

CRANBROOK

 SCHOOL
HSC Trial Examination

Mathematics Extension 2

Friday July 23, 2010

General Instructions

- Reading time - 5 minutes
- Writing time -3 hours
- All 8 questions should be attempted
- Total marks available - 120
- All questions are worth 15 marks
- Begin a new 8 page booklet for each question
- An approved calculator may be used
- A table of standard integtals can be found at the back of the paper
- All relevant working should be shown for each question
(a) Find: $\int x \sqrt{3 x-1} d x$ 3
(b) By using the substitution $t=\tan \frac{\theta}{2}, \quad$ evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2+\sin \theta} \tag{3}
\end{equation*}
$$

(c) (i) Split into partial fractions: $\frac{8}{(x+2)\left(x^{2}+4\right)}$
(ii) Hence evaluate: $\int_{0}^{2} \frac{8 d x}{(x+2)\left(x^{2}+4\right)}$
(d) If $\mathrm{I}_{\mathrm{n}}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x, \quad(n \geq 2)$
(i) Show that $I_{n}=(n-1) I_{n-2}-(n-1) I_{n}$
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{6} x d x$

Question 2 (15 marks) Use a new 8 page booklet
(a) If $z=3+2 i$, plot on an Argand diagram
(i) z and $\bar{z} \quad 1$
(ii) iz 1
(iii) $z(1+i) \quad 1$
(b) (i) Find all pairs of integers a and b such that $(a+i b)^{2}=8+6 i \quad 1$
(ii) Hence solve: $z^{2}+2 z(1+2 i)-(11+2 i)=0 \quad 2$
(c) (i) If $z=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$, find z^{6}
(ii) Plot on an argand diagram, all complex numbers that are the solutions of $z^{6}=1$
(d) Sketch the locus of the following. Draw separate diagrams.
(i) $\quad \arg (z-1-2 i)=\frac{\pi}{4}$
(ii) $z \bar{z}-3(z+\bar{z}) \leq 0$
(iii) $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$

Question 3 (15 marks) Use a new 8 page booklet
(a) For the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
(i) Find the eccentricity. 1
(ii) Find the coordinates of the foci S and S^{\prime}. 1
(iii) Find the equations of the directricies. 1
(iv) Sketch the curve $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$

1
(v) Show that the coordinates of any point P can be represented by $(5 \cos \theta, 4 \sin \theta)$
(vi) Show that $P S+P S^{\prime}$ is independent of the position of P on the curve.
(vii) Show that the equation of the normal at the point P on the ellipse is $5 x \sin \theta-4 y \cos \theta-9 \sin \theta \cos \theta=0$
(viii) If the normal meets the major axis at L and the minor axis at M , prove that $\frac{P L}{P M}=\frac{16}{25}$
(ix) Show that the normal bisects $\angle S P S^{\prime}$
(a) (i) Find $\int \frac{\sin 2 x}{2+\sin ^{2} x} d x$
(ii) Evaluate $\int_{0}^{\frac{1}{2}} \sqrt{\frac{1+x}{1-x}} d x$
(b) If a $>0, \mathrm{~b}>0$ and $\mathrm{c}>0$, show that
(i) $a^{2}+b^{2}+c^{2}-a b-b c-c a \geq 0 \quad 2$
(ii) $\begin{gathered}a+b+c \\ 3\end{gathered} \geq \sqrt[3]{a b c} \quad 4$
(iii) $(a+b+d)(b+c+d)(c+a+d)(a+b+c) \geq 81 a b c d \quad 3$

Question 5 (15 marks) Use a new 8 page booklet
Marks
(a) A concrete beam of height $15 m$ has plane sides. Cross-sections parallel to the ends are rectangular. The beam measures $4 m$ by $3 m$ at one end and $8 m$ by $6 m$ at the other end as shown.

