Mathematics Extension 2

Reading time	5 minutes
Writing time	3 hours
Total Marks	100
Task weighting	40%

General Instructions

- Write using blue or black pen
- Diagrams drawn using pencil
- A Board-approved calculator may be used
- The Reference sheet is on the last page of this booklet
- Use the Multiple-Choice Answer Sheet provided
- All relevant working should be shown for each question

Additional Materials Needed

- Multiple Choice Answer Sheet
- 6 writing booklets

Structure \& Suggested Time Spent

Section I

Multiple Choice Questions

- Answer Q1 - 10 on the multiple choice answer sheet
- Allow about 15 minutes for this section

Section II

Extended response Questions

- Attempt all questions in this section in a separate writing booklet
- Allow about 2 hours and 45 minutes for this section This paper must not be removed from the examination room

Disclaimer

The content and format of this paper does not necessarily reflect the content and format of the HSC examination paper.

Section I

10 Marks

Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

1 The polynomial $P(z)$ has real coefficients, and $P(3-i)=0$.
Which of the following must be a quadratic factor of $P(z)$?
(A) $z^{2}-6 z+10$
(B) $z^{2}+6 z+10$
(C) $z^{2}-6 z+8$
(D) $z^{2}+6 z+8$

2 Which of the following best describes the locus of $\frac{1}{z}+\frac{1}{\bar{Z}}=1$?
(A) A straight line
(B) A circle
(C) A parabola
(D) An ellipse

3 An ellipse is centred about the origin, and its foci lie on the x axis. The distance between the foci is 10 units, and the distance between the directrices is 50 units. What is the equation of the ellipse?
(A) $\quad \frac{x^{2}}{250}+\frac{y^{2}}{100}=1$
(B) $\quad \frac{x^{2}}{100}+\frac{y^{2}}{250}=1$
(C) $\frac{x^{2}}{125}+\frac{y^{2}}{100}=1$
(D) $\frac{x^{2}}{100}+\frac{y^{2}}{125}=1$

4 What is the equation of the normal to the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{36}=1$ at the point $P(12 \sec \theta, 6 \tan \theta)$, where $\theta=\frac{\pi}{3}$?
(A) $\quad x+\sqrt{3} y=6$
(B) $\quad x-\sqrt{3} y=6$
(C) $\sqrt{3} x-y=30 \sqrt{3}$
(D) $\sqrt{3} x+y=30 \sqrt{3}$
(A) $\frac{3}{2}$
(B) $\quad-\frac{3}{2}$
(C) $\frac{2}{3}$
(D) $\quad-\frac{2}{3}$

6 Which of the following integrals is the greatest in value?
(A) $\quad \int_{0}^{2}\left|2 x-x^{2}\right| d x$
(B) $\quad \int_{0}^{2} 2 x-x^{2} d x$
(C) $\quad \int_{0}^{2} \sqrt{2 x-x^{2}} d x$
(D) $\quad \int_{0}^{2}\left(2 x-x^{2}\right)^{3} d x$

7 Consider the following solid as shown below, which has a rectangular base and a rectangular top. Which expression best represents the volume of the slice taken at a height $h \mathrm{~cm}$ from the base of the solid?

Not to scale.

(A)

$$
\delta V=\left(7-\frac{h}{2}\right)\left(4-\frac{h}{4}\right) \delta h
$$

(B)

$$
\delta V=\left(7-\frac{h}{3}\right)\left(4-\frac{2 h}{9}\right) \delta h
$$

(C) $\quad \delta V=\left(4-\frac{2 h}{9}\right)^{2} \delta h$
(D) $\quad \delta V=\left(4-\frac{h}{3}\right)\left(7-\frac{2 h}{9}\right) \delta h$

8 Which of the following is always true for the continuous function $f(x)$?
(A) $\quad \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
(B) $\quad \int_{-a}^{0} f(x) d x=-\int_{0}^{a} f(-x) d x$
(C) $\quad \int_{0}^{a} f(x) d x=\int_{a}^{2 a} f(2 a-x) d x$
(D) $\quad 2 \int_{0}^{a} f(x) d x=\int_{-a}^{a} f(a-x) d x$

9 What are the roots of the equation $z^{2}+z(2-10 i)+2 i-19=0$?
(A) $1+2 i, 1-2 i$
(B) $1+2 i,-3+8 i$
(C) $1-2 i,-3+8 i$
(D) $1+2 i, 3-8 i$

10 Which diagram best represents the curve $y^{2}=x^{3}-5 x$?
(A)

(C)

(D)

END OF SECTION I

Section II

90 Marks

Allow about $\mathbf{2}$ hours and 45 minutes for this section
Answer Questions 11-16 in separate writing booklets.

Question 11

Start a new booklet
15 Marks
(a) Consider the complex numbers $z=-\sqrt{3}+i$ and $w=8+8 i$.
(i) Write z and w in modulus argument form.
(ii) Express $\frac{z^{3}}{(\bar{w})^{8}}$ in Cartesian form.
(b) Find the solutions to $z^{2}+2(1+i) z+(3+6 i)=0$ in simplest Cartesian Form
(c) Sketch and describe the locus of all points z which satisfy the equation

$$
|z-4-i|=4
$$

(d) Find $\int \frac{1}{x\left(x^{2017}+1\right)} d x$

Question 11 continues on page 9.

