$$
200 D-E x . \text { II }_{14} \text { Math's Tral. }
$$

OUESTION 1

OUESTION 2 Begin a new page.

Marks

Marks

(a) $\quad a, \beta$ and δ are the roots of $x^{3}+p \pi+q=0$.

Evaluale $(\alpha-\beta)^{2}+(\beta-\delta)^{2}+(\delta-a)^{2}$.
(b) (i) Prove that if a polymomia! $P(x)$ has a root of multipliciry m , then $\mathrm{P}^{\prime}(\mathrm{x})$ has a roon of molliplicity $(\mathrm{m}-1)$.
(ii) Find the values of k so that the equation $5 x^{5}-3 x^{\prime}+k=0$ has two equal rooss. both positive.
(c) The diagram is a skeich of $y=8(x)$ which includes part of the curve $y=\sin \frac{\pi x}{6}$

On separate diagrams, sketch each of the following:

$$
\begin{aligned}
& \text { (f) } \quad y=-f(x) \\
& \text { (ii) } \quad y=|f(x)| \\
& \text { (ai) } \quad y=[f(x)]^{z} \\
& \text { (iv) }|v|=f(x)
\end{aligned}
$$

QUESTION 7 Begin a new page.

Marks

(2)
(1) Sketch $y=e^{\prime}-1-x$ showing all statienary poinl(s) and
asymptote(s)
(ii) Hence, solve I $+\pi<e^{\prime}$
(b) P asd Q are on the same branch of the rectangular hyperbola $x y^{\prime}=c^{2}$.
(i) Show that the equation of the chord joining the points $\mathrm{P}\left(c \mathcal{P}, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ is $x+p q y=c(p+q)$.
(ii) Deduce the equation of the tangent at P.
(iii) The tangent at P meets the x and y axis at L and M respectively
O is the origin and POD is a diameter. The line MD meets the 8 axis at T
Prove that the area of triangle DOT is equal to $\frac{c^{2}}{3}$ square units
(iv) The normal at Q meets the x axis at A and the cangent at Q meess the y axis al B. Find the equation of the locus of the mid-point of $A B$

QUESTION 8 Begin a new page.

0
(a) (i) Find the derivative of $y=\ln \sqrt{\frac{1-\sin x}{1+\sin x}}$
(ii) Hence, find $\int \sec x d s$.
(b) (i) Find $\frac{d}{d x}\left(\cot ^{-1} x\right)$
(ii) Prove that the function $f(x)=\cot ^{-1} x+\tan ^{-1} x$ is constant and find the value of this constant.
(c) Find the coordinales of the point on the graph $x^{2} y+x x^{2}=16$ at which the tangent is parallel to the x axis.
(d) Consider the compliex number $z=x+i y$ represented by point A on the Afgand diagram
(1) Find the locus of A for which Z is a real namber.
(ii) Find the locus of M as A moves on the x axis

;

2000 Fon Snest Heph Scheol 4 Une Trul Hegher Sobeol Cenificus
pege: I
20004 unit TRIAL - ESHS . Solation.

(c) $w^{3}=1, \quad-\quad$ - - emplex -(wt-1)
$\omega\left(\omega^{2}\right)^{3}=\left(\omega^{2}\right)^{2}=(1)^{2}=1$

(ii) $(1+\infty)(1+2 w)-(1+3 w)-(1+5 w)$.
$=\left(1+3 w+2 w^{2}\right)-\left(1+8 w+15 w^{2}\right)$
$1 / 2$

Foll expantion: $1+41 w^{2}+11 u+(5+16) w^{2}+30 y=1+41 w+41 w^{2}+61$.
$=62+41\left(N+N^{2}\right)=62-w-31$

- Allerratioe sila for (i): $E^{3}=1$ Cube Rests of umity : cis $3 \theta=$ ciso.

$$
3 \theta=2 \mathrm{ki} \Rightarrow \theta=2 \mathrm{k} \mathrm{\pi} / 3 . \quad k=0, \pm 1 .
$$