In the figure KLMN is the crosssection and its distance from the top is x metres. FW $=x$ metres
(i) Show that an expression for the area of a cross-section at a distance x metres from the smaller end is given by $A(x)=12+\frac{24 x}{15}+\frac{4 x^{2}}{75}$.
(ii) Find the volume of the beam.
(b) Find the exact volume of the solid generated by rotating the area bounded by the curve $y=\log _{\mathrm{e}} x$, the x-axis and the line $x=4$ about the y-axis. Use the method of cylindrical shells and include sketches with your answer.
(c) By slicing perpendicular to the y-axis, determine the volume formed when the region bounded by the curve $y=-3 x^{4}+12 x^{2}$ and the x-axis between $x=0$ and $x=2$ is rotated about the y-axis. Include sketches with your answer.
(a) A wasp after leaving its hive O, flies 2 km North East, $4 \mathrm{~km} 30^{\circ}$ West of North and then $6 \mathrm{~km} 210^{\circ}$ True North.
(i) Convert each of the wasp's flights into the form $z=r c i s \theta$.
(ii) Draw a vector diagram showing the wasp's flights relative to its hive O.
(iii) Determine the resultant vector of the wasp's flights.
(iv) Hence determine how far to the nearest 0.1 km and in what direction in radians to 1 decimal place is the wasp from its hive.
(b) (i) Given that $P(x)$ has a rational zero, find this zero and hence factorise $P(x)$ over the complex field of numbers if $P(x)=2 x^{3}-3 x^{2}+2 x-3 . \quad 2$
(ii) If α, β and γ are the roots of the equation $x^{3}+q x^{2}+r=0$, where $r \neq 0$ determine a cubic equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.
(iii) The equation $2 x^{3}-13 x^{2}-26 x+16=0$ has roots in geometric progression. Find these roots.
(c) The tangent at $P(a \sec \theta, b \tan \theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets a directrix at Q . S is the corresponding focus.
(i) Find the equation of the tangent at P.
(ii) Find the coordinates of Q .
(iii) Show that PQ subtends a right angle at S .
(a) Given $y=\frac{x^{3}}{x^{2}-4}$
(i) Find the coordinates of all stationary points.

2
(ii) Find the points of intersection with the coordinate axes and the position of all asymptotes.
(iii) Hence sketch the curve $y=\frac{x^{3}}{x^{2}-4}$

1
(b) Use the graph $y=\frac{x^{3}}{x^{2}-4}$ to find the number of roots of the equation $x^{3}-k\left(x^{2}-4\right)=0$ for varying value of k.
(c) (i) Show that $\int_{-a}^{a} f(x) d x=\int_{0}^{a}[f(x)+f(-x)] d x$
(ii) Hence show that $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin x} d x=\int_{0}^{\frac{\pi}{4}} \frac{2}{\cos ^{2} x} d x$
(iii) Hence evaluate $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin x} d x$
(d) A sociologist believes that the fraction $y(t)$ of a population who have heard a rumour after t days can be modelled by a continuous function given by $y(t)=\frac{y_{0} e^{k t}}{\left(1-y_{0}\right)+y_{0} e^{k t}}, t \geq 0$, where y_{0} is the fraction, $0 \leq y_{0}<1$ for all $t \geq 0$, who have heard the rumour at time $t=0$ and k is a positive constant.
(i) Show that $y_{0} \leq y(t)<1$ for all $t \geq 0$.
(ii) Find the rate of change of y with respect to t.
(iii) If $k=0.2$ and $y_{o}=0 \cdot 1$, show that $y(5)=\frac{e}{e+9}$
(iv) Give an interpretation of the above results (i), (ii) and (iii) in terms of the sociological model.
(a) (i) Find a polynomial $p(x)$ with real coefficients having $3 i$ and $1+2 i$ as zeros.
(ii) Find all zeros of the equation $6 x^{4}-7 x^{3}-28 x^{2}+35 x-10=0$. 3
(b) (i) If k is a positive integer such that $k \geq 4$, show that $2 k^{3}>3 k^{2}+3 k+1$.
(ii) Hence show by mathematical induction for positive integers n, $n \neq 3$, that $3^{n}>n^{3}$.
(c)

Two circles intersect at A and $B . C A E$ is a straight line where C is a point on the first circle and E is a point on the second circle. The tangent at C to the first circle and the tangent at E to the second circle meet at D.
(i) Copy the diagram.
(ii) Prove that $B C D E$ is a cyclic quadrilateral.

