Question One: (15 Marks) Start a new sheet of paper.

a) Find
$$\int \frac{x}{\sqrt{2-x^2}} dx$$
 using the substitution $x = \sqrt{2} \sin \theta$. [2]

b) Show that sin(A+B) + sin(A-B) = 2sin A cos B, and hence find

$$\int \sin 5x \cos 3x dx \,. \tag{3}$$

c) Use Integration by Parts to show that $\int_{0}^{1} \tan^{-1} x dx = \frac{\pi}{4} - \frac{1}{2} \ln 2.$ [3]

d) Given that
$$J_n = \int_{0}^{\frac{\pi}{2}} \cos^n x dx$$
:

i) Prove that
$$J_n = \frac{(n-1)}{n} J_{n-2}$$
, where *n* is an integer and $n \ge 2$. [4]

ii) Hence evaluate
$$\int_{0}^{\frac{\pi}{2}} \cos^{6} x dx$$
. [3]

Question Two: (15 Marks) Start a new sheet of paper.

- a) Given that z = 2 + i and $\omega = 2 3i$, find, in the form a + ib
 - i) $\left(\frac{-}{z}\right)^2$ [1]

ii)
$$\left(\frac{z}{\omega}\right)$$
 [1]

b) On the Argand diagram, shade the region where the inequalities

$$-1 < |z| < 1$$
 and $\frac{\pi}{4} < \arg(z) < \frac{3\pi}{4}$ both hold. [3]

c) Find the complex square roots of $7 + 6i\sqrt{2}$, giving your answer in the form a + ib, where a and b are real. [3]

(Question 2 continued over)

- d) Given the two complex numbers $z_1 = r_1 cis\theta$ and $z_2 = r_2 cis\phi$,
 - i) Show that, if z_1 and z_2 are parallel, $z_1 = kz_2$, for k real. [1]

ABCD is a quadrilateral with vertices A, B, C and D represented by the complex numbers (vectors) z_1 , z_2 , z_3 and z_4 , as shown in the sketch opposite.

- iii) If ABCD is a parallelogram, show that $z_1 z_2 z_3 + z_4 = 0$. [3]
- e) Explain the fallacy in the following argument: [2] $-1 = \sqrt{-1} \times \sqrt{-1} = \sqrt{(-1)(-1)} = \sqrt{1} = 1$. Hence 1 = -1.

Question Three: (15 Marks) Start a new sheet of paper.

a) F(x) is defined by the equation $f(x) = x^2 \left(x - \frac{3}{2} \right)$, on the domain $-2 \le x \le 2$.

Note: each sketch below should take about one third of a page.

- i) Draw a neat sketch of F(x), labelling all intersections with coordinate axes and turning points. [2]
- ii) Sketch $y = \frac{1}{F(x)}$ [2]
- iii) Sketch $y = \sqrt{F(x)}$ [2]
- iv) Sketch $y = \ln(F(|x|))$ [2]

b) The Hyperbola \mathcal{H} has the equation $\frac{x^2}{25} - \frac{y^2}{9} = 1$.

i)	Find the eccentricity of <i>H</i> .	[1]
ii)	Find the coordinates of the foci of \mathcal{H} .	[1]
iii)	Draw a neat one third of a page size sketch of \mathcal{H} .	[2]
iv)	The line $x = 6$ cuts \mathcal{H} at A and B. Find the coordinates of A and B if A is in the first quadrant.	[1]
v)	Derive the equation of the tangent to \mathcal{H} at A.	[2]

Question Four: (15 Marks) Start a new sheet of paper.

a) The shaded region bounded by $y = 3 - x^2$, $y = x^2 - x$ and x = 1 is rotated about the line x = 1. The point P is the intersection of $y = 3 - x^2$ and $y = x^2 - x$ in the second quadrant.

i)	Find the <i>x</i> coordinate of P.	[1]
ii)	Use the method of cylindrical shells to express the volume of the	

iii) Evaluate the integral in part (ii) above. [2]

resulting solid of resolution as an integral.

(Question 4 continued over)

[3]

b) Find real numbers A, B and C such that

$$\frac{x}{(x-1)^2(x-2)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x-2)}.$$
[2]

Hence show that
$$\int_{0}^{\frac{1}{2}} \frac{x}{(x-1)^{2}(x-2)} dx = 2\ln\left(\frac{3}{2}\right) - 1.$$
 [2]

c) Find all x such that $\cos 2x = \sin 3x$, if $0 \le x \le \frac{\pi}{2}$. [2]

d) Solve for
$$x: \tan^{-1}(3x) - \tan^{-1}(2x) = \tan^{-1}\left(\frac{1}{5}\right)$$
 [3]

Question Five: (15 Marks) Start a new sheet of paper.

a) For the polynomial equation $x^3 + 4x^2 + 2x - 3 = 0$ with roots α, β and γ , find:

i) The value of
$$\alpha^2 + \beta^2 + \gamma^2$$
 [1]

ii) The equation whose roots are $(1-\alpha), (1-\beta), (1-\gamma)$. [2]

iii) The equation whose roots are
$$\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$$
. [3]

- b) Determine all the roots of $8x^4 25x^3 + 27x^2 11x + 1 = 0$ given that it has a root of multiplicity 3. [4]
- c) The equation $x^4 + 4x^3 + 5x^2 + 2x 20 = 0$ has roots α, β, γ and δ over the complex field.
 - i) Show that the equation whose roots are $\alpha + 1, \beta + 1, \gamma + 1$ and $\delta + 1$ is given by $x^4 - x^2 - 20 = 0$. [2]
 - ii) Hence solve the equation $x^4 + 4x^3 + 5x^2 + 2x 20 = 0$. [3]

Question Six: (15 Marks) Start a new sheet of paper.

a)

The circles above have centres at O and radii of 5 units and 3 units respectively.

