Name: Class: 12MTZ1 Teacher: MR KNOX

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2015 AP4

YEAR 12 TRIAL HSC EXAMINATION

MATHEMATICS EXTENSION 2

Time allowed - 3 HOURS (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:

- > Attempt all questions.
- Multiple choice questions are to be answered on the multiple choice sheet provided at the back of the paper.
- Each question in the extended response is to be commenced in a new booklet clearly marked Question 11, Question 12, etc on the top of the page and must show your name and class.
- All necessary working should be shown in every question for extended response. Full marks may not be awarded for careless or badly arranged work.
- Board of Studies approved calculators may be used. Standard Integral Tables are provided.
- Write your name and class in the space provided at the top of this question paper.

- 1) Which pair of equations gives the directrices of $y = \frac{4}{3}$
 - (A) $y = \pm (x + 2\sqrt{2})$
 - (8) $y = -x \pm 4\sqrt{2}$
 - (C) $y = \pm (x + 4\sqrt{2})$
 - (D) $y = -x \pm 2\sqrt{2}$

2) Which expression is equal to $\int \sec x dx$

- (A) $\sec x \tan x + C$
- (B) $\tan x + C$
- (C) $\ln|\sec x + \tan x| + C$
- (D) $\ln|\sin x| + C$

3) For a complex number $x + yi = \sqrt{2 + 3i}$

- (A) $x^2 + y^2 = 3$ and 2xy = 2
- (B) $x^2 + y^2 = 2$ and -2xy = 3
- (C) $x^2 y^2 = 2$ and 2xy = 3
- (D) $x^2 + y^2 = 2$ and 2xy = 3
- 4) For the relation $x^2 + e^y = 7$
 - (A) $\frac{dy}{dx}(2x+e^y)=0$
 - (B) $\frac{dy}{dx} = -\frac{2x}{e^y}$
 - (C) $\frac{dy}{dx} = 2x$
 - (D) $\frac{dy}{dx}2x + \frac{dx}{dy}e^y = 0$

5) Which region on the argand diagram shows the complex number z, which is defined by $|z - 3 + 4i| \le 6$ and $lm(z) \ge 0$?

 $y = \frac{x}{\sin^2 x}$ (A) (B) (A) (B) (A) (B) (A) (B) (B) (B) (B) (C) (D) (D)

6) Which diagram best represents the graph

_

7) What is the eccentricity?

- (A) √2
- (8) $\sqrt{\frac{3}{2}}$
- (C) $\frac{\sqrt{5}}{2}$
- (D) √5

8) What are the equations of the asymptotes?

- (A) $y = \pm 2x$
- (B) $y = \pm \frac{1}{2}x$
- (C) $y = \pm 2$
- (D) $y = \pm \frac{1}{2}$

9) The equation $x^4 + px + q = 0$, where $p \neq 0$ and $q \neq 0$, has roots α, β, γ and δ .

What is the value of $a^4 + \beta^4 + \gamma^4 + \delta^4$?

(A) -4q

.

- (B) $p^2 2q$
- (C) $p^4 2q$
- (D) p⁴

10) What is the value of $S = \sum_{r=1}^{\infty} rp(1-p)^{r-r}$

- (A) S = 1
- (B) $S = \frac{1}{p}$
- (C) $S = \frac{1}{1-p}$
- (D) $S = \frac{1}{p(1-p)}$

Ouestion 17 (15 Marks)

a) (i) Show that for
$$t = \tan \frac{x}{2}$$
, 1
 $dx = \frac{2dt}{1 + t^2}$
(ii) Use the substitution $t = \tan \frac{x}{2}$, to evaluate 3
 $\int_{0}^{\pi/2} \frac{1}{1 + \cos x + \sin x} dx$
b) By using an appropriate substitution, evaluate $\int_{3}^{\theta} \frac{x}{(x+1) - \sqrt{x+1}} dx$ 4
Hint: Consider a substitution which removes the $\sqrt{}$
c) Sketch the graph of $y = \frac{x^4 + 2x^2 + x + 4}{x + 3}$, showing all asymptotes 3
d) Find and sketch the locus of the complex number z , where 4
 $3|z - (2 + 2i)| = |z - (6 + 6i)|$