EXT 2 PAPER - VAMSALA - MR NAGY'S SocuIIONS
Q.1. (a) $\sqrt{5^{2}+2^{2}}=\sqrt{29}$
(16)
(b) $\frac{1}{(-3-4 i)} \times \frac{-3+4 i}{(-3+4 i)}=\frac{-3+4 i}{9+16}=-\frac{3}{25}+\frac{4}{25} i$
(c) $\frac{1+i^{5}}{1-i}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}=\frac{(1+i)^{2}}{1+1}=\frac{1+2 i+i^{2}}{2}=\frac{2 i}{2}=\frac{i}{\underline{2}}$
(d) (i)

$$
\begin{align*}
& |-1+i|=\sqrt{2} \quad \&|\sqrt{3}+i|=\sqrt{4}=2 \quad \text { Hence }|z|=\frac{\sqrt{2}}{2} \\
& \arg (-1+i)=\frac{3 \pi}{4} \quad \& \arg (\sqrt{3}+i)=\frac{\pi}{6} \quad \text { Hence } \arg (z)=\frac{7 \pi}{12} \\
& \text { ie. } Z=\frac{\sqrt{2}}{2} \operatorname{cis}\left(\frac{7 \pi}{12}\right) \tag{2}
\end{align*}
$$

(ii)

$$
\begin{align*}
\operatorname{Re}(z)=\frac{\sqrt{2}}{2} \cos \frac{7 \pi}{12} & =\operatorname{Re}\left(\frac{(-1+i)}{(\sqrt{3}+i)} \times \frac{(\sqrt{3}-i}{\sqrt{3}-i)}\right) \\
& =\operatorname{Re}\left(\frac{-\sqrt{3}+1+i(\sqrt{3}+1)}{3+1}\right) \\
\therefore \frac{\sqrt{2}}{2} \cos \frac{7 \pi}{12} & =\frac{1-\sqrt{3}}{4} \\
\text { Thus } \cos \frac{7 \pi}{12} & =\frac{1-\sqrt{3}}{2 \sqrt{2}}=\frac{\sqrt{2}-\sqrt{6}}{4} \tag{2}
\end{align*}
$$

(e) (i) $\omega=\operatorname{cis} \frac{2 \pi}{3}$ or $-\operatorname{cis} \frac{2 \pi}{3}$
then $\omega^{2}=-\operatorname{cis} \frac{2 \pi}{3}$ or $\operatorname{cis} \frac{2 \pi}{3}$

$$
\cos +\omega^{2}=2 \cos \frac{2 \pi}{3}=-1
$$

Hence $\omega^{2}+\omega+1=0$ as required.

> (ii)

$$
\begin{aligned}
& \text { RHS }=(b+c)(b+c \omega)\left(b+c \omega^{2}\right)=(b+c)\left(b^{2}+b c \omega^{2}+b c \omega^{3}+c^{2} \omega^{3}\right) \\
&=b^{3}+b^{2} c \omega^{2}+b^{2} c^{2} \omega+b c^{2} \omega^{3}+b^{2} c+b c^{2} \omega^{2}+b c^{2} \omega+c^{3} \omega^{3} \\
&=b^{3}+b^{2} c\left(\omega^{2}+w+1\right)+b c^{2}\left(\omega^{3}+\omega^{2}+\omega\right)+c^{3} \omega^{3} \\
&=b^{3}+b^{2} c \times 0 \quad+b c^{2}\left(1+\omega^{2}+\omega\right)+c^{3} \\
& \text { since } \omega^{3}=1
\end{aligned}
$$

$$
\begin{equation*}
=b^{3}+c^{3}=\angle H S \text { as required. } \tag{2}
\end{equation*}
$$

Since $\omega^{3}=1$
(f)

$$
\begin{aligned}
& P(x)=\frac{(x-2 i)(x+2 i)(x-1+3 i)(x-1-3 i)}{P(x)=x^{4}-2 x^{3}+10 x^{2}+4 x^{2}-8 x+40=\left(x^{2}+4\right)\left((x-1)^{2}+9\right)=\left(x^{2}+4\right)\left(x^{2}-2 x+10\right)} \text { (3) } x^{4}-2 x^{3}+14 x^{2}-8 x+40
\end{aligned}
$$

2. (a) $\int \frac{x}{\sqrt{x+1}} d x \quad \begin{aligned} & \text { Let } u^{2}=x+1 \quad x=u^{2}-1 \\ & 2 u d u=d x\end{aligned}$
(16)

$$
\begin{align*}
& =\int \frac{u^{2}-1}{x} \cdot 2 u d u=\frac{2 u^{3}}{3}-2 u+c=\frac{2}{3} u\left(u^{2}-3\right)+c \\
& =\frac{2}{3} \sqrt{x+1}(x+1-3)+c=\frac{2 \sqrt{x+1}(x-2)}{3}+c^{(2)} \tag{2}
\end{align*}
$$

(b) $\frac{x^{2}-5 x}{4-x}+3 \leqslant 0$

$$
\begin{equation*}
x_{2} \frac{0}{6} \tag{3}
\end{equation*}
$$

Thus $2 \leqslant x<4$ or $x \geqslant 6$
(c) (i)

