```
Class: 12MTZ1
Teacher: MR KNOX
```


CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2015 AP4

YEAR 12 TRIAL HSC EXAMINATION

MATHEMATICS EXTENSION 2

Time allowed - 3 HOURS
(Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:
> Attempt all questions.
Multiple choice questions are to be answered on the multiple choice sheet provided at the back of the paper.
> Each question in the extended response is to be commenced in a new booklet clearly marked Question 11, Question 12, etc on the top of the page and must show your name and class.
> All necessary working should be shown in every question for exiended response. Full marks may not be awarded for careless or badly arranged work.

- Board of Studies approved calculators ray be used. Standard Integral Tables are provided.
$>$ Write your name and class in the space provided at the top of this question paper.

1) Which pair of equations gives the directrices of $y=\frac{4}{x}$
(A) $y= \pm(x+2 \sqrt{2})$
(B) $y=-x \pm 4 \sqrt{2}$
(C) $y= \pm(x+4 \sqrt{2})$
(D) $y=-x \pm 2 \sqrt{2}$
2) Which expression is equal to $\int \sec x d x$
(A) $\sec x \tan x+C$
(B) $\tan x+C$
(C) $\ln |\sec x+\tan x|+C$
(D) $\quad \operatorname{in}|\sin x|+C$
3) For a complex number $x+y i=\sqrt{2+3 i}$
(A) $x^{2}+y^{2}=3$ and $2 x y=2$
(B) $x^{2}+y^{2}=2$ and $-2 x y=3$
(C) $x^{2}-y^{2}=2$ and $2 x y=3$
(D) $x^{2}+y^{2}=2$ and $2 x y=3$
4) For the relation $x^{2}+e^{y}=7$
(A) $\frac{d y}{d x}\left(2 x+e^{y}\right)=0$
(8) $\frac{d y}{d x}=-\frac{2 x}{e^{y}}$
(C) $\frac{d y}{d x}=2 x$
(D) $\frac{d y}{d x} 2 x+\frac{d x}{d y} e^{y}=0$
5) Which region on the argand diagram shows the complex number z, which is defined by $|z-3+4 i| \leq 6$ and $\operatorname{lm}(z) \geq 0$?

The centre of each circle is shown for convenience
(A)

(B)

(C)

(0)

6) Which diagram best represents the graph

$$
y=\frac{x}{\sin ^{2} x}
$$

(A)
(B)

(C)
(D)

Questions 7 and 8 refer to the graph of $\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$

7 What is the eccentricity?
(A) $\sqrt{2}$
(B) $\sqrt{\frac{3}{2}}$
(C) $\frac{\sqrt{5}}{2}$
(D) $\sqrt{5}$
8) What are the equations of the asymptotes?
(A) $y= \pm 2 x$
(B) $y= \pm \frac{1}{2} x$
(C) $y= \pm 2$
(D) $y- \pm \frac{1}{z}$
9) The equation $x^{2}+j x+q=0$, where $p \neq 0$ and $q \neq 0$ has rools α, β, γ and δ.

What is the value of $s^{4}+\beta^{4}+\gamma^{4}+\delta^{4}$?
(A) $-4 a$
(的) $p^{2}-2 q$
(c) $p^{4}-2 q$
(D) p^{+}
10) What is the value of $S-\sum_{r-1}^{n} r p(1-p)^{r-1}$
(A) $S=1$
(B) $\quad S=\frac{1}{p}$
(C) $S=\frac{1}{1-p}$
(D) $S=\frac{1}{p(1-p)}$

Question 11 (15 Marks)
a) Letz $z=1+i \sqrt{3}$ and $w=-\sqrt{3}+i$
(i) Express win terms of z.
[ii) Express zin modulus-argument form.
[iii) Write z^{10} in the form $a+i b$
b) Find numbers A, B and C such that
$\frac{6 x^{2}+9 x+4}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{3}+1}$
c) Find the walue of z if $z^{2}+3 i z=7 \quad 2$
d Evaluate $\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x$
e) Sketch on the argand diagram the region defined by
$\frac{\pi}{4}<\operatorname{Re}(z)<\frac{\pi}{2}$ AND $\frac{\pi}{4}<\operatorname{im}(z)<\frac{\pi}{2}$ AND $\frac{\pi}{4}<\arg (z)<\frac{\pi}{2}$