Question 11 (continued)

(e) Consider the geometric series:

$$
1+\frac{1}{3} \operatorname{cis} \theta+\frac{1}{9}(\operatorname{cis} \theta)^{2}+\frac{1}{27}(\operatorname{cis} \theta)^{3}+\ldots
$$

(i) Explain why this series has a limiting sum.
(ii) Hence, show that:

$$
\sin \theta+\frac{1}{3} \sin 2 \theta+\frac{1}{9} \sin 3 \theta+\ldots=\frac{9 \sin \theta}{10-6 \cos \theta}
$$

END OF QUESTION 11

(a) Let there be two arbitrary complex numbers z and w.
(i) Sketch the complex numbers z, w and $z+w$ on the Argand diagram,

1 representing each as a vector.
(ii) Justify why $|z+w| \leq|z|+|w|$ 1
(iii) If $|z|=10$, prove that $\left|13 z^{2}-2 z+5\right| \leq 1325$
(b) Let a polynomial $p(x)$ have a root α of multiplicity m. That is, we can represent the polynomial as $p(x)=(x-\alpha)^{m} \times Q(x)$, where $Q(x)$ is another polynomial.
(i) Explain why $Q(\alpha) \neq 0$
(ii) Prove that $p^{\prime}(x)$ has a root α of multiplicity exactly $m-1$.
(iii) Given that $f(x)=2 x^{4}-15 x^{3}+42 x^{2}-52 x+24$ has a triple root, find all the solutions to $f(x)=0$.
(c) The roots of the polynomial $3 x^{3}-9 x^{2}+7 x-1$ are α, β and γ. Find the cubic polynomial with roots $\alpha+\beta, \alpha+\gamma$ and $\beta+\gamma$.
(d) It is given that $f(x)=x^{3}-6 a x+3 b$ has exactly three distinct real roots. Show that $9 b^{2}<32 a^{3}$.
(a) Consider the graph of $y=f(x)$ shown below.

Sketch the following graphs on separate one third of a page diagrams.
(i) $y=[f(x)]^{2}$
(ii) $y=\sqrt{f(x)}$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=f(|x|)$

1
(v) $\quad|y|=|f(x)|$
(vi) $\quad y=f\left(\frac{1}{x}\right)$

Question 13 (continued)

(b) Consider the area bounded by the curves $y=6 x-x^{2}$ and $y=x+4$.
(i) Sketch the two graphs on the Cartesian plane, clearly labelling any points of intersection.
(ii) The area described above is now rotated about the line $x=1$. 4 Find the volume of the solid formed.
(a) Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(i) Consider a point P which lies on this ellipse. Find the equation of the normal at the point P.
(ii) The normal at P now intersects the x-axis at the point N.

Prove that $N S=e P S$, where S is the focus of the ellipse.
(b) Let $z=\operatorname{cis} \theta$.
(i) Prove that $z^{n}+z^{-n}=2 \cos n \theta$.
(ii) Given that all the roots of the polynomial $12 z^{4}-23 z^{3}+34 z^{2}-23 z+12=0$ have a modulus of 1 , find all solutions to the polynomial equation.
(c) Find: $\int \cos (\sqrt{x}) d x$

Question 14 (continued)

(d) Let z_{1}, z_{2} and z_{3} be three arbitrary complex numbers represented by A, B and C respectively on the Argand diagram shown below:

(i) By considering the vector $\overrightarrow{A C}$ and $\overrightarrow{A B}$, show that:

$$
\alpha=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)
$$

(ii) Hence, by finding equivalent expressions for β and γ, deduce that the angle sum of a triangle is π radians.
(a) Consider the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}}=1$ with the point $P(a \sec \theta, a \tan \theta)$.
(i) Provide a neat sketch of this hyperbola, showing all key features such as

2 the foci, intercepts with the co-ordinate axes and the directrices.
(ii) We can represent the above hyperbola on the Argand diagram with the complex number $z=a \sec \theta+i a \tan \theta$. Explain the geometrical relationship between this complex number z, and $w=z \times \operatorname{cis} \frac{\pi}{4}$.
(iii) Find in Cartesian form the complex number $w=z \times \operatorname{cis} \frac{\pi}{4}$.
(iv) Hence prove that the locus of the complex number $w=x+i y$ is given by:

$$
x y=\frac{a^{2}}{2}
$$

(b) Consider the graph of $x y=8$. The line L is defined to be the line which is perpendicular to the major axis of the hyperbola and passes through the focus in the first quadrant. The area bounded by the curve and L is rotated around the line $y=x$ in order to form a solid. Using part (a) or otherwise, find the volume of the solid.

Question 15 (continued)

(c) Given $I_{n}=\int e^{a x} \cos ^{n} x d x$,
(i) Show that:

$$
\left(a^{2}+n^{2}\right) I_{n}=e^{a x} \cos ^{n-1} x(a \cos x+n \sin x)+n(n-1) I_{n-2}
$$

(ii) Hence find: $\int e^{3 x} \cos ^{4} x d x$
(a) Consider any concave down function such as $y=f(x)$ shown below.

A and B are points the curve $y=f(x)$ with the x values x_{1} and x_{2} respectively.
Furthermore, it is known that $x_{1}<x_{2}$.
(i) Show that the point P which divides the interval $A B$ in the ratio $\lambda_{2}: \lambda_{1}$
where $\lambda_{1}+\lambda_{2}=1$ is given by:

$$
P\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}, \lambda_{1} f\left(x_{1}\right)+\lambda_{2} f\left(x_{2}\right)\right)
$$

Question 16 continues on page 18

Question 16 (continued)

(ii) Hence, or otherwise, explain why

$$
\lambda_{1} f\left(x_{1}\right)+\lambda_{2} f\left(x_{2}\right) \leq f\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)
$$

(iii) Using (ii) or otherwise, prove by mathematical induction that for any concave down function $g(x)$:

$$
\frac{g\left(x_{1}\right)+g\left(x_{2}\right)+\ldots+g\left(x_{n}\right)}{n} \leq g\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right) \text {, for } n \geq 2
$$

(b) Suppose that A, B and C are the angles of a triangle.

