Question One: (15 Marks) Start a new sheet of paper.
a) Find $\int \frac{x}{\sqrt{2-x^{2}}} d x$ using the substitution $x=\sqrt{2} \sin \theta$.
b) Show that $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$, and hence find $\int \sin 5 x \cos 3 x d x$.
c) Use Integration by Parts to show that $\int_{0}^{1} \tan ^{-1} x d x=\frac{\pi}{4}-\frac{1}{2} \ln 2$.
d) Given that $J_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$:
i) Prove that $J_{n}=\frac{(n-1)}{n} J_{n-2}$, where n is an integer and $n \geq 2$.
ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{6} x d x$.

Question Two: (15 Marks) Start a new sheet of paper.
a) Given that $z=2+i$ and $\omega=2-3 i$, find, in the form $a+i b$
i) $(\bar{z})^{2}$
ii) $\left(\frac{z}{\omega}\right)$
b) On the Argand diagram, shade the region where the inequalities
$-1<|z|<1$ and $\frac{\pi}{4}<\arg (z)<\frac{3 \pi}{4}$ both hold.
c) Find the complex square roots of $7+6 i \sqrt{2}$, giving your answer in the form $a+i b$, where a and b are real.
d) Given the two complex numbers $z_{1}=r_{1} \operatorname{cis} \theta$ and $z_{2}=r_{2} \operatorname{cis} \phi$,
i) Show that, if z_{1} and z_{2} are parallel, $z_{1}=k z_{2}$, for k real.

ABCD is a quadrilateral with vertices A , B, C and D represented by the complex numbers (vectors) z_{1}, z_{2}, z_{3} and z_{4}, as shown in the sketch opposite.

ii) Give two possible vectors (in terms of z_{1}, z_{2}) for side AB .
iii) If ABCD is a parallelogram, show that $z_{1}-z_{2}-z_{3}+z_{4}=0$.
e) Explain the fallacy in the following argument:

$$
-1=\sqrt{-1} \times \sqrt{-1}=\sqrt{(-1)(-1)}=\sqrt{1}=1 . \text { Hence } 1=-1 .
$$

Question Three: (15 Marks) Start a new sheet of paper.
a) $F(x)$ is defined by the equation $f(x)=x^{2}\left(x-\frac{3}{2}\right)$, on the domain $-2 \leq x \leq 2$.

Note: each sketch below should take about one third of a page.
i) Draw a neat sketch of $F(x)$, labelling all intersections with coordinate axes and turning points.
ii) Sketch $y=\frac{1}{F(x)}$
iii) Sketch $y=\sqrt{F(x)}$
iv) Sketch $y=\ln (F(|x|))$
b) The Hyperbola \mathscr{H} has the equation $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$.
i) Find the eccentricity of \mathscr{H}.
ii) Find the coordinates of the foci of \mathscr{H}.
iii) Draw a neat one third of a page size sketch of \mathscr{H}.
iv) The line $x=6$ cuts \mathscr{H} at A and B. Find the coordinates of A and B if A is in the first quadrant.
v) Derive the equation of the tangent to \mathscr{H} at A .

Question Four: (15 Marks) Start a new sheet of paper.
a) The shaded region bounded by $y=3-x^{2}, y=x^{2}-x$ and $x=1$ is rotated about the line $x=1$. The point P is the intersection of $y=3-x^{2}$ and $y=x^{2}-x$ in the second quadrant.

i) Find the x coordinate of P .
ii) Use the method of cylindrical shells to express the volume of the resulting solid of resolution as an integral.
iii) Evaluate the integral in part (ii) above.
b) Find real numbers A, B and C such that
$\frac{x}{(x-1)^{2}(x-2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-2)}$.
Hence show that $\int_{0}^{\frac{1}{2}} \frac{x}{(x-1)^{2}(x-2)} d x=2 \ln \left(\frac{3}{2}\right)-1$.
c) Find all x such that $\cos 2 x=\sin 3 x$, if $0 \leq x \leq \frac{\pi}{2}$.
d) Solve for $x: \tan ^{-1}(3 x)-\tan ^{-1}(2 x)=\tan ^{-1}\left(\frac{1}{5}\right)$