Question 12 (15 Marks)

a] [i] Show that for $t=\tan \frac{x}{2}$,

$$
\int_{0}^{\pi / 2} \frac{1}{1+\cos x+\sin x} d x
$$

b) By Lsing an appropriate substitution, evaluate $\int_{3}^{-6} \frac{x}{(x+1)-\sqrt{x+1}} d x$ Hint consider a substitution which removes the $\sqrt{-}$
c) Sketch the groph of $y=\frac{x^{3}+3 x^{2}+x+4}{x+3}$, showing all asymptotes
d) Find and sketch the locus of the complex number $z_{\text {, }}$ where

$$
3|z-(2+2 i)|=|z-(6+6 i)|
$$

Question 13 (15 Marks)

(a) i) Given $I_{n}=\int x\left(x^{5}+1\right)^{\pi} d x$, show that
(b) The following graph of $y=f(x)$ starts at x intercept $=-\frac{1}{2}$ and ends at the point (4,3). Sketch

(ii) $y=\frac{1}{f^{\prime}(x)}$
(iii) $y=f(x-1)+1 \quad 1$
(iii) $\quad y=\log (f(x))$

2
(iv) $y=f\left(x^{2}\right) \quad 2$
(c) In the diagram, MAN is the common tangent of twa circles tothing internally at A. 4 B and C are two points on the larger circle such that $B C$ is a tangent to the smeller circle with point of contect $D, A B$ and $A C$ cut the smaller circle at E and F respectively. Show that $A D$ bisects $\angle B A C$

a
Copy the graph of $y=x^{2}$ into your writing booklet

By considering this graph, show that $p-1<\frac{\ddot{p}^{3}}{3}-\frac{1}{3}<p^{3}-p^{2}$ for $p>1$
b) In a series $T_{1}=3, T_{2}=8$ and $T_{n}=2 T_{n-3}-T_{n-2}$ for $n>2$. Show that
$T_{\pi}=5 n-2$ for $\pi \geq 1$.
c) The polynomial $P(x)=x^{6}+a x^{3}+b x^{2}$ has a factor $(x+1)^{2}$. Find the walue of the real numbers a and b
d) The equation $x^{4}+b x^{3}+c x^{2}+d x+k=0$ has roots $\alpha_{1}^{\frac{1}{4}}, \beta$ and $\frac{1}{\beta}$.
(i) Show that $k=1$
(ii) Show $b=d$
e) The equation $x^{3}+3 x^{2}+2 x+1=0$ has roots a, β and γ. Find the monic 3 cubicequation with rocts a^{2}, β^{2} and γ^{2}.

Question 16 (15 Marks)

a) The diagran shows the area bounded by the funtion $y=\operatorname{in}(x)$, the x-axis and the line x - e

Find the wofume formed when the area is rotated around the line $x=-1$
b) A 20 kg trolley Is pushed with a force of 100 N . Friction causes a resistive force which is proportional to the square of the trolley's welocity.
(i) Show that $x=5-\frac{\mathrm{A}^{2}}{20}$, where k is a positive constant.
(it if the trolley is initially staticnary at the onigin, show that the 4 distance travelled when its speed is V is given b

$$
x=\frac{10}{k} \ln \left(\frac{100}{100-k v^{2}}\right)
$$

QUESTION 16 CONTINLES NEXT PAGE
a) In the diataram below, a salidd is shown which has a rectangular front which is parallet to the triangular back and the distance between the from and back is 30 cm .

Also $A B=D C=X Y=20 \mathrm{~cm}, D A-8 c m$ and the perpendicula distance from Z to $X Y$ is also Bcm .
(i) Copy the diagram into your writing booklet and add suitable 1 coordinate axes to your diagram.
(ii) Find expressions for the length of $/ K^{\prime}$ and $M L \quad 2$
(iii) Find the area of the cross section $/ K L / M$
(iv) Hence find the volume of the solid.

END OF PAPER
(2) (c) Correct.
(l) $y=\frac{4}{x}$

$$
\begin{equation*}
e=\sqrt{2} \tag{D}
\end{equation*}
$$

drectrix passes through $\left(\frac{2}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$

$$
\begin{aligned}
m=-1 & =(\sqrt{2}, \sqrt{2}) \\
y-\sqrt{2} & =-1(x-\sqrt{2}) \\
y & =-x+\sqrt{2}+\sqrt{2} \\
y & =-x+2 \sqrt{2}
\end{aligned}
$$

ofler is $y+\sqrt{2}=-1(x+\sqrt{2})$

$$
y=-x-2 \sqrt{2}
$$

Insorrect (A) - places \pm at Front.
Incorrect (B) - Wrony point on directric used.