\therefore ante roots of mity are: 1 , cis $\frac{2 \pi}{3}$, cis $\frac{4 \pi}{3}=c_{i s}(2 \pi / 3)$.
$z^{3}-1=0 \quad \Rightarrow \quad(z-1)\left(z^{2}+z+1\right)=0$
\therefore complex soots must s atisify $z^{2}+z+1=0$.
$\omega=\operatorname{cis} 2 \pi / 3 \quad \Rightarrow \omega^{2}=c i s 2 x \frac{2 \pi}{3}=\omega i \frac{4 j}{3}$. (By De Mowre's).
But cit $\frac{1 \pi}{3}=\operatorname{cis}(-2 \pi / 3)$
里: $\left.\begin{array}{l}\omega=\operatorname{cis} 2 \pi / 3=-\frac{1}{2}+\frac{i \sqrt{3}}{2} . \\ v^{2}=c_{1}(-2 \pi / 2)=-1 / 2-\frac{i \sqrt{3}}{3} .\end{array}\right] \Rightarrow 1+\omega^{2}+\omega^{2}=0$.
iii) $p(w)=w^{3}+p w^{2}+q w+m=0 . \quad \infty 1+p^{2}+q w+m=0$.
$P\left(w^{2}\right)=\left(w^{2}\right)^{3}+p w^{4}+q w^{2}+m=0 \quad$ Sinse. $\left(w^{2}\right)^{2}=\left(w^{2}\right)^{2}=1 ;$
$=1+p w+q w^{2}+m=0$.
$P(\omega)=P\left(\omega^{2}\right)=0 \quad \circ P\left(\omega^{2}-\omega\right)+q\left(\omega-\omega^{2}\right)=0$.

$$
p\left(\omega^{2}-\omega\right)-q\left(\omega^{2}-\omega\right)=0=
$$

\qquad $(p-q)\left(w^{2}-w\right)=0 . \quad \Rightarrow p=q \operatorname{since} w^{2} \neq$
But $1+p w^{2}+q^{v}+m=0 \quad \Rightarrow 1+p v^{2}+p w+m=0$.

$$
1+p\left(w^{2}+\omega\right)+m=0 .
$$

$$
1+p(-1)+m=0 . \Rightarrow p=m+1 .
$$

$(r \omega)^{3}=r^{2} \omega^{3}=r^{2}(1)=a \quad$ since $w^{2}=1 . \quad \Rightarrow(r \omega$ is a cule ropt .
$\left(r w^{2}\right)^{3}=r^{3} w^{6}=r^{3}\left(w^{2}\right)^{2}=r^{3}(1)^{2}=r^{3}=a \Rightarrow\left(r w^{2}\right)$ is alo a ade roe
esi $x f r$ is a whe rot, nest cooct is

(v) $r^{3}=-8$: Reots are $-2 ;-2 N=-20 i s \frac{2 \pi}{3}=-2\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) ;-2 \omega^{2}=-2\left(-\frac{1}{2}\right.$

$$
\begin{aligned}
& \left.\begin{array}{ll}
\frac{z+1}{z}=-2 & \frac{z+1}{2}=-2\left(-\frac{1}{2}+\frac{y i}{2} c\right) \quad \\
z+1 & =-2 z
\end{array} \quad \frac{z_{+}+1}{2}=-2\left(-\frac{1}{2}+i \sqrt{2}\right)^{2}\right) \\
& / 3^{2+1}=-2 z \\
& \frac{\pi+1}{2}=1-\sqrt{3} i \\
& x+1=z-\sqrt{3} x i \text {. } \\
& \begin{array}{l}
1=-\sqrt{3} i z \\
x=-\frac{1}{\sqrt{3} i}=\frac{i}{\sqrt{3}}
\end{array} \\
& \begin{array}{l}
1=-\sqrt{3} i z \\
z=-\frac{1}{\sqrt{3 i}}=\frac{i}{\sqrt{3}} .
\end{array} \\
& \frac{z_{+1}}{2}=1+i \sqrt{3} \\
& \begin{aligned}
3+1 & =- \\
3 x & =-
\end{aligned} \\
& x=-\frac{1}{3} \text {. } \\
& z+1=z+i \sqrt{3} z \text {. } \\
& z=\frac{1}{i \sqrt{3}}=\frac{i}{i \sqrt{3}} \\
& z=-\frac{i}{\sqrt{3}}
\end{aligned}
$$

(iii)

(iv)

Pa: 6.