Question 11 (15 Marks)

Let $z = 1 + i\sqrt{3}$ and $w = -\sqrt{3} + i$ a} (i) Express w in terms of z. Express z in modulus-argument form. (ii) Write z^{10} in the form a + ib660 b) Find numbers A, B and C such that $\frac{6x^2+9x+4}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$

Find the value of z if $z^2 + 3iz = 7$

c)

Evaluate $\int_0^{1/2} \frac{x}{\sqrt{1-x^2}} dx$ 3 d

Sketch on the argand diagram the region defined by e) $\frac{\pi}{4} < Re\left(z\right) < \frac{\pi}{2} \quad \text{AND} \quad \frac{\pi}{4} < Im\left(z\right) < \frac{\pi}{2} \quad \text{AND} \quad \frac{\pi}{4} < \arg\left(z\right) < \frac{\pi}{2}$

ŕ

1

2

2

2

2

Question 13 (15 Marks)

(a) i) Given $I_n = \int x(x^5 + 1)^n dx$, show that

$$I_n = \frac{x^2(x^5+1)^n}{2+5n} + \frac{5n}{2+5n}I_{n-1}$$

- ii) Hence, find I_{10} in terms of I_8 and x.
- (b) The following graph of y = f(x) starts at x intercept $= -\frac{1}{2}$ and ends at the point (4,3). Sketch

(c) In the diagram, *MAN* is the common tangent of two circles touching internally at *A*. 4 *B* and *C* are two points on the larger circle such that *BC* is a tangent to the smaller circle with point of contact *D*. *AB* and *AC* cut the smaller circle at *E* and *F* respectively. Show that *AD* bisects $\angle BAC$

· .

3

Question 14 (15 Marks)

a) Copy the graph of $y = x^2$ into your writing booklet.

By considering this graph, show that $p-1 < \frac{p^3}{3} - \frac{1}{3} < p^3 - p^2$ for p>1

- b) In a series $T_1 = 3$, $T_2 = 8$ and $T_n = 2T_{n-1} T_{n-2}$ for n > 2. Show that $T_n = 5n 2$ for $n \ge 1$.
- c) The polynomial $P(x) = x^6 + ax^3 + bx^2$ has a factor $(x + 1)^2$. Find the value 3 of the real numbers *a* and *b*.
- d) The equation $x^4 + bx^3 + cx^2 + dx + k = 0$ has roots $\alpha, \frac{1}{\alpha}, \beta$ and $\frac{1}{\beta}$.
 - (i)Show that k = 11(ii)Show b = d2
- e) The equation $x^3 + 3x^2 + 2x + 1 = 0$ has roots α , β and γ . Find the monic cubic equation with roots α^2 , β^2 and γ^2 .

CTHS Extension Mathematics AP4

3

3

3

Question 15 (15 Marks)

a) A rectangular hyperbola has the equation $xy = \frac{1}{2}\alpha^2$.

(i)	Show that the point $P\left(\frac{ar}{2},\frac{a}{t}\right)$ lies on the hyperbola, for	1
	all values of t.	

- (ii) Show that the equation of the tangent at *P* is given by the 2 equation $2x + t^2y = 2at$.
- (iii) One of the foci of the hyperbola is S(a, a). DO NOT PROVE THS. From a point T on the tangent a line is drawn through S, such that PS is perpendicular to PT. Show that the equation of PS is