$$
\begin{aligned}
& \text { ue }(2 \sqrt{2}, 2 \sqrt{2} \\
& y-2 \sqrt{2}=-(x-2 \sqrt{2})
\end{aligned}
$$

$$
y=-x+4 \sqrt{2}
$$

Incorreit (c) $\quad y= \pm(x+4 \sqrt{2})$
error (A) and (B)

$$
\begin{aligned}
& \int \sec x d x=\int \sec x \frac{\sec x+\tan x}{\sec x+\tan x} d x \\
& {\left[\begin{array}{l}
\text { let } u
\end{array}\right] } \\
& d x=(\sec x+\tan x \\
&\left.\left.=\int \frac{\sec ^{2} x+\sec x}{2} x\right) d x\right] \\
&=\int \frac{\sec x \tan x}{u} d x \\
&=\ln \mid x \\
&=\ln |\ln | \sec x+\tan x)
\end{aligned}
$$

(A) (B) incorrect sfd Integial.
(D) incorrect

Wrony $\int \sec x d x=\int(\cos x)^{-1} d x$ $=\ln (\sin x)$ Wiong.
(3)

$$
\begin{align*}
& x+i y=\sqrt{2+3 i} \\
& (x+i y)^{2}=2+3 i \\
& x^{2}+2 i x y-y^{2}=2+3 i \\
& x^{2}-y^{2}=2 \quad 2 x y=3 \tag{c}
\end{align*}
$$

(4)

$$
\begin{align*}
x^{2}+e^{4} & =7 \\
2 x+\frac{d x}{d x} e^{y} & =0 \\
\frac{d y}{d x} e^{y} & =0-2 x \\
\frac{d y}{d x} & =\frac{-2 x}{e^{4}} \tag{B}
\end{align*}
$$

(5) Circle is centred at $(3,-4)$
radius of 6
$\operatorname{Im}(z) \geqslant 0 \xrightarrow{\rightarrow}$ above x-axis.
(6)
undetined whensin $x=0$ ie $x=0, \pi, 2 \pi$
(D)
(7)

$$
\begin{align*}
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& 16=4\left(e^{2}-1\right) \\
& 4=e^{2}-1 \\
& 5=e^{2} \tag{D}\\
& e=\sqrt{5} \tag{A}
\end{align*}
$$

(8) $y= \pm \frac{b}{a} x \Rightarrow y= \pm 2 x$
(9)

$$
\left.\begin{array}{r}
\alpha^{4}+p \alpha+q=0 \\
\beta^{4}+p \beta+q=0 \\
\gamma^{4}+p \gamma+q=0 \\
\delta^{4}+p \gamma+q=0
\end{array}\right\} \begin{array}{r}
\alpha^{4}+\beta^{4}+\gamma^{4}+\delta^{4}=-p(\alpha+\beta+\delta+\delta)-4 q \\
b y \quad \alpha+\beta+\delta+\delta=\frac{-6}{a} \\
=0 \\
\alpha^{4}+\beta^{4}+\gamma^{4}+\delta^{4}=-4 q
\end{array}
$$

$$
\begin{align*}
& \text { (10) } s=p+2 p(1-p)+3 p(1-p)^{2}+ \tag{I}\\
& (1-p) s \equiv p(1-p)+2 p(1-p)^{2}+3 p(1-p)^{3}+
\end{align*}
$$

(1) $-(2)$

$$
\begin{align*}
& p S=p+p(1-p)+p(1-p)^{2}+\cdots \\
& S=1+(1-p)+(1-p)^{2}+\cdots \\
& a=1=1 \\
& S_{\infty}=\frac{1}{1-(1-p)} \\
&=\frac{1}{p} \tag{B}
\end{align*}
$$

(11)(a) (1)

$$
\omega=z_{i}
$$

(H)

$$
\begin{gathered}
|z|=\sqrt{\sqrt{3}+1^{2}} \\
=2 \\
\tan (\arg z)=\sqrt{3} / 1 \\
\arg z=\pi / 3
\end{gathered}
$$

$$
z=2(\cos \pi / 3+i \sin \pi / 3)
$$

$$
\begin{array}{lll|l}
= & 1024\left(\cos \frac{\pi}{3} x^{10}+i \sin \frac{\pi}{3} \times 10\right) & S & A \\
=-1024 \times 12+i\left(-1024 \times \frac{\sqrt{3}}{2}\right) & & \pi \\
=-512-512 \sqrt{3} i & \sqrt{3} & z^{10} & T
\end{array}
$$