(ii)
(A)

(2)
(B)

(C)

(2)
(D)

(E)

$$
\begin{aligned}
& \frac{x^{2}-5 x+3(4-x)}{4-x} \leqslant 0 \quad \therefore \frac{x^{2}-8 x+12}{4-x} .(4-x)^{2} \leqslant 0 \\
& (x-6)(x-2)(4-x) \leqslant 0, x \neq 4
\end{aligned}
$$

3. (a)
(16)

$$
\begin{align*}
& f(x)=x-\ln \left(1+x^{2}\right) \\
& f^{\prime}(x)=1-\frac{2 x}{1+x^{2}} \\
& f^{\prime}(x)=\frac{1+x^{2}-2 x}{1+x^{2}}=\frac{(x-1)^{2}}{1+x^{2}} \tag{3}
\end{align*}
$$

Let $y=\ln u$ where $u=1+x^{2}$

$$
\begin{aligned}
& \frac{d x}{d x}=\frac{1}{u} \quad \& \frac{d u}{d x}=2 x \\
& \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{2 x}{u}=\frac{2 x}{1+x^{2}}
\end{aligned}
$$

Since square numbers $\geqslant 0,(x-1)^{2} \geqslant 0$ and $1+x^{2} \geqslant 0$ thus $f^{\prime}(x) \geqslant 0$ for all x, as required
(b) (i) In $\triangle A B X$ and $\triangle A D C$,

$$
\begin{aligned}
& \triangle A B X \text { and } \triangle A D C, \\
& \angle A B X=\angle A D C \quad \text { (Angles subtended by chord } A C \text { at the circumference) } \\
& \angle C A D=\angle X A B \text { (AD the save semen t are equal } \\
& \angle A D \text { bisects angle } \angle B A C \text {-given). }
\end{aligned}
$$

Therefore $\triangle A B X I I I \triangle A D C$ (Two angles the same).
(ii) Sine $\triangle A B X \| \triangle A D C, \frac{A B}{A X}=\frac{A D}{A C} \therefore \frac{A B, A C=A D \text {. } A X}{a \text { required. }}$.
(iii) $\triangle C X D$ III $\triangle A X B$ since $\angle A B X=\angle A D C$ as above and $\angle C X D=\angle B \times A$ (vertically opposite angles equal).

Thus $\frac{X D}{X B}=\frac{X C}{A X} \quad \therefore A X \cdot X D=X C \cdot X B \quad$ so $X D=\frac{X C \cdot X B}{A X}$
From($\left.\hat{V}^{2}\right) ; A B \cdot A C=A D \cdot A X=(A X+X D) A X=A x^{2}+X D \cdot A x$

$$
\text { and from (1), } A B, A C=A x^{2}+\left(\frac{x C, x B}{A x}\right) \cdot A x
$$

$$
\begin{equation*}
A B \cdot A C=A x^{2}+B x \cdot x C \text { asrequined } \tag{2}
\end{equation*}
$$

$$
\text { (c) (i) }(l+m+n)^{2}=l^{2}+m^{2}+n^{2}+2(l m+\ln +m n)=29+2(l m+l n+m n)
$$

This $\ln _{n}+\ln +m n=\frac{(-3)^{2}-29}{2}=-10$
Let the cubic equation te manic, ie. $x^{3}+b x^{2}+c x+d=0$

$$
\begin{align*}
\text { Where }-b & =l+m+n=-3 & \therefore b=3 \\
c & =\operatorname{lm}+m n+\ln =-10 & \therefore c=-10 \\
-d & =\operatorname{lmn}=-6 & \therefore d=6 \tag{2}
\end{align*}
$$

Hence Monic cubic is $x^{3}+3 x^{2}-10 x+6=0$ as required.
(ii) \cot at $x=1$ by inspection, ie. $(x-1)\left(x^{2}+4 x-6\right)=0$

Here other rots of $x=-\frac{4 \pm \sqrt{16+24}}{2}=-2 \pm \sqrt{10}$
Thus' C, M and n are $1,-2+\sqrt{10},-2-\sqrt{10}$ in any oder (3)
3.(d)

(i) $A=2 i z$ by inspection
(ii)

$$
\begin{align*}
\overrightarrow{O D} & =\frac{1}{2} \overrightarrow{O C}=\frac{1}{2}(\overrightarrow{O B}+\overrightarrow{O A}) \tag{1}\\
& =\frac{1}{2}(z+2 i z) \\
& =\frac{z}{2}+i z \text { or } z\left(\frac{1}{2}+i\right)(2)
\end{align*}
$$