 $t^2 x - 2y = \alpha t^2 - 2\alpha$

- (iv) Hence find the locus of the point T. 2
- b) (i) By starting with $\left(\cos\frac{x}{2} + i\sin\frac{x}{2}\right)^2$ and using De Moivre's Theorem 2 find expressions for $\sin x$ and $\cos x$ in terms of $\sin\frac{x}{2}$ and $\cos\frac{x}{2}$.
 - (ii) By using the results from part (i) and $t = \tan \frac{x}{2t}$ prove the result 1

$$\tan x = \frac{2t}{1-t^2}$$

c) Let $z = \cos \theta + i \sin \theta$ and let $\omega = \cos a + i \sin a$

- (i) Solve $z^7 = 1$ 1
- (ii) Show that $\cos n\alpha = \frac{1}{2}(\omega^n + \omega^{-n})$ 1
- (iii) Suppose that $\frac{1}{2} + \cos \alpha + \cos 2\alpha + \cos 3\alpha = 0$. Use part (ii) to show 2 that $\omega^7 = 1$.
- (iv) Hence solve $\frac{1}{2} + \cos \alpha + \cos 2\alpha + \cos 3\alpha = 0$ for $\pi < \alpha \le \pi$ 1

Question 16 (15 Marks)

a) The diagram shows the area bounded by the function $y = \ln(x)$, the x-axis and the line x = e.

Find the volume formed when the area is rotated around the line x = -1.

b) A 20kg trolley is pushed with a force of 100N. Friction causes a resistive force which is proportional to the square of the trolley's velocity.

(i) Sh	low that $\ddot{x} = 5 - \frac{kv^2}{20}$, where k is a positive constant.
--------	---

 (ii) If the trolley is initially stationary at the origin, show that the distance travelled when its speed is V is given by

$$x = \frac{10}{k} \ln\left(\frac{100}{100 - kV^2}\right)$$

QUESTION 16 CONTINUES NEXT PAGE

c) In the diagram below, a solid is shown which has a rectangular front which is parallel to the triangular back and the distance between the front and back is 30cn.

Also AB = DC = XY = 20cm, DA = 8cm and the perpendicular distance from Z to XY is also 8cm.

 (i)
 Copy the diagram into your writing booklet and add suitable coordinate axes to your diagram.
 1

 (ii)
 Find expressions for the length of *JK* and *ML* 2

 (iii)
 Find the area of the cross section *JKLM* 1

 (iv)
 Hence find the volume of the solid.
 2

END OF PAPER

4

1

y=4 x 2 e=Ja directrix passes through 12 2 = (52, 52) m = -14=JZ =-1(x-JZ, $y = -x + \sqrt{2} + \sqrt{2}$ $y = -x + 2\sqrt{2}$ other is y+JZ = -1(x+JZ) 4=-21-212 (A)- places I at Front. Incorrect Incorrect (B) - Wrony point on directric used. ie (252,252) 4-252 = - (x-252) 4= - 26+4/2 Incorrect 0 -y====(21+452) error (A and B)

Correct. Seca secretura da × 0.76 = let u= secret tant du = (secretanne + sec2nc)dre = sec" ic + secretaring dx Secre thank - du lul In In secretanz incorrect of d Integral. incorrect Wrong (seex doc = f (EOS x) - doc Wrong. = ln (sinoc)

(3) $\frac{x+iy}{(2i+iy)^2} = \sqrt{2+3i}$ b=a2 (e2-1) $\frac{16 = 4(e^{2} - 1)}{4 = e^{2} - 1}$ 5 = e^{2} 22+2iny-y2=2+3i 72-4=2 2x4=3 e = 55 x + e = 7 $y=\pm bx \rightarrow y=\pm 2x$ A $\frac{2x + dy e^{y} = 0}{dy e^{y} = 0 - 2x}$ a +pa +q=0 ~ +B++3++3+=-p(~+B+8+8)-4q $\beta^4 + \rho\beta + q = 0$ by x+8+8+8==== dy - - 22c dx ex 8 + p8 + q = 0 =0 54+08+9 $\alpha^{4} + \beta^{4} + \beta^{4} + \delta^{4} = -49$ (ircle is centred at (3,-4) radius of 6 Im(Z) >0 → above rc-axis. A (1) $S = p + 2p(1-p) + 3p(1-p)^2 + - - - -$ R 6 Dop === Top = + = 1 Bottom + Bottom + = 1 $(1-p)S = p(1-p) + 2p(1-p)^{2} + 3p(1-p)^{3} + - -$ (2) -14 undefined when sinx=0 is x=0, TT, 2TT $5 = 1 + (1 - p) + (1 - p)^{2} + \dots -$ -/ $S_{\infty} = \frac{1}{1 - (1 - p)}$ B