(c) (i) $I_{x}=\int_{0}^{1} x^{n} e^{x} d x . \quad \begin{array}{cc}4=x^{2} & d v=e^{x} d x \\ d w=n x^{n-1} . & v=e^{x} .\end{array}$
$I_{n}=\left[x^{n} c^{x}\right]_{0}^{1}-n \int x^{n-1} e^{x} d x$
$I_{n}=e-0-n I_{n=1}$.
$\varepsilon=I_{n}+n I_{n-1}$ for $n \geq 1$.
(i) $I_{n}=e=n I_{n-1}$.
$I_{4}=e-4 I_{3}$
$=e-4\left(\varepsilon-3 I_{2}\right) \quad=-3 e+12 I_{2}$.
$=-3 c+12\left(e-2 I_{1}\right)$
$=-3 e+12 e-24 I_{1} \quad B_{u} \quad I=\int_{0}^{1} e^{x} d x=\left[e^{2}\right]_{0}^{1}=e_{0}$
$=9 e-20\left(e-I_{0}\right)$
$=-13 c+24 I_{0} \quad y-13 e+24(e-1)=9 e-24 . \quad \mid$
(9) (ii) blay way to fiod winme:

Pas: 17.

$A=\int_{-3}^{3} y d x=2 \int_{-3}^{3} \frac{2}{3} \sqrt{9-x^{2}} d x=\frac{4}{3} \int_{-3}^{3} \sqrt{9+x^{2}} d x \ldots$
gut $\int_{-3}^{3} \sqrt{4-x^{3}} d x$ it atmi- aiculs of ares $=\frac{\pi 3^{2}}{2}$

$$
\therefore A=\frac{4}{3} \times \pi \times \frac{4}{2}=\frac{36 \pi}{6}=6 \pi
$$

(vi)
slice:

$=y^{2} \sqrt{3}=4 \sqrt{2} \cdot\left(1-\frac{x^{2}}{9}\right)$.
$\Delta V=y^{2} \sqrt{3} \cdot \Delta x=4 \sqrt{3}\left(1-\frac{x^{2}}{4}\right) \Delta x$.
$V=\lim _{4 x+0} \sum_{x=-3}^{3} 4 \sqrt{3}\left(1-\frac{x^{2}}{9}\right) \Delta x=4 \sqrt{3}, \int_{-3}^{3}\left(1-\frac{x^{2}}{4}\right) d x$
$=4 \sqrt{3}\left[x-\frac{x^{3}}{27}\right]_{-3}^{2}=4 \sqrt{3}\left[3-\frac{27}{27}-\left(-3-\frac{-27}{27}\right)\right]$,
$=4 \sqrt{3}[3-1+3-1]=4 \sqrt{3} \times 4 a \sqrt{3}]^{2}$ and
er $v=86 \int_{0}^{3}\left(1-\frac{x^{2}}{9}\right) d x=8 \sqrt{3}\left[2-\frac{x^{3}}{27}\right]_{0}^{3}=P \sqrt{3} \times[3-1]=16 \sqrt{1}-2 x^{2}$:
20004 Pat FSHS Trial folutione

Questorn 5

(a) $\int(4-x) \sqrt{4-x} d x=\int(4-x+5) \sqrt{4-x} d x=\int(4-x) \sqrt{4-x} d x+5 \int \sqrt{4-x} d x$ /2. $\quad=\int(4-x)^{3 / 2} d x+5 \int \sqrt{4-x} d x=\frac{(4-x)^{5 / 2}}{}+5 \frac{(4-x)^{3 / 2}}{-3 / 2}+C$

$$
=-\frac{2}{5}(4-x)^{2} \sqrt{4-x}-\frac{10}{3}(+-x) \sqrt{4-x}{ }^{-5 / 2}+C . \quad(* \sec \text { pag } 11)
$$

(b) I. $\int_{0}^{\pi / 2} \frac{d x}{2-\operatorname{tac} x+\sin x}$

Let $t=\tan \frac{x}{2}$ $d t=\frac{1}{2} \sec ^{2} \frac{x}{2} d x=\frac{1}{2}\left(1+\tan ^{2} \frac{x}{2}\right) d x=\frac{1}{2}\left(1+t^{2}\right) d x$

$$
\text { I= } \int \frac{\frac{2 d t^{2}}{1+t^{2}}}{2-\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}} d t=\int \frac{2 d t}{2+2 t^{2}-1+t^{2}+2 t}=\int \frac{2 d t \cdot}{3 t^{3}+2 t+1}=\frac{2}{3} \int \frac{d t}{t^{2}+\frac{3 t}{3}+\frac{1}{3}}
$$

$$
=\frac{2}{3} \int_{t^{2}+\frac{2 t}{3}+\left(\frac{1}{3}\right)^{2}+\frac{1}{3}-\left(\frac{1}{3}\right)^{2}}^{1+t^{2}}=\frac{2}{3} \int \frac{d t}{\left(t+\frac{1}{3}\right)^{2}+\frac{1}{3}-\frac{1}{9}}=\frac{2}{3} \int \frac{d t}{\left(t+\frac{1}{3}\right)^{2}+\frac{2}{9}} \cdot 1 / 2
$$