Prove that:
(i) $\tan A+\tan B+\tan C=\tan A \tan B \tan C$
(ii) $\cos A+\cos B+\cos C=1+4 \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)$
(c) By considering parts (a) and (b), in conjunction with the function $h(x)=\ln [\sin x]$

Prove that if $a+b+c=a b c$:

$$
\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+\frac{1}{\sqrt{1+c^{2}}} \leq \frac{3}{2}
$$

END OF EXAM

LL MAY 2017 Trial Solutions
As the polynomial has real coefficient,
If $3-i$ is a root, $3+i$ is also a root.

$$
\begin{aligned}
\therefore \quad P(z) & =(z-(3-i))(z-(3+i)) \\
& =z^{2}-6 z+10 \quad \text { So the answer is (A) }
\end{aligned}
$$

2. $\frac{1}{z}+\frac{1}{z}=1$

$$
\frac{\bar{z}+z}{z \cdot \bar{z}}=1
$$

$\therefore 2 x=x^{2}+y^{2}$, which is a circle. So the answer is (B)
3. As foci are $S(\pm a e, 0)$, distance between foci is 2ae

$$
\begin{align*}
\therefore \quad 2 a e & =10 \\
\therefore a e & =5 \tag{1}
\end{align*}
$$

As direotrices are $x= \pm \frac{a}{e}$, distance between directrices is $\frac{2 a}{e}$

$$
\begin{align*}
\therefore \quad \frac{2 a}{e} & =50 \\
\therefore \frac{a}{e} & =25 \tag{2}
\end{align*}
$$

(1) $(2): \quad e^{2}=\frac{1}{5}$
(1) \times (2): $a^{2}=125$

But $b^{2}=a^{2}\left(1-e^{2}\right)$

$$
\begin{aligned}
& b^{2}=125\left(1-\frac{1}{5}\right) \\
& b^{2}=100
\end{aligned}
$$

\therefore Ellipse has equation

$$
\frac{x^{2}}{125}+\frac{y^{2}}{100}=1
$$

So the answer is (c)
4. Equation of normal: $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}$

$$
a=12, \quad b=6, \quad \theta=\frac{\pi}{3} .
$$

$$
\begin{aligned}
\therefore \frac{12 x}{\sec \left(\frac{\pi}{3}\right)}+\frac{6 y}{\tan \left(\frac{\pi}{3}\right)} & =12^{2}+6^{2} \\
\frac{12 x}{2}+\frac{6 y}{\sqrt{3}} & =144+36
\end{aligned}
$$

$$
6 x+2 \sqrt{3} y=180
$$

$$
6 \sqrt{3} x+6 y=180 \sqrt{3}
$$

$\sqrt{3} x+y=30 \sqrt{3} \quad$ So the answer is (D)
5.

$$
\begin{aligned}
& x^{2}-x y+2 y^{2}=4 \\
& \frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}(x y)+\frac{d}{d x}\left(2 y^{2}\right)=\frac{d}{d x}(4) \\
& 2 x-\left(y+x \frac{d y}{d x}\right)+4 y \cdot \frac{d y}{d x}=0 \\
& \frac{d y}{d x}(4 y-x)=y-2 x \\
& \frac{d y}{d x}=\frac{y-2 x}{4 y-x}
\end{aligned}
$$

At $(2,1), \frac{d y}{d x}=\frac{1-2(2)}{4(1)-2}=\frac{-3}{2}$ So the answer is (B)
6. As $0 \leq 2 x-x^{2} \leq 1$ for $0 \leq x \leq 2$
$(A) B(B)$ do not change magnitude
(D) decreases magnitude
(C) increases magnitude
7. Potentially needs to change as appeared in 2016 HST

Clearly, $a \neq b$ follow ${ }^{a}$ linear relation with n.

$$
\begin{aligned}
\therefore a & =m_{1} h+c_{1} \\
b & =m_{2} h+c_{2}
\end{aligned}
$$

$$
\begin{aligned}
\Delta V & =a \times b \times \Delta h \\
& =\left(7-\frac{h}{3}\right)\left(4-\frac{2 h}{9}\right) \cdot \Delta h
\end{aligned}
$$

So the answer is (B)

$$
\begin{gathered}
\text { When } \begin{array}{c}
n=0, a=7 \Rightarrow c_{1}=7 \\
n=9, a=4 \\
4=m_{1} \times 9+7 \\
9 m_{1}=-3 \\
\therefore m_{1}=-\frac{1}{3} \\
\therefore a=7-\frac{h}{3}
\end{array} \$. l
\end{gathered}
$$

When $h=0, b=4 \Rightarrow c_{2}=4$

$$
\begin{aligned}
& n=9, b=2 \\
& 2=9 m_{2}+4 \\
& 9 m_{2}=-2 ; m_{2}=-\frac{2}{9} \\
& \therefore b=4-\frac{2 n}{9}
\end{aligned}
$$

8. As $f(2 a-x)$ is simply a reflection about the line $x=a$, It is clear that (c) is correct by inspection So the answer is (c)
9. The sum of roots of the given equation has to be $-(2-10 i)=10 i-2$

The only option that satisfies this condition is (B)
So the answer is (B)
10. Consider $y^{2}=x^{3}-5 x$ as $y= \pm \sqrt{x^{3}-5 x}$

$$
\uplus \text { so vertical tangents at roots. }
$$

Considering domain, large values of x must be included So the answer is (A)

Multiple Choice Solutions.

Q.	1	2	3	4	5	6	7	8	9	10
A.	A	B	C	D	B	C	B	C	B	A

Question II

a) i) $z=-\sqrt{3}+i$
$\omega=8+8 i$
$\therefore z=2 \operatorname{cis}\left(\frac{5 \pi}{6}\right) \quad \therefore w=8 \sqrt{2} \cos \left(\frac{\pi}{4}\right)$
ii) $\frac{z^{3}}{(\bar{w})^{8}}=\frac{\left[2 \cos \left(\frac{5 \pi}{6}\right)\right]^{3}}{\left[8 \sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)\right]^{8}}=\frac{8 \operatorname{as}\left(\frac{5 \pi}{2}\right)}{(8 \sqrt{2})^{8} \cos (-2 \pi)}$, By De Moivrés Theorem

$$
=\frac{8 i}{8^{8} \times 2^{4}}
$$

$$
=0+\frac{1}{33554432} i
$$

b) $z^{2}+2(1+i) z+(3+6 i)=0$

$$
\begin{aligned}
\Delta=b^{2}-4 a c & =4(1+i)^{2}-4(1)(3+6 i) \\
& =4(2 i)-12-24 i \\
& =-12-16 i
\end{aligned}
$$

$$
\text { let } a+i b=\sqrt{\Delta}=\sqrt{-12-1 b i} ; a, b \in \mathbb{R} \text {. }
$$

$$
a^{2}-b^{2}+i(2 a b)=-12-16 i
$$

Equating Real $\$$ imaginary parts.