. 1
(b)

$$
\begin{align*}
& \text { b) } \begin{array}{l}
\frac{6 x^{2}+9 x+4}{x\left(x^{2}+1\right)}=\frac{A A}{x}+\frac{B x+C}{x^{2}+1} \\
6 x^{2}+9 x+4=A\left(x^{2}+1\right)+(B x+C) x \\
x^{2}:-6=A+B \\
x: 9=C \\
\text { const: } A=1
\end{array} \text { (2) }
\end{align*}
$$

from (1) \& (3)

$$
\begin{aligned}
& B=5 \\
& A=1, B=5, C=9
\end{aligned}
$$

(c)

$$
\begin{gathered}
z^{2}+3 i z=7 \\
z^{2}+3 i z-7=0 \\
z=\frac{-3 i \pm \sqrt{-9+28}}{2} \\
=\frac{-3 i}{2} \pm \sqrt{14} \\
= \pm \sqrt{14}-\frac{3 i}{2}
\end{gathered}
$$

(2)

$$
\int \frac{x}{x} \frac{x}{\sqrt{1-x^{2}}} d x
$$

let

$$
\begin{aligned}
u & =1-x^{2} \\
d u & =-2 x d x \rightarrow x d x=\frac{d u}{-2}
\end{aligned}
$$

When.

$$
\begin{aligned}
x & =2 \\
u & =1-2^{2} \\
& =3-1
\end{aligned}
$$

$$
\text { when } x=1 / 2
$$

$$
u=1-\frac{3^{2}}{2} 1-1_{2}^{2}
$$

$$
=-8
$$

$$
=\int_{-x_{1}, 1}^{-\frac{8}{3} / 4} \frac{1}{\sqrt{u}} \frac{d u}{-2}
$$

$$
=\frac{1}{-2} \int_{-\frac{1}{4} 1}^{1 / 2 / 4} u^{-1 / 2} d u
$$

$$
=\left[2 u^{1 / 2}\right]_{1}^{1 / 2}
$$

$$
=2 \sqrt{3 / 4}-2
$$

$$
=\sqrt{3}-2
$$

\qquad
(12)
(a) (c)

$$
\begin{gathered}
t=\tan \frac{\pi x}{2} \\
\tan ^{-1} t=\frac{x}{2} \\
2 \tan ^{-1} t=x \\
\frac{d x}{d t}=2 \frac{1}{1+t^{2}} \\
d x=\frac{2 d t}{1+t^{2}}
\end{gathered}
$$

(ii)

(12) (4) (11)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos x+\sin x} d x \\
& x=\pi / 2 \quad t=\tan \pi / 4 \\
& x=0 \quad t=\tan 0 \\
& x \quad=0 \\
& =\int_{0}^{1} \frac{1}{1+\frac{2 t}{1+t^{2}}+\frac{1+t^{2}}{1+t^{2}}} \frac{2 d t}{1+t^{2}} \\
& =\int_{0}^{1} \frac{2\left(1+t^{2}\right)}{1+t^{2}+2 t+1-t^{2}} d t \\
& =\int_{0}^{1} \frac{1}{t+1} d t \\
& =[\ln (t+1)]_{0}^{1} \\
& =\ln 2-\ln 1 \\
& =\ln 2
\end{aligned}
$$

(12) (b)

$$
\begin{aligned}
& \int_{3}^{8} \frac{x}{(x+1)-\sqrt{x+1}} d x \\
& \text { let } \left.\begin{array}{rl}
u^{2} & =x+1 \\
x & =u^{2}-1 \\
d x & =2 u d u
\end{array}\right\} \text {, } \\
& \text { when } x=3 \\
& \begin{array}{l}
x=3 \\
u^{2}=3+1
\end{array} \\
& \left.\begin{array}{l}
x=8 \\
u^{2}=8+1 \\
u=3
\end{array}\right\} \\
& =\int_{2}^{3} \frac{u^{2}-1}{u^{2}-u} 2 u d u \\
& =\int_{2}^{3} \frac{u-u+1)(u-1)}{u(u-1)} 2 u d u \\
& =\int_{2}^{3} 2(u+1) d u \quad \checkmark \text { full here } \\
& =2\left[\frac{u^{2}}{2}+u\right]_{2}^{3} \\
& =2\left[\frac{9}{2}+3-2-2\right] \\
& =
\end{aligned}
$$