Let $\left.v=t+\frac{1}{3} . \quad \Rightarrow I=\frac{2}{3} \int \frac{d u}{u^{2}+\frac{2}{9}}=\frac{2}{3} \cdot \frac{1}{\left(\frac{8}{3}\right)}\left[\tan ^{-1} \frac{u}{\frac{\pi}{3}}\right]^{1 / 3}\right]^{1 / 3} \quad 1 / 2$
at $2 \pi 0 \sim \omega=\tan 0=-\frac{1}{3}=\frac{1}{3}$ $x=\frac{\pi}{h} 0 \mathrm{w}=\operatorname{tai} \mathrm{t} 8 \mathrm{y}+\frac{1}{3}=1+\frac{1}{3}=\frac{4}{3}$
$=\sqrt{2} \tan ^{-1}\left[\frac{34}{\sqrt{2}}\right]^{\pi / 3}$

$$
\therefore 1=\sqrt{2} \tan ^{-1}\left[\frac{3 \times \frac{y}{2}}{\sqrt{2}}\right]-\sqrt{2} \tan ^{-1}\left[\frac{3 \times \frac{1}{3}}{\sqrt{2}}\right]=\sqrt{2} \tan ^{-1}\left(\frac{4}{\sqrt{1}}\right)-\sqrt{12} \tan ^{-1} \frac{1}{\sqrt{2}} .
$$

$$
=\sqrt{2}\left[\tan ^{21} 2 \sqrt{2}-\tan ^{2} \frac{1}{\sqrt{2}}\right] .
$$

(c) $A=\int_{4}^{6} \frac{16 x}{x^{4}-16} d x=\int_{4}^{6} \frac{16 x d x}{\left(x^{2}-4\right)\left(x^{2}+4\right)}=\int \frac{16 x d x}{(x-a)(x+x)\left(x^{2}+4\right)}$,

$$
\begin{aligned}
& \frac{16 x}{(x-2)(x+2)\left(x^{2}+4\right)}=\frac{a}{(x-2)}+\frac{b}{(x+2)}+\frac{c x+d}{x^{2}+4} \text {. } \\
& 16 x=a(x+2)\left(x^{2}+4\right)+b(x-2)\left(x^{2}+4\right)+(c x+d)\left(x^{2}-4\right) . \\
& \text { ut } x=+2: 16(r, 2)=a(4)(1)+0 \quad \Rightarrow 32=32 a \Rightarrow 2 a, l \text {, } \\
& x=-2: \quad-32=b(-v)(t)-0 \quad \Rightarrow-32=-32 b \Rightarrow b=1 \text {. } \\
& \therefore 16 x=(x+2)\left(x^{2}+4\right)+(x-2)\left(x^{2}+v\right)+(c x+4)\left(x^{2}-y\right) \\
& \text { Let } x=0 ; \quad 0=2 x,+(-N)(4)+d(-4) \quad \Rightarrow d=0 . \\
& x=1: 16=-3 \times 5+(-1)(5)+5(-3) \Rightarrow \underline{H}=10 \equiv 6=-3 c \Rightarrow c=-7=-
\end{aligned}
$$

$A=\int_{-4}^{6}\left[\frac{1}{(x-2)}+\frac{1}{(2+x)}\right] d x-\int \frac{2 x}{\left(x^{2}+4\right)} d x-\int \frac{y}{y}-\begin{aligned} & u>x^{2}+4 . . \\ & d u=2 x .\end{aligned}$