Question Five: (15 Marks) Start a new sheet of paper.
a) For the polynomial equation $x^{3}+4 x^{2}+2 x-3=0$ with roots α, β and γ, find:
i) The value of $\alpha^{2}+\beta^{2}+\gamma^{2}$
ii) The equation whose roots are $(1-\alpha),(1-\beta),(1-\gamma)$.
iii) The equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$.
[3]
b) Determine all the roots of $8 x^{4}-25 x^{3}+27 x^{2}-11 x+1=0$ given that it has a root of multiplicity 3 .
c) The equation $x^{4}+4 x^{3}+5 x^{2}+2 x-20=0$ has roots α, β, γ and δ over the complex field.
i) Show that the equation whose roots are $\alpha+1, \beta+1, \gamma+1$ and $\delta+1$ is given by $x^{4}-x^{2}-20=0$.
ii) Hence solve the equation $x^{4}+4 x^{3}+5 x^{2}+2 x-20=0$.

Question Six: (15 Marks) Start a new sheet of paper.
a)

The circles above have centres at O and radii of 5 units and 3 units respectively.

A ray from O making an angle θ with the positive x-axis, cuts the circles at the points M and N as shown.

NS is drawn parallel to the y-axis and MT parallel to the x-axis.
NS and MT intersect at P .
i) Show that the parametric equations of the locus of P in terms of θ are given by $x=5 \cos \theta$ and $y=3 \sin \theta$.
ii) By eliminating θ, find the Cartesian equation of this locus.
iii) Find the equation of the normal (in general form) at the point P when $\theta=\frac{\pi}{3}$.
b) The functions $S(x)$ and $C(x)$ are defined by the formulae

$$
s(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right) \text { and } c(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right) .
$$

i) Verify that $S^{\prime}(x)=C(x)$.
ii) Show that $S(x)$ is an increasing function for all real x.
iii) Prove $[C(x)]^{2}=1+[S(x)]^{2}$
iv) $S(x)$ has an inverse function, $S^{-1}(x)$, for all real values of x. Briefly justify this statement.
v) Let $y=S^{-1}(x)$. Prove that $\frac{d y}{d x}=\frac{1}{\sqrt{1+x^{2}}}$.
vi) Hence, or otherwise, show that $S^{-1}(x)=\ln \left\{x+\sqrt{1+x^{2}}\right\}$.

Question Seven: (15 Marks) Start a new sheet of paper.
a) Let OAB be an isosceles triangle, $\mathrm{OA}=\mathrm{OB}=\mathrm{r}, \mathrm{AB}=\mathrm{b}$.

Let OABD be a triangular pyramid with height $\mathrm{OD}=\mathrm{h}$ and OD perpendicular to the plane of OAB as in the diagram above.
Consider a slice S of the pyramid of width δa as shown at EFGH in the diagram. The slice S is perpendicular to the plane of $O A B$ at FG with $F G \| A B$ and BG $=\mathrm{a}$. Note that GH \| OD.
i) Show that the volume of S is $\left(\frac{r-a}{r}\right) b\left(\frac{a h}{r}\right) \delta a$ when δa is small.
(You may assume the slice is approximately a rectangular prism of base EFGH and height δa).
ii) Hence show that the pyramid DOAB has a volume of $\frac{1}{6} h b r$.
iii) Suppose now that $\angle A O B=\frac{2 \pi}{n}$ and that n identical pyramids DOAB are arranged about O as the centre with common vertical axis OD to from a solid C. Show that the volume V_{n} of C is given by $V_{n}=\frac{1}{3} r^{2} h n \sin \frac{\pi}{n}$.
iv) Note that when n is large, C approximates a right circular cone. Hence, find $\lim _{n \rightarrow \infty} V_{n}$ and verify a right circular cone of radius r and height h has a volume of $\frac{1}{3} \pi r^{2} h$.
b) On the hyperbola $x y=c^{2}$, three points P, Q and R are on the same branch, with parameters p, q and r respectively. The tangents at P and Q intersect at U . If O, U and R are collinear, find the relationship between p, q and r.