A ray from O making an angle θ with the positive *x*-axis, cuts the circles at the points M and N as shown.

NS is drawn parallel to the y-axis and MT parallel to the x-axis.

NS and MT intersect at P.

- i) Show that the parametric equations of the locus of P in terms of θ are given by $x = 5\cos\theta$ and $y = 3\sin\theta$. [2]
- ii) By eliminating θ , find the Cartesian equation of this locus. [1]
- iii) Find the equation of the normal (in general form) at the point P when $\theta = \frac{\pi}{3}$. [2]
- b) The functions S(x) and C(x) are defined by the formulae

$$s(x) = \frac{1}{2} (e^x - e^{-x})$$
 and $c(x) = \frac{1}{2} (e^x + e^{-x}).$

i) Verify that S'(x) = C(x). [1]

ii) Show that S(x) is an increasing function for all real x. [1]

iii) Prove
$$[C(x)]^2 = 1 + [S(x)]^2$$
 [2]

iv) S(x) has an inverse function, $S^{-1}(x)$, for all real values of x. Briefly justify this statement. [1]

v) Let
$$y = S^{-1}(x)$$
. Prove that $\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$. [2]

vi) Hence, or otherwise, show that $S^{-1}(x) = ln\{x + \sqrt{1 + x^2}\}.$ [3]

Question Seven: (15 Marks) Start a new sheet of paper.

a) Let OAB be an isosceles triangle, OA = OB = r, AB = b.

Let OABD be a triangular pyramid with height OD = h and OD perpendicular to the plane of OAB as in the diagram above.

Consider a slice S of the pyramid of width δa as shown at EFGH in the diagram. The slice S is perpendicular to the plane of OAB at FG with FG || AB and BG = a. Note that GH || OD.

i) Show that the volume of S is $\left(\frac{r-a}{r}\right)b\left(\frac{ah}{r}\right)\delta a$ when δa is small.

(You may assume the slice is approximately a rectangular prism of base EFGH and height δa).

[3]

ii) Hence show that the pyramid DOAB has a volume of $\frac{1}{6}hbr$. [2]

iii) Suppose now that $\angle AOB = \frac{2\pi}{n}$ and that *n* identical pyramids DOAB are arranged about O as the centre with common vertical axis OD to from a solid C. Show that the volume V_n of C is given

by
$$V_n = \frac{1}{3}r^2hn\sin\frac{\pi}{n}$$
. [2]

[2]

- iv) Note that when *n* is large, C approximates a right circular cone. Hence, find $\lim_{n\to\infty} V_n$ and verify a right circular cone of radius r and height h has a volume of $\frac{1}{3}\pi r^2 h$.
- b) On the hyperbola $xy = c^2$, three points P, Q and R are on the same branch, with parameters p,q and r respectively. The tangents at P and Q intersect at U. If O, U and R are collinear, find the relationship between p,q and r. [6]

Question Eight: (15 Marks) Start a new sheet of paper.

a)

i) Use the substitution
$$x = \frac{2}{3}\sin\theta$$
 to prove that $\int_{0}^{\frac{2}{3}} \sqrt{4-9x^2} dx = \frac{\pi}{3}$. [3]

ii) Hence, or otherwise, find the area enclosed by the ellipse

$$9x^2 + y^2 = 4.$$
 [1]

b)

i) Use an appropriate substitution to verify that
$$\int_{0}^{a} \sqrt{a^2 - x^2} dx = \frac{\pi a^2}{4}.$$
 [2]

ii) Deduce that the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is given

c) The diagram below shows a mound of height *H*. At height *h* above the horizontal base, the horizontal cross-section of the mound is elliptical in shape, with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \lambda^2$, where $\lambda = 1 - \frac{h^2}{H^2}$, and *x*, *y* are appropriate coordinates in the plane of the cross-section.