$$
\begin{aligned}
a^{2}-b^{2}=-12 \quad 2 a b & =-16 \\
a b & =-8
\end{aligned}
$$

By inspection, $a=2, b=-4$

$$
\begin{aligned}
& a=-2, b=4 \\
\therefore & \sqrt{\Delta}= \pm(2-4 i)
\end{aligned}
$$

$$
\begin{aligned}
\therefore z=\frac{-b \pm \sqrt{\Delta}}{2 a} & =\frac{-2(1+i) \pm(2-4 i)}{2} \\
& =-(1+i) \pm(1-2 i) \\
& =-3 i \text { or }-2+i
\end{aligned}
$$

c.) $|z-4-i|=4$

$$
|z-(4+i)|=4
$$

L So the points z lie on a circle with centre $(4,1) \$$ radius 4 units

d)

$$
\begin{aligned}
\int \frac{1}{x\left(x^{2017}+1\right)} d x & =\int \frac{1+x^{2017}-x^{2017}}{x\left(x^{2017}+1\right)} d x \\
& =\int \frac{1}{x}-\frac{x^{2016}}{x^{2017}+1} d x \\
& =\ln |x|-\frac{1}{2017} \ln \left|x^{2017}+1\right|+C
\end{aligned}
$$

e) i) $1+\frac{1}{3} \operatorname{as} \theta+\frac{1}{9}(\cos \theta)^{2}+\frac{1}{27}(\operatorname{as} \theta)^{3}+\cdots$

Common ratio: $\frac{1}{3} \operatorname{as} \theta$.

$$
|v|=\left|\frac{1}{3} \cos \theta\right|=\frac{1}{3}<1
$$

As $|v|<1 ;$ A limiting sum exist.
ii)

$$
\begin{aligned}
& 1+\frac{1}{3} \cos \theta+\frac{1}{9}(\cos \theta)^{2}+\frac{1}{27}(\cos \theta)^{3}+\cdots \\
&=\frac{a}{1-r}=\frac{1}{1-\frac{1}{3} \cos \theta} \\
&=\frac{3}{3-\operatorname{as} \theta} \\
&=\frac{3}{3-\cos \theta-i \sin \theta} \\
&=\frac{3[3-\cos \theta+i \sin \theta]}{3-\cos \theta)^{2}+\sin ^{2} \theta} \\
&=\frac{3(3-\cos \theta)+i 3 \sin \theta}{9-6 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{3(3-\cos \theta)+i(3 \sin \theta)}{10-6 \cos \theta} \\
L H S=1+\frac{1}{3} \operatorname{as} \theta+\frac{1}{9} \operatorname{as} 2 \theta+\frac{1}{27} \operatorname{as} 3 \theta+\ldots \quad \text { (By De Moire's } \\
\text { Theorem) }
\end{gathered}
$$

Equating imaginary parts of both sides.

$$
\begin{aligned}
& \frac{1}{3} \sin \theta+\frac{1}{9} \sin 2 \theta+\frac{1}{27} \sin 3 \theta+\cdots=\frac{3 \sin \theta}{10-6 \cos \theta} \\
& \therefore \sin \theta+\frac{1}{3} \sin 2 \theta+\frac{1}{9} \sin 3 \theta+\cdots=\frac{9 \sin \theta}{10-6 \cos \theta}
\end{aligned}
$$

Question 12

ii) As the sum of two sides of a triangle is always longer than the remaining
side,
$|z|+|w| \geqslant|z+w|$
$\therefore|z+w| \leqslant|-|+|w|$
as required.
iii) $\left|13 z^{2}-2 z+5\right| \leq\left|13 z^{2}\right|+|-2 z|+|5|$, by Triangle inequality.

$$
\begin{aligned}
& =|3 \times / z|^{2}+2|z|+5 \\
& =13 \times 10^{2}+2 \times 10+5 \\
& =1325
\end{aligned}
$$

$$
\therefore\left|13 z^{2}-2 z+5\right| \leqslant 1325
$$

b) i) $p(x)=(x-\alpha)^{m} \cdot Q(x)$
$Q(\alpha) \neq 0$, as $p(x)$ has a root α of multipliaty m.
If $Q(\alpha)=0$, the root would be of multiplicity $>m$.
ii) $P^{\prime}(x)=m(x-\alpha)^{m-1} \cdot Q(x)+(x-\alpha)^{m} \cdot Q^{\prime}(x)$

$$
=(x-\alpha)^{m-1}[\underbrace{m Q(x)+(x-\alpha) \cdot Q^{\prime}(x)}_{\leftrightarrow \text { let } S(x)=m Q(x)+(x-\alpha) Q^{\prime}(x)}]
$$

$$
S(\alpha)=m Q(\alpha) \neq 0 \text { as } Q(\alpha) \neq 0
$$

$$
\begin{aligned}
& \therefore p^{\prime}(x)=(x-\alpha)^{m-1} \cdot S(x) ; S(\alpha) \neq 0 \\
& \longleftrightarrow 0^{\prime}(x) \text { has a root } \alpha \text { ot }
\end{aligned}
$$

$$
\overleftrightarrow{p^{\prime}(x)} \text { has a root } \alpha \text { of multipliaty } m-1 \text {. }
$$

iii) $f(x)=2 x^{4}-15 x^{3}+42 x^{2}-52 x+24$

Let the triple root of $f(x)$ be α.

$$
\begin{aligned}
\therefore f(\alpha) & =f^{\prime}(\alpha)=f^{\prime \prime}(\alpha)=0 \\
f^{\prime}(x) & =8 x^{3}-45 x^{2}+84 x-52 \\
f^{\prime \prime}(x) & =24 x^{2}-90 x+84 \\
& =6\left(4 x^{2}-15 x+14\right) \\
& =6(4 x-7)(x-2)
\end{aligned}
$$

