{1}=3-2$

$$
=1
$$

$$
\text { when } x=2 \quad u_{2}=3^{2}-2^{2}
$$

$$
=5
$$

\therefore It is true for $n=1$ \& $n=2$.
Assume it is the for $n=k$ and $x=k+1$
ie $u_{k}=3^{k}-2^{k}$

$$
u_{k+1}=3^{x+1}-2^{k+1}
$$

Hen $u_{k+2}=5 u_{k+1}-6 u_{k}$

$$
\begin{aligned}
& =5\left(3^{k+1}-2^{k+1}\right)-6\left(3^{x}-2^{k}\right) \\
& =15\left(3^{k}\right)-10\left(2^{k}\right)-6\left(3^{x}\right)+6\left(2^{x}\right) \\
& =9\left(3^{k}\right)-4\left(2^{x}\right) \\
& =3^{2} \cdot 3^{k}-2^{2} \cdot 2^{k} \\
& =3^{k+2}-2^{k+2}
\end{aligned}
$$

Fence it side to true for $n=k+2$ if is is true for $x=k$ and $x=k+1$. Since is is proved true for $x=1$ and $x=2$,
(c) (i) $\quad m \ddot{x}=-\frac{m k}{x^{2}}$
at surface of earth, $x=R \& m \ddot{x}=-m g$

$$
\begin{aligned}
\therefore-m g & =-\frac{m k}{R^{2}} \\
\therefore K & =g R^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
m \ddot{x} & =-\frac{m k}{x^{2}} \\
\ddot{x} & =-\frac{k}{x^{2}} \\
& =-\frac{g R^{2}}{x^{2}} \\
\frac{d}{d x}\left(\frac{v^{2}}{2}\right) & =-\frac{g R^{2}}{x^{2}} \\
\therefore \quad \int_{u}^{v}\left(\frac{v^{2}}{2}\right) & =-\frac{g R^{2}}{x^{2}} d x \\
\quad\left[\frac{v^{2}}{2}\right]_{u}^{v} & =\left[\frac{g R^{2}}{x}\right]_{R}^{x} \\
\frac{V^{2}}{2}-\frac{u^{2}}{2} & =g R^{2}\left(\frac{1}{x}-\frac{1}{R}\right) \\
\therefore V^{2} & =u^{2}+2 g R^{2}\left(\frac{1}{x}+\frac{t}{R}\right)
\end{aligned}
$$

\therefore it wise be true for $n=3,4,5, \ldots$ ie all positwe integers n.
(b) Let $S=\sin \theta+\sin 2 \theta+\cdots+\sin (n-1) \theta+\sin x \theta$

$$
\begin{aligned}
& \therefore 2 S \cdot \sin \frac{\theta}{2}= 2 \sin \theta \sin \frac{\theta}{2}+2 \sin 2 \theta \sin \frac{\theta}{2}+\cdots+2 \sin (n-1) \theta \sin \frac{\theta}{2} \\
&+2 \sin n \theta \sin \frac{\theta}{2} \\
&= {\left[\cos \frac{\theta}{2}-\cos \frac{3 \theta}{2}\right]+\left[\cos \frac{3 \theta}{2}-\cos \frac{5 \theta}{2}\right]+\cdots } \\
&+\left[\cos \frac{(2 n-3) \theta}{2}-\cos \left(\frac{2 n-1) \theta}{2}\right]+\left[\cos \frac{(2 n-1) \theta}{2}-\cos \frac{(2 n+1)}{2}\right]\right. \\
&= \cos \frac{\theta}{2}-\cos \frac{(2 n+1) \theta}{2} \\
& \therefore S=\frac{1}{2 \sin \frac{\theta}{2}}\left[\cos \frac{\theta}{2}-\cos \frac{(2 n+1) \theta}{2}\right]
\end{aligned}
$$

(i) (ii) $\angle P M A+\angle P L A=2 r t \angle S$
$\therefore P, M, A, L$ are concyclic since opprita angles are supplementary

(ii) $\angle P M B=\angle P N B$
$\therefore P, B, M$, ware cmayclic since angles on the
pane chord in the same segment axe equal
(iii) $\angle P A L=\angle P B C$ (ext \angle of cyclicanad) $\angle A M L=\angle A P L$ $=90^{\circ}-\angle P A L$ (angle in the same segment) (\angle 's sum of Δ) Y

$$
\therefore \angle A^{M} L=90^{\circ}-\angle P B C
$$

$$
=\angle B P N \quad(\angle \operatorname{sum} g \triangle P B N)
$$

$$
=\angle B M N \quad\left(\angle ' s \text { in the same segment }{ }^{\circ}\right.
$$

$\therefore L, M, N$ mus pe collinear (vert.opp \angle°)
(d) (i)

$$
A D=l_{1} x
$$

$$
A B=1
$$

\therefore Area of $A B C D=\log _{e} n$
Area of $A B C D$ <area under $y=\log _{e} x$ between $x=n$ and $x=n+1$

$$
\therefore \log _{e} n<\int_{n}^{n+1} \log _{e} x d x
$$

Simianty $\int_{n}^{n+1} \log _{e} x d x<$ area of ABEF

$$
\int_{n}^{n+1} \log _{e} x d x<\log _{e}(h+1)
$$

$$
\therefore \log _{e} n<\int_{n}^{n+1} \log _{0} x d x<\log _{e}(n+1)
$$

(ii) $\log _{e} n<[x \ln x-x]_{m}^{n+1}<\ln (n+1)$

$$
\begin{aligned}
& \ln n<(n+1) \ln (n+1)-(n+1)-n \ln n+n<\ln (n+1) \\
& \ln n<(n+1) \ln (n+1)-n \ln n-1<\ln (n+1)
\end{aligned}
$$

By Curidening the LHS \& middle section

$$
\begin{align*}
(n+1) \ln x & <(n+1) \ln (n+1)-1 \\
1 & <(n+1) \ln \left(\frac{n+1}{n}\right) \\
\frac{1}{n} & <\left(\frac{n+1}{n}\right) \ln \left(\frac{n+1}{n}\right) \\
e^{\frac{1}{n}} & <\left(\frac{n-1}{n}\right)^{n+1} \\
e^{\frac{1}{n}} & <\left(1+\frac{1}{n}\right)^{\frac{n+1}{n}} \tag{2}
\end{align*}
$$

Excluding the left -hand most side of (1)

$$
\begin{gather*}
(n+1) \ln (n+1)-n \ln n-1<\ln (n+1) \\
n \ln (n+1)-n \ln n<1 \\
n \ln \left(\frac{n+1}{n}\right)<1 \\
\ln \left(\frac{n+1}{n}\right)<\frac{1}{n} \\
\therefore 1+\frac{1}{n}<e^{\frac{1}{n}} \tag{3}
\end{gather*}
$$

from (2) 93$)$