(6) let $z=x+i y$

$$
\begin{aligned}
& 3|x+i y-(2+2 i)|=\mid x+i y-(6+6 i \mid \\
& 3 \sqrt{(x-2)^{2}+(y-2)^{2}}=\sqrt{(x-6)^{2}+(y-6)^{2}} \\
& 3^{2}\left(x^{2}-4 x+4+y^{2}-4 y+4\right)=x^{2}-12 x+36+y^{2}-12 y+36 \\
& 9 x^{2}-36 x+36+9 y^{2}-36 y+36=x^{2}-12 x+36+y^{2}-12 y+3 \\
& 8 x^{2}-24 x+9 y^{2}-24 y=0 \\
& x^{2}-3 x+y^{2}-3 y=0 \\
& x^{2}-3 x+\left(-\frac{3}{2}\right)^{2}+y^{2}-3 y+\left(-\frac{3}{2}\right)^{2}=2 x\left(\frac{3}{2}\right)^{2} \\
& \left(x-\frac{3}{2}\right)^{2}+\left(y-\frac{3 / 2}{2}\right)^{2} \\
& \left(x-\frac{3}{2}\right)^{2}+(y-3 / 2)^{2}=\frac{9}{2} \\
& =\left(\frac{3}{\sqrt{2}}\right)^{2}
\end{aligned}
$$

f sketch.
(13)

$$
\begin{aligned}
& I_{n}=\int x\left(x^{5}+1\right)^{n} d x \\
& v=\left(x^{5}+1\right)^{n} \\
& u \quad=x \\
& \begin{array}{ll}
v=\left(x^{5}+1\right. \\
v^{\prime}=5 x^{4} n\left(x^{5}+1\right)^{n-1} & u=x \\
u=\frac{x^{2}}{2}
\end{array} \\
& I_{n}=\frac{x^{2}}{2}\left(x^{3}+1\right)^{n}-\int \frac{x^{2}}{2} x^{4} n\left(x^{5}+1\right)^{n-1} \\
& =\frac{x^{2}}{2}\left(x^{5}+1\right)^{n}-\frac{5 n}{2} \int x^{6}\left(x^{3}+1\right)^{n-1} \\
& =\frac{x^{2}}{2}\left(x^{5}+1\right)^{n}-\frac{5 n}{2} \int x \cdot x^{5}\left(x^{5}+1\right)^{n-1} \\
& \left.=\frac{x^{2}}{2}\left(x^{5}+1\right)^{n}-\frac{5 n}{2} \int x\left[\left(x^{5}+1\right)-\right]\right]\left(x^{5}+1\right)^{n-1} d x \\
& =\frac{x^{2}}{2}\left(x^{5}+1\right)^{n}-\frac{5_{n}}{2} \int x\left(x^{5}+1\right)^{n}-x\left(x^{5}+1\right)^{n-1} d x \\
& I_{n}=\frac{x^{2}}{2}\left(-x^{5}+1\right)^{n}-\frac{5_{n}}{2} I_{n}+\frac{5_{n}}{2} I_{n-1} \\
& \left(\frac{5_{n}}{2}+1\right) I_{n} \equiv \frac{x^{2}}{2}\left(x^{5}+1\right)^{n}+\frac{5_{n}}{2} I_{n-1} \\
& \frac{5 n+2}{2} I_{n}=\frac{x^{2}}{2}\left(x^{5}+1\right)^{n}+\frac{5 n}{2} I_{n-1} \\
& I_{n}=\frac{x^{2}\left(x^{5}+1\right)^{n}}{5 n+2}+\frac{5 n}{5 n+2} I_{n-1}
\end{aligned}
$$

ANSWERS 13(b)
(i)

(iii)

(13) (1)

$$
\begin{aligned}
I_{10} & =\frac{x^{2}\left(x^{5}+1\right)^{10}}{52}+\frac{50}{52} I_{4} \\
& =\frac{x^{2}\left(x^{5}+1\right)^{10}}{52}+\frac{50}{52}\left[\frac{x^{2}\left(x^{5}+1\right)^{4}}{47}+\frac{45}{47} I_{8}\right]
\end{aligned}
$$

\qquad
\qquad
(13) (b) See prited graphs
\qquad
es DEF and BDE
IS DEF and DAF
as BDE and DAE 1 d $E D$.
rent theorem in
\angle 's on transversal $A B$) 's within parallel lines 'ual)
tended by same arc DF at rence of circle AEF are equal) nent theorem in circle AEF)