\therefore Possible values of $\alpha: \alpha=\frac{7}{4} ; \alpha-2$

$$
f^{\prime}\left(\frac{7}{4}\right) \neq 0 ; f^{\prime}(2)=0
$$

$$
\therefore \alpha=2 \text { is the triple root. }
$$

Let the remaining root be β
$\Sigma^{\prime} \alpha: 3 \alpha+\beta=\frac{15}{2}$

$$
\beta=\frac{15}{2}-3 \alpha=\frac{3}{2}
$$

$$
\therefore \text { Root are } 2,2,2,3 / 2
$$

c) Old polynomial: $f(x)=3 x^{3}-9 x^{2}+7 x-1$

New roots: y : $\sum \alpha-x$

$$
\begin{aligned}
& y=3-x \\
& x=3-y .
\end{aligned}
$$

$f(3-y)=0$
$\therefore 3(3-y)^{3}-9(3-y)^{2}+7(3-y)-1=0$
$3\left(27-27 y+9 y^{2}-y^{3}\right)-9\left(9-6 y+y^{2}\right)+21-7 y-1=0$
$-3 y^{3}+18 y^{2}-34 y+20=0$
$3 x^{3}-18 x^{2}+34 y-20=0$
d) $f(x)=x^{3}-b a x+3 b$

$$
\text { Let stationary point occur at } x=\alpha \& x=\beta
$$

$f(\alpha) \cdot f(\beta)<0$ for 3 distinct real roots.

$$
\begin{aligned}
& f^{\prime}(x)= 3 x^{2}-6 a \\
& f^{\prime}(x)=0 \Rightarrow 3 x^{2}-6 a=0 \\
& x^{2}=2 a \\
& x= \pm \sqrt{2 a} \\
& f(\sqrt{2 a})= 2 a \sqrt{2 a}-6 a \sqrt{2 a}+3 b \\
&= 3 b-4 a \sqrt{2 a} \\
& f(-\sqrt{2 a})=-2 a \sqrt{2 a}+6 a \sqrt{2 a}+3 b \\
&= 3 b+4 a \sqrt{2 a}
\end{aligned}
$$

$$
f(\sqrt{2 a}) \times f(-\sqrt{2 a})<0
$$

$$
\therefore(3 b-4 a \sqrt{2 a})(3 b+4 a \sqrt{2 a})<0
$$

$$
\begin{aligned}
& 9 b^{2}-16 a^{2} \times 2 a<0 \\
& 9 b^{2}-32 a^{3}<0 \\
& 9 b^{2}<32 a^{3}
\end{aligned}
$$

Question 13

$$
\text { b)i) } \begin{array}{r}
6 x-x^{2}=x+4 \\
x^{2}-5 x+4=0 \\
(x-4)(x-1)=0 \\
\therefore x=1, x=4
\end{array}
$$

Arbitrary Shell

$$
\begin{aligned}
& \rightarrow \text { neight: } y_{2}-y_{1} \\
& \text { Inner radius: } x-1 \\
& \Delta V=\pi\left\lceil O R^{2}-\mathbb{R}^{2}\right\rceil \times \text { height } \\
& \left.=\pi[\tau(x-1)+\Delta x]^{2}-(x-1)^{2}\right] \times\left(y_{2}-y_{1}\right) \\
& =\pi\left[2(x-1) \cdot \Delta x+(\Delta x)^{2}\right] \cdot\left(y_{2}-y_{1}\right) \\
& =2 \pi(x-1) \cdot\left(y_{2}-y_{1}\right) \cdot \Delta x \\
& =2 \pi(x-1)\left(6 x-x^{2}-(x+4)\right) \cdot \Delta x \\
& =2 \pi(x-1)\left(-x^{2}+5 x-4\right) \cdot \Delta x \\
& V \doteqdot \sum_{x=1}^{4} 2 \pi(x-1)\left(-x^{2}+5 x-4\right) \cdot \Delta x \\
& V=\lim _{\Delta x \rightarrow 0} \sum_{x=1}^{4} 2 \pi(x-1)\left(-x^{2}+5 x-4\right) \\
& =2 \pi \int_{1}^{4}-x^{3}+5 x^{2}-4 x+x^{2}-5 x+4 d x \\
& =2 \pi \int_{1}^{4}-x^{3}+6 x^{2}-9 x+4 d x \\
& =2 \pi\left[-\frac{x^{4}}{4}+2 x^{3}-\frac{9 x^{2}}{2}+4 x\right]_{1}^{4} \\
& \left.=2 \pi[-64+128-72+16]-\left[-\frac{1}{4}+2-\frac{9}{2}+4\right]\right] \\
& =\frac{27 \pi}{2} \text { units }^{3}
\end{aligned}
$$

Question 14
a) i) Let the point be $P(a \cos \theta, b \sin \theta)$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-b \sin \theta=\frac{a \sin \theta}{b \operatorname{cosin} \theta}(x-a \cos \theta)
$$

$$
b y \cos \theta-b^{2} \sin \theta \cos \theta=a x \sin \theta-a^{2} \sin \theta \cos \theta
$$

$$
a x \sin \theta-b y \cos \theta=a^{2} \sin \theta \cos \theta-b^{2} \sin \theta \cos \theta
$$

$$
\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2}
$$

ii) RTP: NS $=e P S \quad \quad R H S=e P S=e^{2} P D$

$$
=e^{2}\left|\frac{a}{e}-a \cos \theta\right|
$$

For $N, y=0$

$$
\therefore x=\left(\frac{a^{2}-b^{2}}{a}\right) \cos \theta
$$

$$
=a e|1-e \cos \theta|
$$

but $\quad b^{2}=a^{2}-a^{2} e^{2}$
$\therefore a^{2}-b^{2}=a^{2} e^{2}$
$x_{N}=a e^{2} \cos \theta$
$N S=\left|a e^{2} \cos \theta-a e\right|$
$=a e|e \cos \theta-1|$
$=a e|1-e \cos \theta|$

$$
\therefore N S=e P S
$$

b)i) $z=\cos \theta$.

