Fort © Sreet ©Aligh © chool $_{\text {Chon }}$
 4 unit mathematics

 $\tau_{\text {Rid }}$ hSC $\epsilon_{\text {xamination }} 1986$

 $\tau_{\text {Rid }}$ hSC $\epsilon_{\text {xamination }} 1986$}

1. (i) Sketch the following on the Argand diagram and describe in geometric terms the locus represented by:
(a) $\left|\frac{z-4}{z+3 i}\right|=1$ (b) $\arg (z+1-i)=\frac{\pi}{3}$
(ii) (a) State de Moivre's Theorem.
(b) Hence, prove that $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
(c) Solve the equation $\cos 5 \theta=1$ for $0 \leq \theta<\pi$ and hence show that the roots of the equation $16 x^{5}-20 x^{3}+5 x-1=0$ are $x=\cos \frac{2 k \pi}{5}$ for $k=0,1,2,3,4$.
(d) Hence prove that $\cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{4}$ and $\cos \frac{\pi}{5}-\cos \frac{2 \pi}{5}=\frac{1}{2}$.
(iii) Solve the equation $z^{6}+1=0$, giving the roots in the form $a+i b$. Show these roots on an Argand diagram.
(iv) If $w=\frac{1+z}{1-z}$ and $|z|=1$ where z and w are complex numbers, determine the locus of w.
2. (i) The ellipse E, is given in terms of the complex number z by: $|z+3|+|z-3|=$ 10.
(a) Sketch E and determine the Cartesian equation of E.
(b) Prove that the area enclosed by E is 20π unit 2.
(ii) Prove that if z is a complex number then $\arg \left(\frac{z-i}{z+2}\right)=\frac{\pi}{2}$ represents the locus of a circle. Hence state the centre and radius of this circle.
(iii) Determine the factors of $6 x^{4}+7 x^{3}+21 x^{2}+28 x-12$ over the field of
(a) rational numbers, \mathbb{Q}.
(b) complex numbers, \mathbb{C}.
3. (i) Decompose $\frac{6 x^{3}-3 x^{2}+22 x-5}{(x-1)^{2}\left(x^{2}+9\right)}$ into partial fractions over the field of real numbers.
(ii) Write $\sqrt{5-12 i}$ in the form $a+i b$, where a and b are real numbers.
(iii) (a) Find the coordinates of the foci and equations of the directrices and asymptotes of the hyperbola $5 x^{2}-4 y^{2}=20$. Sketch the curve.
(b) The tangent at a variable point P on this hyperbola meets a directrix at T. Show that $P T$ subtends a right angle at the corresponding focus.
(iv) Prove that the polynomial $P(x)=\frac{x^{4}}{4}-\frac{x^{3}}{3}-2 x^{2}+4 x+c$ has no real zeros if $c>9 \frac{1}{3}$.
4. (i) The curve $y=f(x)$ may be represented parametrically by: $x=\sin t-1$ and $y=t-\cos t$.
(a) If the arc length of this curve between $t=0$ and $t=\pi$ is given by: $L=$ $\int_{0}^{\pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$ show that $L=\sqrt{2} \int_{0}^{\pi} \sqrt{1+\sin t} d t$.
(b) Use seven evenly spaced ordinates from $t=0$ to $t=\pi$ and Simpson's rule to estimate L to two decimal places.
(ii) Evaluate the following:
(a) $\int_{-\pi}^{\pi} \frac{\sin ^{5} x}{1+\cos ^{2} x} d x$
(b) $\int_{0}^{\pi} x \cos 2 x d x$
(c) $\int_{4}^{\infty} \frac{d x}{16+4 x^{2}}$
5. (i) Determine the following integrals:
(a) $\frac{(4 \tan x-1) \sec ^{2} x d x}{(\tan x-1)^{2}}$
(b) $\int \frac{d x}{3+4 \cos x}$
(c) $\int \frac{d x}{\left(3 x^{2}-5 x+4\right)^{\frac{1}{2}}}$
(d) $\int \operatorname{cosec}^{3} x d x$.
(ii) If $I_{n}=\int x^{n} e^{x} d x$, prove that $I_{n}=x^{n} e^{x}-n I_{n-1}$. Hence evaluate $\int_{0}^{1} x^{3} e^{x} d x$.
6. (a) Outline Newton's Method for estimating a root r, of the equation $P(x)=0$. In your answer include an appropriate diagram and derivation of the expression for the 2 nd approximation z_{2} of r in terms of the 1st approximation z_{1}.
(b) Use Newton's Method to estimate the first positive solution of $\tan x=-\frac{1}{x}$ correct to two decimal places.
(c) Sketch the curve $y=\frac{x}{\cos x}$ for $-\frac{3 \pi}{2} \leq x \leq \frac{3 \pi}{2}$ using part (b) or otherwise. In your answer consider odd/even properties, vertical asymptotes, limits, stationary points, points of inflexion and the extreme values of the curve.
7. (a) The area bounded by the curve $y=4 x^{2}-x^{4}$ and the x-axis between $x=0$ and $x=2$ is rotated about the y-axis. By slicing perpendicular to the y-axis show that the area of a cross-sectional slice is of the form $A(y)=2 \pi(4-y)^{\frac{1}{2}}$. Hence calculate the volume of the solid generated.
(b) A solid sphere is formed by the rotation of the circle $x^{2}+y^{2}=16$ about the y-axis (units are in cm). A cylindrical hole of diameter 4 cm is bored through the centre of the sphere in the direction $O y$.
(i) By considering a slice perpendicular to the x-axis use the method of cylindrical shells to determine the volume of the solid remaining.
(ii) Also determine the volume of the section cut out from the sphere.
8. (a) A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by the relations: $u_{1}=1, u_{2}=5$ and $u_{n}=5 u_{n-1}-6 u_{n-2}$ for $n=2,3, \ldots$. Prove using the method of mathematical induction that $u_{n}=3^{n}-2^{n}$.
(b) In a triangle $A B C$ the altitudes $A D, B E$ and $C F$ meet in the point H. The altitude $A D$ also intersects the circumcircle of triangle $A B C$ in X.
(i) Explain why $H D C E$ and $A E D B$ are cyclic quadrilaterals.
(ii) Prove that the triangles $B D H$ and $B D X$ are congruent.
(c) If $\sin ^{-1} x, \cos ^{-1} x$ and $\sin ^{-1}(1-x)$ are acute show that $\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=$ $2 x^{2}-1$. Hence solve $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(1-x)$.