4. (a) \quad let $\cos \theta=x$ then $\cos 3 \theta=4 x^{3}-3 x$

$$
\begin{align*}
8 x^{3}-6 x+1 & =0 \\
2\left(4 x^{3}-3 x\right)+1 & =0 \\
2 \cos 3 \theta+1 & =0 \\
\cos 3 \theta & =\frac{-1}{2} \\
3 \theta & = \pm \frac{2 \pi}{3}+2 n \pi \quad, n \in \mathbb{Z} \\
\therefore \theta & = \pm \frac{2 \pi}{9}+\frac{2 n \pi}{3} \quad, n \in \mathbb{Z} \tag{3}
\end{align*}
$$

Thus $x=\frac{\cos \frac{2 \pi}{9}, \cos \frac{8 \pi}{9}, \cos \frac{14 \pi \pi}{9} \approx 0.766,-0.9397,0.1736}{\text { (or equivalent!) }}$
(b) (i) $\quad(x-y)^{2} \geqslant 0$ since a square of halumber is positive.

$$
\begin{gather*}
(x-y)^{2} \geqslant 0 \quad \text { since a square } \tag{2}\\
x^{2}+y^{2}-2 x y \geqslant 0 \quad \therefore \quad x^{2}+y^{2} \geqslant 2 x y \text { as required }
\end{gather*}
$$

$\bar{i}^{\text {(ii) }}$

$$
\begin{aligned}
& a^{2}+b^{2} \geqslant 2 a b \\
& r^{2}+d^{2} \geqslant 2 c d
\end{aligned} \quad \therefore a^{2}+b^{2}+c^{2}+d^{2} \geqslant 2 a b+2 c d
$$

$$
c^{2}+d^{2} \geqslant 2 c d
$$

The question is incorrect (take $\alpha=2, b=1, c=1, d=1$)

$$
\begin{aligned}
& \text { he } \alpha=2, b=1, c=1, a=1 \\
& 2^{2}+1^{2}+1^{2}+1^{2}=7 \text { 位 } 4 \times 2 \times 1 \times(x)
\end{aligned}
$$

perhaps the question meant:

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \geqslant 4 a b c d \text { ? }
$$

True since $a^{2}+b^{2} \geqslant 0$ and $c^{2}+d^{2} \geqslant 0$ So $a^{2}+b^{2}+c^{2}+d^{2} \geqslant 0$
4.(c)

(i)

$$
\begin{align*}
& \frac{d y}{d x}=\frac{d y}{d p} \times \frac{d p}{d n}=2 a p \times \frac{1}{2 a}=p \quad \therefore \text { Eqneftargeat at } p \text { is: } \tag{2}\\
& y-a p^{2}=p(x-2 a p) \\
& y=p x-2 a p^{2}+a p^{2} \\
& \therefore p x-y-a p^{2}=0 \text { as equine }
\end{align*}
$$

(ii) Midpoint of $P R$ is $x=a p$ and $y=p(a p)-a p^{2}$ from above)
 ie. $(a p, 0)$
(iii) Gradient of $P R=M_{P R}=P \quad$ from .(i) $\quad\left\{M_{P R} \times M_{f R}=-1\right.$ as required
(iv) PQRF is a rhombus since the dringmals \therefore perpendicular as required
Gradient of $F Q=M_{f Q}=\frac{-2 a}{2 a p}=-\frac{1}{p}$ bisect at right angles.
5. (a) (i) $y=u r$ and $y^{\prime}=u v^{\prime}+u^{\prime} v$ from the product rule.

$$
y^{\prime \prime}=u v^{\prime \prime}+u^{\prime} v^{\prime}+u^{\prime} v^{\prime}+u^{\prime \prime} v=\underline{u v^{\prime \prime}+2 u^{\prime} v^{\prime}+u^{\prime \prime} v \text { ar required. }}
$$

(ii)

and $y^{\sigma}=u v^{6}+5 u^{1} v^{i v^{2}}+10 u^{\prime \prime} v^{111}+10 u^{\prime \prime \prime} v^{\prime \prime}+5 u^{10} v^{\prime}+u^{2} v$
(ai)

$$
\begin{align*}
\left.\frac{d^{5}}{d x^{5}}\left(1:-x^{2}\right) e^{-x}\right) & =\left(1-x^{2}\right)\left(-e^{-x}\right)+5(2 x) e^{-x}+10(2)\left(-e^{-x}\right) \tag{z}\\
& =e^{-x}\left(x^{2}-1+10 x-20\right)=\left(x^{2}+10 x-21\right) e^{-x}
\end{align*}
$$

