FORT STREET HIGH SCHOOL 4 Unit Mathematics 1999 Trial HSC Examination

Question 1

(a) Find the exact value of:
(i) $\int_{0}^{1} \frac{e^{x}}{e^{2 x}+1} d x$
(ii) $\int_{e}^{e^{2}} x^{2} \log x d x$
(iii) $\int_{4}^{5} \frac{x+5}{x^{2}-2 x-3} d x$
(b) If $I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$ use the substitution $x=\pi-y$ to:
(i) show that $I=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin y}{1+\cos ^{2} y} d y$;
(ii) hence or otherwise show that $I=\frac{\pi^{2}}{4}$.

Question 2

(a) If $z_{1}=1+i \sqrt{3}$ and $z_{2}=\sqrt{3}+i$
(i) Express z_{1} and z_{2} in mod-Arg form
(ii) Hence, or otherwise, write $\frac{z_{1}}{z_{2}}$ and $\left(\frac{z_{1}}{z_{2}}\right)^{5}$ in the form $a+i b$, where a, b are real.
(b) If $w=2+3 i$, illustrate on an Argand diagram the points w and $i w$ clearly, labelling the size of the angle $\arg i w-\arg w$
(c) Describe and sketch the locus defined by
(i) $2 \leq|z+2-i| \leq 4$
(ii) $-\frac{\pi}{2}<\arg z<\frac{\pi}{6}$
(d) Show the locus of z defined by $w=\frac{z-i}{z-2}$, where w is purely imaginary, is a circle. Give the centre and radius of this circle.

Question 3

(a) If $P(x)=x^{2}(x-2)(x+2)$ then sketch the following on separate graphs (indicate clearly the coordinates of turning points and asymptotes).
(i) $y=P(x)$
(ii) $y=\frac{1}{P(x)}$
(b) (i) Evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
(ii) Consider $f(x)=\frac{\sin x}{x}$ for $x \geq 0$. Sketch this curve showing intercepts (but do not calculate the coordinates of turning points).
(c) Find the equation of the tangent to the curve $3 x^{2} y^{3}+4 x y^{2}=6+y$ at the point $(1,1)$.

Question 4

(a) If z is a complex number such that $|z-2|+|z+2|=6$ explain why the locus of z is an ellipse. For this ellipse find the:
(i) co-ordinates of the foci;
(ii) equations of the directrices;
(iii) eccentricity.
(b) A conic is a rectangular hyperbola with eccentricity $\sqrt{2}$, focus $(2,0)$ and directrix $x=1$.
(i) Find the equation of this hyperbola.
(ii) Sketch this hyperbola indicating the asymptotes and vertices.
(iii) Prove the equation of the normal at a point $P(a \sec \theta, a \tan \theta)$ is $x \tan \theta+y \sec \theta=2 \sqrt{2} \sec \theta \tan \theta$.
(iv) This normal meets the x-axis at $Q(x, 0)$ and the y-axis at $R(0, y)$. Find the locus of the point $T(x, y)$ and describe this locus geometrically.

Question 5

(a) (i) Show that the area cut off by the latus rectum of the parabola $x^{2}=4 A y$ is $\frac{8 A^{2}}{3}$ square units.
(ii) A solid is now formed such that its base is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the cross-section taken perpendicular to the major axis of the ellipse is a parabola with its latus rectum in this base (i.e., the base of the cross section is the latus rectum). Find this volume in terms of a and b.
(iii) A cylindrical hole is bored through the centre of a sphere of unknown radius. However, the length of the hole is known to be $2 L$. Using cylindrical shells show that the volume of the portion of the sphere that remains is equal to the volume of a sphere of diameter $2 L$.

Question 6

(a) Given that $x^{4}-3 x^{3}-6 x^{2}+28 x-24=0$, has a triple root (i.e., a root of multiplicity $3)$ solve the equation completely.
(b) The polynomial $P(x)$ is given by $P(x)=x^{5}-5 c x+1$ where c is a real number
(i) By considering the turning points, prove that if $c<0, P(x)$ has just one real root which is negative.
(ii) Prove that $P(x)$ has three distinct real roots if and only if $c>\left(\frac{1}{4}\right)^{4 / 5}$.

Question 7

(a) Simplify the square of $\frac{1}{4}(\sqrt{6}-\sqrt{2})$.
(i) Hence state the positive square root of $\frac{1}{4}(2-\sqrt{3})$ and
(ii) Given that θ is acute and that $\cos \theta=\frac{1}{4}(\sqrt{6}+\sqrt{2})$, find $\sin \theta$.
(iii) Hence, or otherwise, evaluate $\sin 2 \theta$ and deduce the exact value(s) of θ expressing your answer in radians.
(b) A particle of mass $m \mathrm{~kg}$ is projected vertically upwards from the ground with a velocity $u \mathrm{~m} . \mathrm{s}^{-1}$ in a medium whose resistance is given by $m k v^{2}$ Newtons, where v is the speed at that instant (in m. s^{-1}) and k is a positive constant.
(i) Prove that the time taken to reach the highest point is $\frac{1}{\sqrt{k g}} \tan ^{-1}\left(u \sqrt{\frac{k}{g}}\right)$ seconds, where $g \mathrm{~m} . \mathrm{s}^{-1}$ is the acceleration due to gravity.
(ii) Prove that the greatest height reached is $\frac{1}{2 k} \ln \left(1+\frac{k u^{2}}{g}\right)$ metres.
(iii) How fast is the particle going when it reaches the ground again?

Question 8

(a) Draw a neat sketch of the curve $3 y^{2}=x(x-1)^{2}$ and show that the area enclosed by the loop of the curve is $\frac{8 \sqrt{3}}{45}$ unit 2.
(b) Show that to hit a target h metres above what was its maximum range position on a horizontal plane, the initial speed of a projectile projected at the same angle as before, must be increased from V to $\frac{V^{2}}{\sqrt{V^{2}-g h}} \mathrm{~m} \cdot \mathrm{~s}^{-1}$ (air resistance is neglected.)