2 II)(a)(i)W=ZL (4) $|Z| = \sqrt{53^3 t}^2$ = 2 tan (ang E) = $\sqrt{3}/1$ 5 arg = T/2 Z=UCOS TV3+ism TS) (11) ="== (COS TS+ ism T3)" = 1024 (cos TIx10 + isin TIx10) 5 =-1024×12+i (-1024× 52) The = -512 - 512 Jac / 26

11 $\frac{6x^2+9x+4}{x+1} - \frac{7}{x} + \frac{8x+6}{x+1}$ (D) 2(x2+1) 202+1 6x2+9x+4 = A(x2+1)+(Bx+6)>(72: 6= A+B-(1) 2: 9=0 (2) (2) Const: A=1 from (1) & (3) B=5 A=1, B=5, C=9 Z2+31Z=7 2 +312-7=0 $\overline{z} = -3i \pm \sqrt{-9+28}$ $= \frac{-3i}{2} \pm \sqrt{14}$ = = - JI4 - 31

9 0 11/2 74 0.16 11/4 $let u = 1 - x^2
 du = -2x dx$ rdx = dn20 + TT, TT, 10 When. 70= a=1-2 - 275 when or = 3 1/2 u=1-32 1-42 =-8 2/4 83 du -2 2 Tu -23-=== " du -7/3 1/2 20 -2/1/4-2 --------13-2

dac Ot= tan T/4 t=tan0 =0 1 + 2t 1+t2 $\frac{2(1+t^2)}{1+t^2+2t+1-t^2} dt$ dt 10 ln 2 - In

6 = x'+3x + x+4 24 - dac (x+1) - Jx+1 2+3 13 2 x $\frac{2(3+3)(2+2)(4+4+4)}{2(2+3)(2)}$ 76+3 dr= 2u du $\frac{x=8}{u^2=8+1}$ u=3when x=3 $u^2=3t/$ u=22+4 x+3 x2+1 + - Ludu u-1 243 uª u² - u (u+1)(u-1) 2u du asymptote. u(u-1)2 -1 full here du 212 tu 2 +3-2-2 = 29 -18 J.

yint

~=0

4= 1+1

() let z=z+iy 3 (x+iy-(2+2i)) = |x+iy-(6+6i) $3 \sqrt{(6c-2)^2 + (y-2)^2} = \sqrt{(6c-6)^2 + (y-6)^2}$ 9x2-36x+36+9y2-36y+36=x2-12x+36+42-12y+2 $\sqrt{8x^2 - 24x + 9y^2 - 24y} = 0$ 22-320 +42-34 = 0 $2c^{2} - 3x + (-\frac{3}{2})^{2} + y^{2} - 3y^{4} (-\frac{3}{2})^{2} = 2x (\frac{3}{2})^{2}$ $(5c - \frac{3}{2})^2 + (y - \frac{3}{2})^2 = \frac{9}{2}$ $(2e^{-3}2)^{2} + (4-3e)^{2} = (\frac{3}{2})^{2}$ Eleter