$=\ln 4+\ln 8-\ln 2-\ln 6-\ln 40+\ln 20$ \qquad 1
$=\ln 2^{2}+\ln 2^{3}-\ln 2-\ln 6-[\ln 40-\ln 20]$ \qquad
\qquad
$=2 \ln 2+3 \ln 2-\ln 2-\ln 6-\ln \frac{40}{20}$.
$=\quad 4 \ln 2-\ln 6-\ln 2$.
$=3 \ln 2-\ln 6=\ln 2^{3}-\ln 6=\ln 8-\ln 6$.
$=\ln \frac{8}{6}=\ln \frac{4}{3}$
9A: $\frac{16 x}{\left(x^{2}-6\right)\left(x^{3}+v\right)}=\frac{-2 x}{x^{2}+4}+\frac{2 x}{x^{2}-4}$
A. $\begin{aligned} & \int_{-}^{4}\left(-\frac{3 x}{x^{2}+4}+\frac{a x}{x^{2}-4}\right) d x=\left[\ln \left(x^{2}-4\right)-\ln \left(x^{2}+4\right)\right]_{4}^{6}=\left[\ln \frac{x^{2}-4}{x^{2}+4}\right]_{4}^{c} \\ &=\ln \frac{32}{}-\ln 12=\ln 33 \times 20\end{aligned}$
$=\ln \frac{32}{00}-\ln \frac{12}{20}=\ln \frac{32}{40} \times \frac{20}{12}=\ln \frac{4}{3}$.

$I=u r-\int v d x=x \sin ^{-1} \frac{x}{a}-\int \frac{x d x}{\sqrt{a^{2}-x^{2}}}$ Let $\begin{aligned} u & =a^{2}-x^{2} \\ d u & =-2 x d x\end{aligned}$
$=x \sin ^{-1} \frac{x}{4}+\int \frac{d u}{2 \sqrt{4}}=x \sin ^{-1} \frac{x}{a}+\frac{1}{2} \cdot \frac{\mu^{1 / 2}}{1 / 2}+C . \quad \Rightarrow x d x=\frac{d y}{-2}$.
$=x \sin ^{4} \frac{x}{a}+\sqrt{a^{2}-x^{2}}+C$.
(a) $u^{2}=x^{2}-x^{2}$
$2 x d x=-2 x d x$
$-u d u=x d x$.
$\int \frac{x}{\sqrt{4}-\frac{d x}{x^{2}}}=\int-\frac{u d x}{4}=\int d x=-u$
$I=x \sin ^{-1} \frac{x}{a}+u+C$.
$=x \sin ^{-1} \frac{x}{a}+\sqrt{a^{2}-x^{2}}+C$.
es: $x=a \sin \theta$.
$d x=a \cos \theta \cdot d \theta$.
$\int \frac{x}{\sqrt{a^{2} \cdot x^{2}}} d x=-\int \frac{a \sin \theta \cdot \cos \theta}{a \cos \theta} d \theta$
$=0 \cot \theta$.
$=a\left[\frac{\sqrt{a^{2}-x^{2}}}{a}\right]$
$=\sqrt{\alpha^{2}-x^{2}}$,

1000 FSH LS 4 Unit Trial Solutions

2000 FSHS 4 Unit Trial Solutions.

- Question 6.

(a) (i) $(\cos \theta+i \sin \theta)^{n}=\cos \theta=2 \sin A \theta$.

3 -ib edt Assume tic for ns h: $(\sin \theta,+i \operatorname{sis} \theta)^{k}=\cos k \theta+i \sin k \theta$.
Alone tace for $n=k+1$ ice. $(\cos \theta+6 \sin \theta)^{k+1}=\cos (k+1) \theta+i \sin (k+1) \theta$
Red: $(\cos \theta+L \sin \theta)^{k+1}=(\sin \theta+i \sin \theta)^{k} \cdot(\cos \theta+i \sin \theta)$
$=(\cos k \theta+i \sin k \theta)(\cos \theta \times i \sin \theta) \quad$ form asengetion
$=\cos h \theta \cdot \cos \theta-\sin \theta \cdot \sin k \theta+i(\cos k \theta \cdot \operatorname{tin} \theta-\sin k \theta \cdot \sin \theta)$.
$=\cos (k \theta+\theta)+i \sin (\theta+k \theta)$
$\cos (k+1) \theta+i \sin (k+1) \theta$.