$$
\begin{aligned}
& z=\cos \theta . \quad \rightarrow=\operatorname{as}(n \theta)+\operatorname{as(n\theta)} \\
& \text { RTP: } z^{n}+z^{-n}=2 \cos n \theta . \quad=2 \times \operatorname{Re}\lceil a s(n \theta)\rceil \\
& L H S=z^{n}+z^{-n} \\
& =(\cos \theta)^{n}+(\cos \theta)^{-n} \\
& =a \sin \theta+a s(-n \theta) \\
& =2 \cos n \theta \text {. } \\
& =\text { RHS. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rlr}
x & =a \cos \theta & y=b \sin \theta \\
\frac{d x}{d \theta} & =-a \sin \theta & \frac{d y}{d \theta}
\end{array}=b \cos \theta \\
& \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=\frac{-b \cos \theta}{a \sin \theta} \\
& \therefore m_{T}=-\frac{b \cos \theta}{a \sin \theta} \Rightarrow m_{N}=\frac{a \sin \theta}{b \cos \theta}
\end{aligned}
$$

ii) $12 z^{4}-23 z^{3}+34 z^{2}-23 z+12=0$

$$
\text { (Dividing both vides by } z^{2} ; z \neq 0 \text {) }
$$

$$
12 z^{2}-23 z+34-23 z^{-1}+12 z^{-2}=0
$$

$$
12\left(z^{2}+z^{-2}\right)-23\left(z+z^{-1}\right)+34=0
$$

$$
12(2 \cos 2 \theta)-23(2 \cos \theta)+34=0
$$

$$
12\left(2 \cos ^{2} \theta-1\right)-23 \cos \theta+17=0
$$

$$
24 \cos ^{2} \theta-23 \cos \theta+5=0
$$

$$
(8 \cos \theta-5)(3 \cos \theta-1)=0
$$

$$
\therefore \cos \theta=\frac{5}{8}, \cos \theta=\frac{1}{3}
$$

$$
\therefore \sin \theta=\frac{\sqrt{39}}{8} \quad \sin \theta=\frac{2 \sqrt{2}}{3}
$$

As $z=\operatorname{as} \theta$; roots are
c) $I=\int \cos (\sqrt{x}) d x$
let $u=\sqrt{x}$
$\frac{d u}{d x}=\frac{1}{2 \sqrt{n}}$
$d x=2 \sqrt{x} d u=2 u d u$
$\therefore I=2 \int u \cos u d u$
$u=u \quad 7^{v=v i n u}$
$u^{\prime}=1 \quad v^{\prime}=\cos u$
$I=2 u \sin u-2 \int \sin u d u$
$=2 u \sin u+2 \cos u+c$
$=2 \sqrt{x} \sin \sqrt{x}+2 \cos \sqrt{x}+c$.
d)i) Without loss of generality, we can assume α, β, γ are labelled as shown.

$$
\begin{aligned}
\alpha=L C A B & =\arg (\overrightarrow{A C})-\arg (\overrightarrow{A B}) \\
& =\arg \left(z_{3}-z_{1}\right)-\arg \left(z_{2}-z_{1}\right) \\
& =\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)
\end{aligned}
$$

ii) Similarly;

$$
\begin{aligned}
\beta & =\arg (\overrightarrow{B A})-\arg (\overrightarrow{B C}) & \gamma & =\arg (\overrightarrow{C B})-\arg (\overrightarrow{C A}) \\
& =\arg \left(z_{1}-z_{2}\right)-\arg \left(z_{3}-z_{2}\right) & & =\arg \left(z_{2}-z_{3}\right)-\arg \left(z_{1}-z_{3}\right) \\
& =\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{2}}\right) & & =\arg \left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)
\end{aligned}
$$

Now, $\alpha+\beta+\gamma=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)+\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{2}}\right)+\arg \left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)$
$=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}} \times \frac{z_{1}-z_{2}}{z_{3}-z_{2}} \times \frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)$
$=\arg (-1 \times-1 \times-1)=\arg (-1)=\pi$
\therefore Angle sum of a triangle is π radians.

Question 15 .
a) i)

ii) Multiplying a complex number by as $\frac{\pi}{4}$ rotates the complex number anticlockwise by an angle of $\frac{\pi}{4}$ whilst preserving its modulus. so, $w=z \times a \leqslant \frac{\pi}{4}$ is simply the hyperbola $x^{2}-y^{2}=a^{2}$ rotated anticlockwise about the origin by an angle of $\frac{\pi}{4}$.
iii) $w=z \times \cos \frac{\pi}{4} . \quad z=a \sec \theta+i \tan \theta$

$$
w=(a \sec \theta+i \operatorname{atan} \theta)\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)
$$

$\therefore \quad x+i y=\frac{a \sec \theta}{\sqrt{2}}-\frac{a \tan \theta}{\sqrt{2}}+i\left(\frac{a \tan \theta}{\sqrt{2}}+\frac{a \sec \theta}{\sqrt{2}}\right)$
Equating real \$ imaginary parts

$$
x=\frac{a}{\sqrt{2}}(\sec \theta-\tan \theta) \text { © } 1 \quad y=\frac{a}{\sqrt{2}}(\sec \theta+\tan \theta) \text { (2) }
$$

(1) \times (2):

$$
\begin{aligned}
x y & =\frac{a^{2}}{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right) \\
& =\frac{a^{2}}{2}(1) \\
\therefore x y & =\frac{a^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
V & \doteqdot \sum_{x=4}^{4 \sqrt{2}} \pi\left(x^{2}-16\right) \cdot \Delta x \\
V & =\lim _{\Delta x \rightarrow 0} \sum_{x=4}^{4 \sqrt{2}} \pi\left(x^{2}-16\right) \cdot \Delta x \\
& =\pi \int_{4}^{4 \sqrt{2}} x^{2}-16 d x \\
& =\pi\left[\frac{x^{3}}{3}-16 x\right]_{4}^{4 \sqrt{2}} \\
& =\pi\left\{\left[\frac{128 \sqrt{2}}{3}-64 \sqrt{2}\right]-\left[\frac{64}{3}-64\right]\right\} \\
& =\pi\left\{\frac{-64 \sqrt{2}}{3}+\frac{128}{3}\right\} \\
& =\pi \times \frac{128-64 \sqrt{2}}{3} \text { uniti }^{3}
\end{aligned}
$$