Question Eight: (15 Marks) Start a new sheet of paper.
a)
i) Use the substitution $x=\frac{2}{3} \sin \theta$ to prove that $\int_{0}^{\frac{2}{3}} \sqrt{4-9 x^{2}} d x=\frac{\pi}{3}$.
ii) Hence, or otherwise, find the area enclosed by the ellipse

$$
\begin{equation*}
9 x^{2}+y^{2}=4 \tag{1}
\end{equation*}
$$

b)
i) Use an appropriate substitution to verify that $\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x=\frac{\pi a^{2}}{4}$.
ii) Deduce that the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is given by $\pi a b$.
c) The diagram below shows a mound of height H. At height h above the horizontal base, the horizontal cross-section of the mound is elliptical in shape, with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\lambda^{2}$, where $\lambda=1-\frac{h^{2}}{H^{2}}$, and x, y are appropriate coordinates in the plane of the cross-section.

Show that the volume of the mound is $\frac{8 \pi a b H}{15}$.
d) The quadratic equation $x^{2}-(2 \cos \theta) x+1=0$ has roots α and β.
i) Find expressions for α and β.
ii) Show that $\alpha^{10}+\beta^{10}=2 \cos (10 \theta)$.

Solutions: \mathbb{R}^{12} TRIAL HSC ExTNII: 2003	Markina	Comments pl	Soutions: Ye $12 T_{\text {Reith }}$ HSC EXTN I: 2003	Marking	Comments	
QUESTION ONE: a) $x=\sqrt{2} \sin \theta$ so $d x=\sqrt{2} \cos \theta \cdot d \theta$		same got $d x=\sqrt{2} \cos \otimes d \theta$, but the left it out of the substitation chee changing to θ !! - very common error was not expressing the imdefenite $-\sqrt{2} \cos \theta$ te got 1 mark. $-\sqrt{2} \cos \left(\sin ^{-1}\left(\sqrt{\frac{\sqrt{x}}{2}}\right)+c\right.$ was abo not sufficient for both madon (not simplest forn).		O correct metho for spliting os ©readung to integral Oresolung to J_{n-2} (1) correct algok to solution	many tred the approach $\int \frac{d(x)}{d x} \cdot \cos ^{n} x d x$ end grame lown theod then	
) $\sqrt{2-x^{2}}+c$ $\begin{aligned} & y^{\prime}=2-x^{2} \\ & y=\sqrt{2-x^{2}} \\ &: \cos \theta \theta \frac{\sqrt{2-x^{2}}}{2} \end{aligned}$			$\begin{aligned} & \left.i_{11}\right)=\int_{0}^{\frac{\pi}{2}} \cos ^{6} x d x=J_{6} \\ & V_{6}=\frac{5}{6} \cdot J_{4} \\ & =\frac{5}{6} \cdot \frac{3}{4} J_{2} \end{aligned}$	Oconrecture - of formula	- well done.	
$\text { b) } \begin{aligned} & \sin (A+B)=\sin A \cos B+\sin B \cos A=-\theta \\ & \sin (A-B)=\sin A \cos -\sin B \cos A \\ & \sin (A+B)+\sin (A+B)=2 \sin A \cos B \end{aligned}$	(1) showeng relationsthip	well done		- 0		
$\begin{aligned} & \therefore \int \sin 5 x \cos 3 x d x \\ & =\int_{\frac{1}{2}(\sin 6 x+3 x)}(\sin (5 x-3 x)) d x \\ & =\int \frac{1}{2} \sin 8 x+\frac{3}{2} \sin 2 x d x \\ & \quad \int \frac{-1}{16} \cos 8 x-\frac{1}{4} \cos 2 x+c \end{aligned}$	(1) comate mese of formula - Answer		$\begin{aligned} & \text { QUESTIN TWO: } \\ & \text { 1) i) } \begin{array}{l} (\bar{\Sigma})^{2} \\ =(2-i)^{2} \\ \\ 3 \end{array} 4_{i-1} \end{aligned}$	(1) answer	- some somple mutatesma	
c)	$\begin{aligned} & \text { ocorrect utitgotor } \\ & b_{y} \text { parts } \end{aligned}$	- welldone		(1) answer	gareally gaod	
$\begin{aligned} & =\frac{\pi}{4}-\frac{1}{2}\left[\ln \left(1+1 x^{2}\right)\right]^{\prime} \\ & =\frac{\pi}{4}-\frac{1}{2}(\ln 2-\ln 1)^{\circ} \\ & =\frac{\pi}{4}-\frac{1}{2} \ln 2 \end{aligned}$	Ocorrect bg integratuon (1) correct algebra		ग) $0<\|z\|<1 \quad \frac{\pi}{4}<\arg z<\frac{3 \pi}{4}$ $\operatorname{argz}=\frac{5 \pi}{4}$.	(1) boundaries (1) correct \|z	 (0) correct ang linits.	generally good.