Q.5.(b)

$$
\begin{align*}
& \text { (i) } t_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n-1}+\frac{1}{2 n} \\
& \therefore t_{n}+\frac{1}{2 n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n-1}+\frac{2}{2 n} \quad \text { and } \frac{2}{2 n}=\frac{1}{n} \\
& t_{n}+\frac{1}{2 n}=\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n-1} \quad \text { as required. } \tag{1}
\end{align*}
$$

(ii) Area under graph for $x=n$ to $2 n=\int_{n}^{2 n} \frac{1}{x} d x=\ln \left(\frac{2 n}{n}\right)=\ln 2$
and area of the rectangles (width 1)
from n to $2 n-1$ is $\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2 n-1}=t_{n}+\frac{1}{2 n}$

Sure the area formed frown
sumuniz the rectangles area wider sumunig the rectangles graph,
then $t_{n}+\frac{1}{2 n}>\ln 2$ as required.
(iii) for $n=1, S_{n}=1-\frac{1}{2}=\frac{1}{2}$ and $t_{n}=\frac{1}{2}$. imefor $n=1$

Assure triefor $n=k$, ie. $S_{k}=t_{k}$
then for $n=k+1, \quad S_{k+1}=S_{k}+\frac{1}{2 k+1}-\frac{1}{2 k+2}$

$$
\begin{align*}
t_{k+1}=\frac{1}{k+2}+\frac{1}{k+3}+\cdots+\frac{1}{2 k+1}+\frac{1}{2 k+2} & =t_{k}+\frac{1}{2 k+1}+\frac{1}{2 k+2}-\frac{1}{k+1} \tag{4}\\
\text { Hence } t_{k+1} & =S_{k}+\frac{1}{2 k+1}+\frac{1-2}{(2(k+1))} \\
& =S_{k}+\frac{1}{2 k+1}-\frac{1}{2 k+2}=S_{k+1} \text { from (1) }
\end{align*}
$$

Hence true for S_{k+1}
Therefore, true for $n=1$ and if free for $n=k$, the also true for $n=k+1$ \therefore true for all $n \in \mathbb{Z}, n \geqslant 1$ by induction.
(iv) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{9999}-\frac{1}{10000}=s_{5000}=t_{5000}$

As $n \rightarrow \infty, t_{n}+\frac{1}{2 n} \rightarrow \ln 2$ or $t_{n} \rightarrow \ln 2-\frac{1}{2 n}$

$$
\begin{equation*}
\text { Hence } t_{500} \approx \ln 2-\frac{1}{10000} \approx 0.693 \text { (3.d.p)) } \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& S_{1}=1-\frac{1}{2}=\frac{1}{2} \\
& S_{2}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}=\frac{7}{12}
\end{aligned}
$$

$$
t_{1}=\frac{1}{2}
$$

$$
t_{2}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}
$$

$$
t_{3}=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}
$$

S 23
$\operatorname{RTP} \sum_{r=1}^{n} \frac{r}{(r+1)!}=\frac{(n+1)-1!}{(n+r)!}$
Prove true for $n=1$

$$
\begin{aligned}
(H)= & =\frac{1}{(r+1)!} \\
& =\frac{1}{2}
\end{aligned} \quad=\frac{1}{2}
$$

$$
\begin{aligned}
& L_{H S}=\frac{\left[\frac{1}{2}+\frac{1}{3}\right]+\frac{1}{8} \quad R H S=\frac{23}{24}}{} \\
&=\frac{21}{24} \\
&=\frac{7}{8}
\end{aligned}
$$

$9^{n}-7^{n}$ is even
Prove true for $n=1$

$$
\begin{aligned}
L H S & =9-7 \\
& =2
\end{aligned}
$$

\therefore tue for $n=1$
assume tue for $n=k$
le $9^{k}-7^{k}=2 M \quad m \in \mathbb{Z}^{+}$
prove tue for $n=k+1$

$$
\begin{aligned}
& \text { LH182 } 9^{k+1}-7^{k+1}=2 N \quad 9^{k+1}-7^{k+1} \quad N \in \mathbb{Z}^{+} \\
& =
\end{aligned}
$$