- applies alternate segment theorem to deduce $E F$ and $B C$ are parallel
- deduces equality of angles $D E F$ and $B D E$
- deduces equality of angles $D E F$ and $D A F$
- deduces equality of angles $B D E$ and $D A E$

Answer

Construct $E F$ and $E D$.
Applying the alternate segment theorem in
circles $A B C$ and $A E F$:
$\angle A B C=\angle N A C=\angle A E F$
$\therefore E F \| B C$. (equal corresp. L's on transversal $A B$)
$\therefore \angle D E F=\angle B D E$ (Alt. \angle 's within parallellines.
are equal)
(2) $\angle D E F=\angle D A F$ (\angle 's subtended by same arc $D F$ at circumference of circle $A E F$ are equal) $\angle B D E=\angle D A E$ (Alt. segment theorem in circle AEF)

- $\therefore \angle D A F=\angle D A E \quad \angle D A E=\angle D E F=\angle B E=\angle D A E$

Hence $A D$ bisects $\angle B A C$

(14) (a)

Tower $<\int<$ upper

$$
\begin{aligned}
&-2 \\
&-p-1)<\int_{1}^{p} x^{2} d x<p^{2}(p-1) \\
&\left.p-\frac{x^{3}}{3}\right]^{p}<p^{3}-p^{2} \\
& p-1<\frac{p^{3}}{3}-\frac{1}{3}<p^{3}-p^{2}
\end{aligned}
$$

(6) For $n=1$

$$
\begin{aligned}
& T_{1}=5 \times 1-2=3 \text { as required } \\
& T_{2}=5 \times 2-2= \\
& \text { tae tor } n=1,2
\end{aligned}
$$

assure true for $n=k-1 \quad n=k-2$
ie $T_{k}=2 T_{n-1}$

$$
T_{k-1}=5(k-1)-2 \quad T_{k-2}=5(k-2)-2 .
$$

for $n=k \quad$ RTP $I_{k}=5 k-2$.

$$
\begin{aligned}
T_{k} & =2 T_{k-1}-T_{k-2} \\
& =2(5(k-1)-2)-(5(k-2)-2) \\
& =10 k-5 k-10-4+10+2 \\
& =5 k-2
\end{aligned}
$$

as cequised.
(14) (c)

$$
\begin{align*}
& P(x)=x^{6}+a x^{3}+b x^{2} \\
& P(-1)=1-a+b=0 \tag{1}\\
& P^{\prime}(x)=6 x^{5}+3 a x^{2}+2 b x \\
& P^{\prime}(-1)=-6+3 a-2 b=0 \tag{2}
\end{align*}
$$

from (1)

$$
a=1+b
$$

$\operatorname{sun} b$ inta (2)

$$
\begin{gathered}
-6+3(1+b)-2 b=0 \\
-3+3 b-2 b=0 \\
b=3 \\
a=1+3
\end{gathered}
$$

(d)(1) Procuct $=e=a$

$$
\begin{aligned}
k & =\alpha \frac{1}{\alpha \beta} \frac{1}{\beta} \\
& =1
\end{aligned}
$$

(I)
sub in α.
$\alpha^{4}+b \alpha^{3}+c \alpha^{2}+d \alpha+1=0$
$\sin b=\frac{1}{1 / \alpha}$
(b)

$$
x^{3}+3 x^{2}+2 x+1=0
$$

et

$$
\text { let } \begin{aligned}
& x=x^{2} \\
& \sqrt{x}=x \\
& x=x^{1 / 2} \\
& \left(x^{1 / 2}\right)^{3}+3\left(x^{1 / 2}\right)^{2}+2\left(x^{1 / 2}\right)+1=0
\end{aligned}
$$

$$
\alpha^{2}, \beta^{2} \gamma^{2}
$$

$$
x^{-1 / 2}(x+2)=-(1+3 x)
$$

square

$$
\begin{aligned}
& x\left(x^{2}+4 x+4\right)=1+6 x+9 x^{2} \\
& x^{3}+4 x^{2}+4 x=1+6 x+9 x^{2} \\
& x^{3}-5 x^{2}+10 x-1=0 \\
& x^{3}-5 x^{2}-2 x-1=0
\end{aligned}
$$

(13) (4)

$$
\begin{array}{ll}
x=\frac{a t}{2} & y=\frac{a}{t} \\
\frac{2 x}{a}=t \quad t=\frac{a}{y} \\
\frac{2 x}{a}=\frac{a}{y} \\
x y=\frac{a^{2}}{2} &
\end{array}
$$