SOLUTIONS: $Y_{\text {R }} 12$ TriAL HSC EXTN II: 2003 c) $(a+i b)=\sqrt{7+6 i \sqrt{2}}$ $\therefore(a+i b)^{2}=7+6 i \sqrt{2}$ $a^{2}-b^{2}+2 a b i=7+6 \sqrt{2} i$
equating real and imaginary parto:

$$
\begin{aligned}
2 a b & =6 \sqrt{2} \\
\therefore a & =\frac{6 \sqrt{2}}{26} \\
& =\frac{3 \sqrt{2}}{6}-(3)
\end{aligned}
$$

substitutung (2) in (1):

$$
\begin{aligned}
\left(\frac{3 \sqrt{2}}{b}\right)^{2}-b^{2} & =7 \\
\frac{88}{b^{2}}-b^{2} & =7 \\
18-b^{4} & =7 b^{2} \\
b^{4}+7 b^{2}-18 & =0 \\
\therefore\left(b^{2}+9\right)\left(b^{2}-2\right) & =0 \\
b^{2} & =2,-9
\end{aligned}
$$

reject $b^{2}=-9$ as b is real.

$$
\therefore b= \pm \sqrt{2} \quad \text { in (2): }
$$

$\begin{array}{ll}b=\sqrt{2} & b=-\sqrt{2} \\ a=\frac{3 \sqrt{2}}{\sqrt{2}} & a=-\sqrt{2} \\ ==3 & =-3\end{array}$
$\begin{array}{ll}=3 & =-3 \\ & =\sqrt{2} i\end{array}$
d). $\frac{\text { foots are } 3+\sqrt{2} i,-3-\sqrt{2} i}{\text { for } z_{1}, ~} \frac{1}{2}=\phi, \therefore z_{2}=\sqrt{2} \operatorname{cis} \theta$
$\therefore \cos \theta=\frac{z_{i}}{r_{2}}$
\therefore from $Z_{1}=r_{1} \cos \theta$

$$
=r_{1} \cdot \frac{z_{2}}{r_{2}}
$$

$\therefore Z_{1}=k z_{2}$
ii) $\left.\begin{array}{l}\text { Side } A B \text { w ether } \\ \overrightarrow{A B} \\ \text { or } \\ \end{array}\right]$

$$
O A+A B=O B
$$

$\therefore A B=O B-O A$

$$
=z_{2}-z_{1}
$$

$$
O B+B A=O A
$$

$$
\begin{aligned}
\therefore B A & =O A-O B \\
& =z_{1}-Z_{2} \\
& =-\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Comments
MARKING COMMENTS