true fo $n a k$, its true for $n=k+1$.
$1 / 2$
(ii) Let $c=\tan { }^{\circ}$ and $s=\sin \theta$
$(\cos \theta+\cos \theta)^{5}=\cos 5 \theta+2 \sin 5 \theta$
$/ 3(6+65)^{5}=c^{5}+5 c^{4} i s+10 c^{3}(i s)^{2}+10 c^{2}(65)^{3}+5 c(i s)^{4}+(i s)^{5}$
$=c^{5}+5 c^{4} s i-10 c^{3} s^{2}-10 c^{2} s^{3} i+5 c s^{4}+6 s^{5}$,
$=\left(c^{5}-10 c^{3} s^{2}+5 c s^{4}\right)+i\left(5 c^{4} s-10 c^{2} s^{2}+S^{5}\right)=\cot 5 \theta+i t i$
$\therefore \quad \cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta$.
$=\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2}$
$=\cos ^{5} \theta-10 \cos ^{2} \theta+10 \cos ^{5} \theta+5 \cos \theta\left(1+\cos ^{2} \theta-2 \cos ^{2} \theta\right)$
$=\cos ^{5} \theta-10 \cos ^{2} \theta+10 \cos ^{5} \theta+5 \cos \theta+5 \cos ^{5} \theta-10 \cos ^{3} \theta$.
$=16 \cos ^{5} \theta-20 \cos ^{2} \theta+5 \cos \theta$
(iii) $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$. Let $x=\cos \theta$

$$
\begin{equation*}
=16 x^{5}-20 x^{3}+5 x=\frac{\sqrt{3}}{2} . \tag{2}
\end{equation*}
$$

$1 /$ as give ar $32 x^{5}-40 x^{3}+10 x-\sqrt{3}=0$.
$\therefore \quad \cos 5 \theta=\frac{\sqrt{2}}{2}=\cos \frac{\pi}{6}$.
where $k=0, \pm 1, \pm 2$.
$\theta=\frac{\pi}{30}+\frac{2 k \pi}{5}$.
$\theta=\frac{\pi}{30} ; \frac{\pi}{30}+\frac{2 \pi}{5}=\frac{13 \pi}{30} ; \frac{\pi}{30}-\frac{2 \pi}{5}=-\frac{\operatorname{cor}-7 \frac{4 \pi}{30}}{30} ; \frac{\pi}{30}+\frac{4 \pi}{3}=\frac{5 \pi}{6}$ $\frac{\text { II }}{30}-4 \frac{\pi}{5}=-23 \pi \rightarrow 0037 \pi / 50$.

$$
\begin{aligned}
& 2000 \text { FSHS } 4 \text { UNIT TRIAL Solutions } \\
& \text { - Question } 8 \\
& \text { (a) (i) }-y^{-\operatorname{lin}}\left(\frac{1-\sin x}{1+\sin x}\right)^{\frac{1}{4}}=\frac{1}{4} \ln \left(\frac{1-\sin x}{1+\sin x}\right)=\frac{1}{4}[\ln (1-\sin x)-\ln (1+\sin x)] \\
& y^{\prime}=\frac{d y}{d x}=-\frac{1}{4}\left[\frac{-\cos x}{1-\sin x}-\frac{\cos x_{1}}{1+\sin x}\right]=\frac{1}{4}\left[\frac{-\cos x(1+\sin x)-\cos x(1-\sin x)}{1-\sin ^{2} x}\right] \\
& \text { 2. }=\frac{1}{4}\left[\frac{-\cos x-\cos x / \cos x-\cos x+\cos x / 2 \sin x}{\cos ^{2} x}\right] \quad \cos 1-\sin ^{2} x=\cos ^{2} x \\
& A-\frac{2 \cos x}{4 \cos ^{2} x}=-\frac{1}{2 \cot x}=-\frac{1}{2} \sec x \text {. } \\
& \text { (ii) } \frac{d x}{d x}\left[\operatorname{sen} \sqrt[4]{\frac{1-\sin x}{1+\sin x}}\right]=-\frac{1}{2} \text { secx. (Take primitive of lath sido.) } \\
& \% \quad \therefore-\frac{1}{2} \sec x d x=4 n \sqrt[4]{\frac{1-\sin x}{1+\sin x}}+c_{r} \cdots x-2 . \\
& \int \sec x d x=-2 \ln \sqrt[4]{\frac{1-\sin x}{1+\sin x}}+C . \\
& \begin{array}{l}
\therefore \int \sec x d x=-\frac{2}{4} \ln \left(\frac{1-\sin x}{1+\sin x}\right)+C=\ln \left(\frac{1-\sin x}{1+\sin x}\right)^{-\frac{1}{2}}+C .
\end{array} \\
& \text { (b) (i) Let } y=\cot ^{-1}(3) \quad \omega x=\cot y \\
& \therefore \quad \therefore \quad 1=\operatorname{cosec}^{2} y \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=-\frac{1}{\operatorname{cosec} y}=-\frac{1}{1+\cot y}=-\frac{1}{1+x^{2}} . \quad 1 \frac{1}{2} \\
& \text { (i) } f(x)=\cos ^{-1}(x)+\tan ^{-1}(x) \\
& \begin{array}{l}
f^{\prime}(x)=-\frac{1}{1+x^{2}}+\frac{1}{1+x^{2}}=0 . \\
\Rightarrow f(x) \text { is a conet A.C. }
\end{array} \\
& \text { To find the conetant, we kaen? } 1 / 2 \\
& \tan \pi=1 \text { क力 } \tan ^{-1}(1)=\pi / 4 \text {. } \\
& \cot \pi / 4=1 \Rightarrow \cot ^{-1}(1)=\pi / 4 \text {. } \\
& f(x)=\cot ^{-1}(1)+\tan ^{-1}(1)=c . \\
& \therefore f(x)-\frac{\pi}{4}+\frac{\pi}{4}=c \Rightarrow c=\pi / k
\end{aligned}
$$