13 @ In= (2 (2+1)" dx $V = (25 + 1)^{n} \qquad u' = 21$ $v' = 526 n (25 + 1)^{n-1} \qquad u = 22^{2}$ In= 22 (2(3+1) - (22524 (2(3+1) - 22 (x5+1) - 5n (26 (265+1)) - 22 (x +1) - 5n (2C. x (x +1) n-1 $= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + 1 \right)^{n} - \frac{5}{2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + 1 \right)^{n-1} \right) \left(\frac{1}{2} \left(\frac{1}{2} + 1 \right)^{n-1} \right) d \infty$ - 22 (25+1)" - 54 (2c(x 5+1)" - 2c(25+1)" dx $\underline{T}_{n} = \frac{\chi^{2}}{2} \left(\frac{\chi^{5} + 1}{2} \right)^{n} - \frac{5}{2} I_{n} + \frac{5}{2} I_{n-1}$ 5n+1) In = 25 (25+1) + 5n In-1 $\frac{5n+2}{2} I_n = \frac{2c^2}{(x^{5+1})^n} + \frac{5n}{2} I_{n-1}$ $In = \frac{2i^{2}(2i^{2}t)^{2}}{5nt^{2}} + \frac{5n}{5nt^{2}} Int^{-1}$

BQW 10 = >2 (>5+1) 50 I10 Iq 52 = 22 (25+ 10 x5+1) 45 50 2 47 52 2 4 graphs 6 500 prates

es *DEF* and *BDE* es *DEF* and *DAF* es *BDE* and *DAE*

d ED. vent theorem in

∠'s on transversal AB) 's within parallel lines 'ual) >tended by same arc DF at rence of circle AEF are equal) nent theorem in circle AEF)

, ·

- applies alternate segment theorem to deduce *EF* and *BC* are parallel
- deduces equality of angles *DEF* and *BDE*
- deduces equality of angles *DEF* and *DAF*
- deduces equality of angles BDE and DAE

Answer

Construct EF and ED. Applying the alternate segment theorem in circles ABC and AEF : $\angle ABC = \angle NAC = \angle AEF$ $\therefore EF \parallel BC$ (equal corresp. \angle 's on transversal AB) $\therefore \angle DEF = \angle BDE$ (Alt. $\angle s$ within parallel lines are equal) $\angle DEF = \angle DAF$ ($\angle s$ subtended by same arc DF at (2)circumference of circle AEF are equal) $\angle BDE = \angle DAE$ (Alt. segment theorem in circle AEF) • $\therefore \angle DAF = \angle DAE$ Hence AD bisects ∠BAC

19/2 ower < 1 < upper. $n^2 dx < p^2(p-p)$ (p-1) < $p-1 < \frac{2i^{3}}{3} < p^{3} - p^{2}$ 13-1- <p3-p2 P=1-<-For n= $T_1 = 5 \times 1 - 2 = 3$ as required. $T_2 = 5 \times 2 - 2 =$ fore for n=1,2 assure true for n=k-1 n=k-2 ie $T_{k=2}T_{n-1}$ $T_{k=5(k-1)-2}$ $T_{k-2}=5(k-2)-2$. RTP TK= 5K-2. for n=k TK=2TK-1-TK-2 = 2(5(k-1)-2)-2(5(k-2)-5(k-2)-2) - 10k-5k-10-4+10+2 = 5K-2 as required

(4) (P(x) = 200 + 422 + 6x2 P(-1) = 1 - a + b = 0P'(2) = 6x + 3ax + 2 b2 P'(-1) = -6 + 3a - 2b = 0 (2) from (1) a = 1+5 sub into (2) -6+3(1+b)-2b=0-3+3b-2b=0 · h=3 (a) (1) Product = e; K= 2 ap \$ (11)d for example sub in d: $\alpha^{4} + b\alpha^{3} + c\alpha^{2} + d\alpha + l = 0$

23+322+22+1=0 2 B, 8 let X=x JX = > c > c = x "2 $(x^{1/2})^{2} + 3(x^{1/2})^{2} + 2(x^{1/2})^{2}$ X ~ (X+2) square $X(X^{2}+4X+4) = 1+6X+9X^{2}$ $X^{3} + 4X^{2} + 4X = 1 + 6X + 9X^{2}$ -5X+10X-1=0 X'-5X2-2X-1=0

2x = ta 2x -a $\partial cy = a$ $y = at^{-1}$ $\frac{dy}{dt} = \frac{at}{at} - 1at^{-2}$ dn dt - 9 -a 12 --a 2 t2 a $eyn \quad y - \frac{a}{t} = \frac{-2}{t} \left(\frac{x - at}{z} \right)$ $t^2 y - at = -2x + at$ $2x + t^2 y = 2at$