(II)

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{a}{2} \quad \begin{array}{l}
y \\
=a t^{-1} \\
\frac{d y}{d t}
\end{array}=-1 a t^{-2} \\
& =\frac{-a}{t^{2}} \\
& \begin{aligned}
\frac{d y}{d x} & =-a / t^{2} \div \frac{a}{2} \\
& =-\frac{a}{t^{2}} \times \frac{2}{a} \\
& =-\frac{2}{t^{2}}
\end{aligned} \\
& \begin{aligned}
\text { equ } y-\frac{a}{t} & =\frac{-2}{t^{2}}\left(x-\frac{a t}{2}\right) \\
t^{2} y-a t & =-2 x+a t \\
2 x+t^{2} y & =2 a t
\end{aligned}
\end{aligned}
$$

(iiv)

$$
\begin{gathered}
m_{\text {taxaust }}+m_{\perp}=-1 \\
-\frac{2}{t^{2}}+m_{\perp}=-1 \\
m_{\perp}=\frac{t^{2}}{2} \\
y-a=\frac{t^{2}}{2}(x-a) \\
2 y-2 a=t^{2} x-a t^{2} \\
a t^{2}-2 a=t^{2} x-2 y \\
t^{2} x-2 y=a t^{2}-2 a
\end{gathered}
$$

(IV) T lies on the 2 lines from (II) $\&$ (II)

$$
\left\{\begin{array}{l}
2 x+t^{2} y=2 a t \tag{1}\\
t^{2} x-2 y=a t^{2}-2 a .
\end{array}\right.
$$

square (1) \& (2)

$$
=\cos ^{\frac{2}{2}} \frac{x}{2}-\sin ^{2} \frac{x}{2}
$$

(1) $)^{2} \quad(2 x)^{2}+2 x 2 x t^{2} y+t^{4} y^{2}=4 a^{2} t^{2}$

$$
4 x^{2}+4 x t^{2} y+t^{4} y^{2}=4 a^{2} t^{2}
$$

(2) $)^{2} \quad t^{4} x^{2}-4 t^{2} x y+4 y^{2}=a^{2} t^{4}-4 a^{2} t^{2}+4 a^{2}$
(3) $+(4)$

$$
\begin{aligned}
& \text { +(4) } 4 x^{2}+t^{4} x^{2}+4 y^{2}+t^{4} y^{2}=\frac{4 a^{2}+4 a^{2} t^{2}}{} \\
& x^{2}\left(4+t^{4}\right)+y^{2}\left(4+t^{4}\right)=a^{2}\left(t^{4}+4\right) \\
& \therefore 4+4 c^{2} \\
& \therefore x^{2}+y^{2}=a^{2}
\end{aligned}
$$

(b) (I)

$$
\begin{aligned}
& \left(\cos \frac{x}{2}+i \sin \frac{x}{2}\right)^{2} \\
& =\cos ^{2} \frac{x}{2}+i \sin \frac{2 x}{2} \\
& =\cos x+i \sin x \\
& \text { A(so } \\
& \left(\cos \frac{x}{2}+i \sin \frac{x}{2}\right)^{2}=\cos ^{2} \frac{x}{2}+2 i \sin \frac{x}{2} \cos \frac{x}{2}-\sin ^{2} \frac{2 x}{2} \\
& \text { Real } \cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2} \\
& \text { Im } \sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}
\end{aligned}
$$

(II)
$t=\tan \frac{x}{2}$

$$
-\tan x=\frac{\sin x}{\cos x}
$$

(II)

$$
\begin{align*}
& \tan x=\frac{\sin x}{\cos x} \tag{3}\\
& =\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}} \tag{4}\\
& \div \cos ^{2} \frac{x}{2}=\frac{2 \tan \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}} \\
& =\frac{2 t}{1-t^{2}}
\end{align*}
$$

(c) (1)

$$
\begin{aligned}
& z^{7}=1 \\
& z=1 \text { cis } \frac{2 \pi n}{7} \\
& O R \quad n= \pm 1, \pm 2, \pm 3 \\
& \quad z=\operatorname{cin} \frac{2 \pi n}{7} \quad n=0 \pm 1, \pm 2, \pm 3
\end{aligned}
$$