foge: 17
2000 FSHS
Unit Trial Sphtion.

```
(c). \(x^{2} y+y^{2}=16\).
\(2 x y+x^{2} \frac{d y}{d x}+y^{2}+2 x y \frac{d y}{d x}=0\)
\(\left(x^{2}+2 x y\right) \frac{d y}{d x}=-\left(2 x y+y^{2}\right)\).
    \(\frac{d y}{d x}=\frac{-\left(2 x y+y^{2}\right)}{x^{2}+2 x y}=\frac{-y(2 x+y)}{x \cdot(x+2 y)}\)
    tangent \(/ /\) to \(x\) axio \(\Rightarrow m=0 .=\frac{d y}{d x}\)
        \(-\frac{\left(2 x y+y^{2}\right)}{x^{2}+2 x y}=0 . \quad \Rightarrow \frac{d x}{}(y+2 x)=0\).
        \(y=0\) or \(y=-2 x\). \(\cdots \cdots\) ( \(x)\)
```



```
    \(-2 x^{3}+(-2 x)^{2} x=16 \Rightarrow-2 x^{2}+4 x^{2}=16 \Rightarrow 2 x^{3}=16\)
        \(\Rightarrow x^{2}=8 \quad \Rightarrow x=\sqrt[3]{8}=2\).
    Siub \(x=2\) ind \(x^{2} y+x y^{2}=16\).
        \(4 y+2 y^{2}-16=0 . \quad \Rightarrow \quad 2\left[y^{2}+2 y-5\right]=0\)
        \(2[(x-2)(y+\psi)]=0\).
        2) \(y=2=0 \quad \Rightarrow y=2\) or \(J=-4 . \quad\). 2
    at \((2,2): \frac{d y}{d x}=\frac{-2(4+2)}{2(2+4)}=-1 . \quad 10\).
    \(\cot (2,-4): \frac{d y}{d z}=\frac{4(4-4)}{2(2-5)}=0\).
    \(\therefore(2,-4)\) is the only \(p\) i. whers tengent is \(/ /\) to \(x\) axco
    20 methed: (Amarier !)
Whice tangent \(I I+x\) axis, its cquation is \(y=a\).
            \(\therefore x^{2} y+x y^{2}=16\) and \(y=a \quad \Rightarrow \quad a x^{2}+a^{2} x-16=0\).
    \(\begin{aligned} & a \text { upuater } 7^{7} \cap \\ & \Delta=a^{4}+64 a=0 \text { for tangengy: } \Delta=0 .\end{aligned}\)
        \(\Delta=a^{4}+64 a=0, \quad \Rightarrow a\left(a^{3}+64\right)=0, \ldots a=0\) or \(a^{3}=-64\).
    Bud \(a=0\) refouled as it \(4 \quad a\) anie. \(\Rightarrow m a^{3}=-64 \Rightarrow a=-4\)
    \(\therefore y=-4\). He requirsd tengent.
    \(-4 x^{2}+16 x=6=0 \quad 0 .-4\left(x^{2}-4 x+4\right)=0 \Rightarrow-4(x-2)^{2}=0\).
```