() i) $I_{n}=\int e^{a x} \cos ^{n} x d x$

$$
\begin{aligned}
& I_{n}=\cos ^{n} x \\
& u^{\prime}=-n \sin x \cdot \cos ^{n-1} x / v^{\prime}=e^{a x} \\
& \therefore I_{n}=\frac{1}{a} e^{a x} \cos ^{n} x+\frac{n}{a} \int e^{a x} \cdot\left(\sin x \cos ^{n-1} x\right) d x \\
& a I_{n}=e^{a x} \cos ^{n} x+n \int e^{a x}\left(\sin x \cos ^{n-1} x\right) d x \\
& u=\sin x \cos ^{n-1} x \\
& u^{\prime} \\
&=\cos ^{n} x-(n-1) \sin ^{2} x \cos ^{n-2} x \\
&=\cos ^{n} x-(n-1) \times\left(1-\cos ^{2} x\right) \cdot \cos ^{n-2} x \\
&=\cos ^{n} x-(n-1) \cos ^{n-2} x+(n-1) \cos ^{n} x \\
&=n \cos ^{n} x-(n-1) \cos ^{n-2} x
\end{aligned}
$$

$$
\therefore a I_{n}=e^{a x} \cos ^{n} x+n\left[\frac{1}{a} e^{a x} \sin x \cos ^{n-1} x-\frac{1}{a} \int e^{a x}\left(n \cos ^{n} x-(n-1) \cos ^{n-2} x d x\right]\right.
$$

$$
a^{2} I_{n}=a e^{a x} \cos ^{n} x+n e^{a x} \sin x \cos ^{n-1} x-n^{2} \int e^{a x} \cos ^{n} x+n(n-1) \int e^{a x} \cos ^{n-2} x d x
$$

$$
a^{2} I_{n}=e^{a x} \cos ^{n-1} x(a \cos x+n \sin x)-n^{2} I_{n}+n(n-1) I_{n-2}
$$

$$
\therefore \quad\left(a^{2}+n^{2}\right) I_{n}=e^{a x} \cos ^{n-1} x(a \cos x+n \sin x)+n(n-1) I_{n-2}
$$

ii) Rearranging result in (i)

$$
\begin{aligned}
& I_{n}=\frac{1}{a^{2}+n^{2}}\left[e^{a x} \cos ^{n-1} x(a \cos x+n \sin x)+n(n-1) I_{n-2}\right] \\
& \text { Noting that } \int e^{3 x} \cos ^{4} x d x \text { is } I_{4} \text { with } a=3 . \\
& I_{4}=\frac{1}{3^{2}+4^{2}}\left[e^{3 x} \cos ^{3} x(3 \cos x+4 \sin x)+4(3) I_{2}\right] \\
&=\frac{1}{25}\left[e^{3 x} \cos ^{3} x(3 \cos x+4 \sin x)+12 \times\left[\frac{1}{3^{2}+2^{2}} \times\left(e^{3 x} \cos x(3 \cos x+2 \sin x)+2(1) \cdot I_{0}\right)\right]\right] \\
&=\frac{1}{25} e^{3 x} \cos ^{3} x(3 \cos x+4 \sin x)+\frac{12}{25}\left[\frac{1}{13}\left(e^{3 x} \cos x(3 \cos x+2 \sin x)+2 \int e^{3 x} d x\right)\right] \\
&=\frac{1}{25} e^{3 x} \cos ^{3} x(3 \cos x+4 \sin x)+\frac{12}{325} e^{3 x} \cos x(3 \cos x+2 \sin x)+\frac{24}{325} \times \frac{e^{3 x}}{3}+c \\
&=\frac{1}{25} e^{3 x} \cos ^{3} x(3 \cos x+4 \sin x)+\frac{12}{325} e^{3 x} \cos x(3 \cos x+2 \sin x)+\frac{8 e^{3 x}}{325}+C
\end{aligned}
$$

Question 16

$P:\left(\frac{\lambda_{1} x_{1}+\lambda_{2} x_{2}}{\lambda_{1}+\lambda_{2}}, \frac{\lambda_{1} f\left(x_{1}\right)+\lambda_{2} f\left(x_{2}\right)}{\lambda_{1}+\lambda_{2}}\right)$

But $\lambda_{1}+\lambda_{2}=1$
$\therefore P\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}, \lambda_{1} f\left(x_{1}\right)+\lambda_{2} f\left(x_{2}\right)\right)$

iii) RTP: $\frac{g\left(x_{1}\right)+g\left(x_{2}\right)+\cdots+g\left(x_{n}\right)}{n} \leqslant g\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)$ for $n \geqslant 2$

$$
\begin{aligned}
& \text { Step): Prove true for } n=2 \\
& \qquad \begin{aligned}
& L H S=\frac{g\left(x_{1}\right)+g\left(x_{2}\right)}{2} \\
&= \frac{1}{2} g\left(x_{1}\right)+\frac{1}{2} g\left(x_{2}\right)
\end{aligned} \\
&
\end{aligned}
$$

\therefore Statement is the for $n=2$

Step 2: Assume the for $n=k ; k \in \mathbb{Z}^{+} ; k \geqslant 2$.

$$
\frac{g\left(x_{1}\right)+g\left(x_{2}\right)+\ldots+g\left(x_{k}\right)}{k} \leqslant g\left(\frac{x_{1}+x_{2}+\cdots+x_{k}}{k}\right)
$$