Guy mtangent +m + = -1 -2 +m_=m1 = t $y - a = \frac{t^{2}}{2}(x - a)$ $2y - 2a = t^{2}x - at^{2}$ $at^{2} - 2a = t^{2}x - 2y$ $t^{2}x - 2y = at^{2} - 2a$ This on the 2 lines from (11) & (11) (1) $\begin{cases} 2x + t^2y = 2at \\ t^2x - 2y = at^2 - 2a. \end{cases}$ (1) (2) Square (1) & (2) $(2\pi)^{2} + 2x^{2}x^{2}t^{2}y + t^{4}y^{2} = 4a^{2}t^{2}$ $4x^{2} + 4\pi t^{2}y + t^{4}y^{2} = 4a^{2}t^{2}$ 3 $t^{4}x^{2} - 4t^{4}xy + 4y^{2} = a^{2}t^{4} - 4a^{2}t^{2} + 4a^{2}$ (2) $\frac{canul}{+(4)} + \frac{canul}{4n^2 + t^4n^2 + t^4n^2} = \frac{4a^2 t + 4a^2 t}{2a^2 t^4 + 4a^2 t}$ $= \frac{4a^2 t + 4a^2 t}{a^2 t^4 + 4a^2 t}$ $= a^2 (t^4 + 4)$ $2a^2 (t^4 + t^4) + y^2 (4 + t^4) = a^2 (t^4 + 4)$ - 4++ 22 + 42 = a2

(b) (1) $(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})^2$ = cos204 + isin 201 = cosoc tismor A150 (cos + isin 2) = cos 2 + 2isin 2 cos - sin 2 Real COS 2 = COSt 24 - sin 2 24 Im Sin 2 = 2 sh = cos = (11) tetan a tanz = sinze COST = (0) = - 519 2 GIT tan > = sin > c C03 x 2 sin 2 cos 2 COSt 2 - Sin 276 - cos22 = 2tan2 -tan 2 -42

Sx lunc 2-11(ln 2)+1) 21 (x+1) $\delta V = 2\pi (x+1) lux \delta x$ V = 2T (schorthurdda $= \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1$ = 27 [25 lun + 2 lun 2] - (25 + 1 doc $=2\pi\left[\frac{e^{2}}{2}+e-0\right]-\frac{\pi^{2}}{4}+\pi^{2}$ -2T =+ e- (+ e-1,-1) = 2TT (Be + 5)

$F = ma$ $100 - kv^{2} = 20 \frac{1}{20}$ $5 - kv^{2} = \frac{1}{20}$	
$F = ma$ $100 - kv^{2} = 20 ii$ $5 - kv^{2} = ii$ 20	And and a second s
$\frac{100 - kv^2 = 20}{5 - kv^2} = \frac{1}{20}$	
$\frac{5-kv^2}{20} = ji$	
20	
1111 - 5- 842	
VAV = S-KUL	
dx 20	
du = 5 ku gl	
dx V 20	
$dv = 100 - kv^2$	
dre 20v	
dr - 20v	
dv 100-kvt	
$y_{c} = \frac{10}{100 - kv^{2}} dv$	
$\frac{=2n(100-kv^2)+C}{k}$	
sub x=0 v=0	
(= 10 km 100	
- 12	1
$2c = \frac{10}{4c} \left(2n 100 - Ln \left(100 - kv^2 \right) \right) v$	
- 10 ln (100)	
k 100-kv-	

16 4 20 8 20 1/2 20 cm (1) JK is clearly constant 20-3001 M m= 30 = 3 $Equition = \frac{2}{32} \frac{1}{2} \frac{1}{2}$ (11) 1/2 (23x+20)×8 dr (IV) V= 2 =326+20 dre -2 + 20 x 3 =4 = 4 (300 + 600)= 3600 m³