Sowtions: Y 12 TriAL H.S.C. ExTN II: 2003	Marka	Comments	
iii) side CD inguen by $z_{3}-z_{4}$ or $-\left(z_{4}-z_{3}\right)$ as $C D \\| A B,\left(z_{4}-z_{3}\right)=k\left(z_{2}-z_{1}\right)$ but opporite sedes of a parallelogram are equal, so $\left\|z_{4}-z_{3}\right\|=\left\|z_{2}-z_{1}\right\| \Rightarrow k= \pm 1$ $k=1: \quad \therefore z_{4}-z_{3}=z_{2}-z_{1}$ or $Z_{1}-Z_{2}-Z_{3}+Z_{4}=0$ $k=-1: \quad \therefore \quad z_{4}-z_{3}=-\left(z_{2}-z_{1}\right)$ butfrom (ii), $A B$ (or $B A$) can be either $z_{2}-z_{1}$ or $-\left(z_{2}-z_{1}\right)$ $\therefore Z_{4}-Z_{3}=Z_{2}-Z_{1}$	(1) side CD (1) derivingle (1) both coses for k.	- nat well done.	
iv) the argument usas only real numbers, not compleax number, thes $-1=(a+i b)^{2}$, where abo are real. $=a^{2}-b^{2}+2 a b i$ $\therefore a^{2}-b^{2}=-1 \operatorname{aradt} 2 a b=0$ $b=0 \Rightarrow a^{2}=-1$, whech cannot happen as a so real so $a=0$ and $-b^{2}=-1 \Rightarrow b= \pm 1$ \therefore the roots are $-i$ and i $\begin{aligned} & i^{2}=-1 \text { and }(-i)^{2}=(-1)^{2} i^{2}=-1 \\ & \text { im }>\sqrt{-1} \times \sqrt{-1}=\sqrt{\mid x-1} \times \sqrt{\left(x^{-1}\right)}=1 i \times 1 i \neq \sqrt{(-1) \times(-1)} . \end{aligned}$	(1) identifies use of real nos to try and sotee a Compler no problem (1) demonotrates concet procecedo (en somervay).	Some grad anowen, mast realiers sonethng wras articulate onat it was	
QUESHON 3:	(1) ахи intercepts (1) turneng pt. $e\left(1, \frac{-1}{2}\right)^{2}$		

Solutions: Yr 12 TriAl HSC. Extn II: 2003 MARKing Comments pl7
d) $\quad x^{2}-(2 \cos \theta) x+1=0$
i)

$$
\begin{aligned}
x^{2}-(2 \cos \theta) x+\cos ^{2} \theta & =-1+\cos ^{2} \theta \\
\therefore(x-\cos \theta)^{2} & =-\sin ^{2} \theta \\
\therefore x-\cos \theta & = \pm i \sin \theta \\
\therefore \quad x & =\cos \theta \pm i \sin \theta
\end{aligned}
$$

ii)

$$
\therefore \alpha=\cos \theta+i \sin \theta \quad \beta=\cos \theta-i \sin \theta
$$

$$
\therefore \alpha^{10}=(\cos \theta)^{\prime \prime}
$$

$$
\begin{aligned}
& =(\cos \theta) \\
& =\operatorname{cis} 10 \theta \text { by deMoiures Theorem }
\end{aligned}
$$

similaaly $\beta=\overline{\cos \theta} \beta^{10}=(\overline{\sin \theta})^{10}$

$$
=\overline{\cos 10 \theta}
$$

$$
\therefore \alpha^{10}+\beta^{10}=\cos 10 \theta+\overline{\cos 10 \theta}
$$

$$
=\cos 10 \theta+i \sin 10 \theta+\cos 10 \theta-i \sin 100
$$

$$
=2 \cos 10 \theta \text { as regd. }
$$