Step 3: Prove tire for $n=k+1$

$$
\text { RTP: } \begin{aligned}
& \frac{g\left(x_{1}\right)+g\left(x_{2}\right)+\cdots+g\left(x_{k}\right)+g\left(x_{k+1}\right)}{k+1} \leqslant g\left(\frac{x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}}{k+1}\right) \\
& \text { LHS }= \\
\leqslant & \frac{g\left(x_{1}\right)+g\left(x_{2}\right)+\cdots+g\left(x_{k}\right)}{k+1}+\frac{g\left(x_{k+1}\right)}{k+1} \times g\left(\frac{x_{1}+x_{2}+\cdots+x_{k}}{k}\right)+\frac{1}{k+1} \times g\left(x_{k+1}\right) \quad \text { (By Assumption) } \\
\leqslant & \lambda_{1} \\
= & \left.g\left(\frac{x_{1}+x_{2}+\cdots+x_{k+1}}{k+1}\right)=\text { RHO } \times\left(\frac{x_{1}+x_{2}+\cdots+x_{k}}{k}\right)+\frac{1}{k+1}\left(x_{k+1}\right)\right] \quad \text { using (ii) } \\
& \therefore \text { true for } n=k+1
\end{aligned}
$$

Step 4: Conclusion
Hence, the statement is true for $n \in \mathbb{Z}^{+} ; n \geqslant 2$, by induction
b) i) If $A, B \neq C$ are angles of a triangle; $C=\pi-(A+B) \quad\{$ Angle suns of a triangle is $\pi\}$.

$$
\begin{aligned}
\text { LHS } & =\tan A+\tan B+\tan C \\
& =\tan A+\tan B+\tan [\pi-(A+B)] \\
& =\tan A+\tan B-\tan (A+B) \\
& =\tan A+\tan B-\left[\frac{\tan A+\tan B}{1-\tan A \tan B}\right] \\
& =\frac{(\tan A+\tan B)(1-\tan A \tan B)-\tan A-\tan B}{(1-\tan A \tan B)} \\
& =\frac{-\tan A \tan B(\tan A+\tan B)}{1-\tan A \tan B} \\
& =-\tan A \tan B \tan (A+B) \\
& =\tan A \tan B \tan [\pi-(A+B)] \\
& =\tan A \tan B \tan C=R H S .
\end{aligned}
$$

ii) $\operatorname{RTP}: \cos A+\cos B+\cos C=1+4 \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)$

Note: $\cos (X+Y)+\cos (X-Y)=2 \cos X \cos Y$
let $X=\frac{A+B}{2}, Y=\frac{A-B}{2}$

$$
\text { Note: } \begin{aligned}
& C=\pi-(A+B) \\
& \frac{C}{2}=\frac{\pi}{2}-\frac{(A+B)}{2} \\
& \therefore \frac{A+B}{2}=\frac{\pi}{2}-\frac{C}{2}
\end{aligned}
$$

$\therefore \quad \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$

So $L H S=\cos A+\cos B+\cos C$

$$
\begin{aligned}
& =2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)+\cos (\pi-(A+B)) \\
& =2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)-\cos (A+B) \\
& =2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)-\left(2 \cos ^{2}\left(\frac{A+B}{2}\right)-1\right) \\
& =2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)-2 \cos ^{2}\left(\frac{A+B}{2}\right)+1 \\
& =1+2 \cos \left(\frac{A+B}{2}\right)\left[\cos \left(\frac{A}{2}-\frac{B}{2}\right)-\cos \left(\frac{A}{2}+\frac{B}{2}\right)\right] \\
& =1+2 \cos \left(\frac{\pi}{2}-\frac{C}{2}\right) \times\left[2 \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)\right] \\
& =1+4 \sin \left(\frac{C}{2}\right) \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)=\text { RHS }
\end{aligned}
$$

c) If $a+b+c=a b c$,
then we make the substitution
$a=\tan A, b=\tan B, c=\tan C$; where $A_{1} B \$ C$ ave the angles of a triangle.
[the constraint is satisfied by (i)]
So; $L H S=\frac{1}{\sqrt{1+\tan ^{2} A}}+\frac{1}{\sqrt{1+\tan ^{2} B}}+\frac{1}{\sqrt{1+\tan ^{2} C}}$
$=\cos A+\cos B+\cos C$
$=1+4 \sin \left(\frac{A}{2}\right) \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{c}{2}\right) \quad($ using b) iii))

$$
\begin{aligned}
& \text { Consider } h(x)=\ln [\sin x] \\
& h^{\prime}(x)=\frac{\cos x}{\sin x}=\cot x \\
& h^{\prime \prime}(x)=-\operatorname{cosec}^{2} x \leqslant 0 \text { for all } x \\
& \therefore h(x)=\ln \lceil\sin x\rceil \text { is concave down. } \\
& \frac{\ln \left[\sin \left(\frac{A}{2}\right)\right]+\ln \left[\sin \left(\frac{\beta}{2}\right)\right]+\ln \left[\sin \left(\frac{c}{2}\right)\right]}{3} \leqslant \ln \left[\sin \left(\frac{\frac{A}{2}+\frac{\beta}{2}+\frac{c}{2}}{3}\right)\right] \\
& \therefore \ln \left[\sin \left(\frac{A}{2}\right) \times \sin \left(\frac{B}{2}\right) \times \sin \left(\frac{C}{2}\right)\right] \leqslant 3 \ln \left[\sin \left(\frac{\pi}{6}\right)\right\rceil \text { as } A+B+C=\pi \\
& \ln \left[\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)\right\rceil \leq \ln \left\lceil\left(\frac{1}{2}\right)^{3}\right\rceil \\
& \therefore \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right) \leq \frac{1}{8} \text {. } \\
& \therefore \text { AS LHS }=1+4 \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right) \\
& \text { LHS } \leqslant 1+4\left(\frac{1}{8}\right)=1+\frac{1}{2}=3 / 2 \\
& \therefore \quad \frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+\frac{1}{\sqrt{1+c^{2}}} \leqslant \frac{3}{2} .
\end{aligned}
$$