(iii) $\frac{1}{2}(\cos n \theta+\operatorname{cis} \theta \theta)$

$$
\begin{aligned}
= & \left.\frac{1}{2}(\cos n \theta+i \sin n \theta+\cos n \theta-i \sin n)\right) \\
= & \frac{1}{2} \times 2 \cos n \theta \\
= & \frac{1}{2}+\cos n \theta \\
2 & \cos \alpha+\cos 2 \alpha+\cos 3 \alpha
\end{aligned}
$$

(III)

$$
\begin{aligned}
& \text { 1) } \frac{1}{2}\left(1+w+w^{-1}+w^{2}+w^{-2}+w^{3}+w^{-3}\right)=0 \\
& \times \frac{1}{2} \\
& \left(1+w+w^{-1}+w^{2}+w^{-2}+w^{3}+w^{-3}\right)=0 \\
& w^{-3}+w^{-2}+w^{-1} \times 1+w+w^{2}+w^{3}=0 \\
& +w^{3} \quad 1 \times w+w^{2} \times w^{3}+w^{4}+w^{5} \times w^{6}=0 \\
& \frac{w^{7}-1}{w-1}=0 \\
& w^{7}=1
\end{aligned}
$$

(10)

$$
\begin{array}{r}
\alpha=\frac{2 \pi n}{7} \quad n= \pm 1, \pm 2, \pm 3 \\
\text { NOT } n=0
\end{array}
$$

(16)

$$
\begin{aligned}
& \delta V=2 \pi(x+1) \ln x \delta x \\
& V=2 \pi \int_{1}^{\frac{B}{2}}(x \ln x+\ln x) d x \\
& \forall=\tan u^{\prime}=x \quad v=\ln x \quad u^{\prime}=1 \\
& v^{\prime}=1 / x \quad u=\frac{x^{2}}{2} \\
& v^{\prime}=1 / x \quad u=x \\
& =2 \pi\left[\frac{x^{2}}{2} \ln x+x \ln x\right]_{1}^{e}-\int_{1}^{e} \frac{x}{2}+1 d x \\
& =2 \pi\left(\left[\frac{e^{2}}{2}+e-0\right]-\left[\frac{x^{2}}{4}+x\right]_{1}^{e}\right) \\
& =2 \pi\left[\frac{e^{2}}{2}+e-\left(\frac{e^{2}}{4}+e-\frac{1}{4}-1\right)\right) \\
& =2 \pi\left(\frac{3 e^{2}}{4}+\frac{5}{4}\right)
\end{aligned}
$$

(4) (I) $\sum F=100-k v^{2}$
$F=m a$

$$
100-k v^{2}=20 \ddot{x}
$$

$$
5-\frac{k v^{2}}{20}=\ddot{u}
$$

(II)

$$
\begin{aligned}
\ddot{x} & =5-\frac{k v^{2}}{20} \\
\frac{v d v}{d x} & =5-\frac{k v^{2}}{20} \\
\frac{d v}{d x} & =\frac{5}{v}-\frac{k v}{20} \quad x \\
\frac{d v}{d x} & =\frac{100-k v^{2}}{20 v} \\
\frac{d x}{d v} & =\frac{20 v}{100-k v^{2}} \\
x & =\frac{10}{k} \int \frac{-2 k v}{100-k v^{2}} d v \\
& =\frac{-10}{k} \ln \left(100-k v^{2}\right)+C
\end{aligned}
$$

sub $x=0 \quad v=0$

$$
\begin{aligned}
C & =\frac{10}{k} \ln 100 \\
x & =\frac{10}{k}\left(\ln 100-\ln \left(100-k 0^{2}\right)\right) \\
& =\frac{10}{k} \ln \left(\frac{100}{100=k v^{2}}\right)
\end{aligned}
$$

(1)

(ii) TK is clearly constant 20 cm

$$
m=\frac{50}{30}=\frac{2}{3}
$$

equetion z

$$
\begin{aligned}
& y=\frac{2}{3} x \\
& M L=\frac{2}{3} x
\end{aligned}
$$

(iii) A-ea $=\frac{1}{2}\left(\frac{2}{3} x+20\right)^{3} \times 8$
(IV)

$$
\begin{aligned}
V & =\int_{0}^{30} \frac{1}{2}\left(\frac{2}{3} x+20\right) \times 8 d x \\
& =4 \int_{0}^{30} \frac{2}{3} x+20 d x \\
& =4\left[\frac{2 x^{2}}{3}+20 x\right]_{0}^{30} \\
& =4(300+600) \\
& =3600 u^{3}
\end{aligned}
$$