Show that the volume of the mound is $\frac{8\pi abH}{15}$. [3]

d) The quadratic equation $x^2 - (2\cos\theta)x + 1 = 0$ has roots α and β .

i) Find expressions for α and β . [1]

ii) Show that
$$\alpha^{10} + \beta^{10} = 2\cos(10\theta)$$
. [3]

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \label{eq:scalar} Solution (S = 1, 1, 2, 2, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$			•			
$\begin{array}{l l l l l l l l l l l l l l l l l l l $	SOLUTIONS: 1/2 TRIAL HSC EXTN II: 2003	MARKING	COMMENTS PI	SOLUTIONS: Yr 12 TRIAL HSC EXTN II: 2003	MARKING	COMMENTS
a) $z = 5 and y = dz = 5 and 0 = 0 = 0 = 5 and 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 $	QUESTION ONE:		· some got done to come do, but the	d) i) $J_n = \int_{0}^{z} \cos^n x dx$	O correct metho	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	a) $\chi = \sqrt{2} \sin \theta$ so $dx = \sqrt{2} \cos \theta d\theta$		left it out of the substitution when	$= \int_{0}^{1} \cos x \cos^{n} x dx$	for splitting as	. many tried the approach
$\begin{array}{c} \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	· (- × da	1) converting	changing to 0 !!	= [sinx con"x] ² - J ² (n-1) con x. sinx isinx dx		fdin . cos"x doe
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\sqrt{2} \sin \theta, \sqrt{2} \cos \theta, d\theta)$	from x to 0.	expressing the indefinite	$= (0-0) + (n-1) \int_{-\infty}^{\infty} \cos^{n-2} x \sin^2 x dx$	Oreading to	and got lost. These need +
$ = \int \frac{d}{dt} \frac{dt}{dt} $	$= \int \frac{\sqrt{2} - (G \wedge in \theta)^2}{(2 \sin \theta) \cos \theta} d\theta$	t resolving for	integral back in terms of x;	$=(n-1)\int_{0}^{2}(1-cn^{2}\pi)cn^{n-2}\pi dnc$	integral	be brown.
$= \int \frac{1}{2} \sin \theta d\theta = \int \frac{1}{2}$	$= \int \frac{\sqrt{2}(1-\sin^2\theta)}{\sqrt{2}(1-\sin^2\theta)} d\theta$	6000	-12650 -12 get (mmn)	$=(n-1)\int_{-\infty}^{\infty}con^{-2}xdx - (n-1)\int_{-\infty}^{\infty}con^{n}xdx$		
$ \begin{array}{c} = \int J 2 \sin \theta d\theta \\ = -\int \overline{I} \cos \theta + \varepsilon \\ \sin \theta + \delta +$	= corto also the		also not sufficient for both	$J_n = (n-1) J_{n-2} - (n-1) J_n$	O resolving to	
$= -i2 \cos \theta + c$ $= -i2 \cos \theta + $	=) $\int_{2}^{2} \sin \theta d\theta$ (6)		marks (not simplest form) .	$J_n + (n-1)J_n = (n-1)J_{n-2}$	Jn-2	
$ = -12 \cdot \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + c $ $ = -12 \cdot \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + c $ $ = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + c $ $ = \frac{1}{\sqrt{2}} \frac{1}{2$	$= -J^2 \cos \theta + c \qquad \text{with } \sin \theta = \int_{\overline{2}}^{\overline{2}}$			$n J_n = (n-1) J_{n-2}$	1) correct algebra	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= -\sqrt{2} \cdot \frac{\sqrt{2}}{\sqrt{2}} + c$ $x + y^{2} = 2$	() answer		\dots	to solution	·
$\frac{y_{1} \cdot l_{2} \cdot r_{1}}{\frac{1}{1 \cdot r_{1}}}$ $\frac{y_{2} \cdot l_{2} \cdot r_{1}}{\frac{1}{1 \cdot r_{1}}}$ $\frac{y_{1} \cdot l_{2} \cdot r_{1}}{\frac{1}{1 \cdot r_{1}}}$ $\frac{y_{1} \cdot l_{2} \cdot r_{1}}{\frac{1}{1 \cdot r_{1}}}$ $\frac{y_{2} \cdot l_{2} \cdot r_{1}}{\frac{1}{1 \cdot r_{1}}}$ $\frac{y_{1} \cdot l_{2} \cdot r_{1}}{\frac{y_{1} \cdot r_{1}}{r_{1}}}$ $\frac{y_{2} \cdot l_{2} \cdot r_{1}}{r_{1}}$ $\frac{y_{1} \cdot l_{2} \cdot r_{1}}{r_{1}} \cdot r_{2} \cdot r_{1}}$ $\frac{y_{2} \cdot l_{2} \cdot r_{1}}{r_{1}} \cdot r_{2} \cdot r_{1}}{r_{1}} \cdot r_{2} \cdot r_{1}}$ $\frac{y_{2} \cdot l_{2} \cdot r_{1}}{r_{1}} \cdot r_{1}}$ $\frac{y_{2} \cdot l_{2} \cdot r_{1}}{r_{1}} \cdot r_{1}}$ $\frac{y_{2} \cdot l_{2} \cdot r_{1}}{r_{1}} \cdot r_{1}} \cdot r_{1}}{r_{1}} \cdot r_{1}} \cdot r_{1} \cdot r_{1}} \cdot r_{1}} \cdot r_{1} \cdot r_{1} \cdot r_{1} \cdot r_{1}} \cdot r_{1} \cdot r_{1} \cdot r_{1}} \cdot r_{1} \cdot r_{1}$	$-\sqrt{2-\pi^2} + c$ $y^2 = 2-x^2$			i_{1} $\int_{-\infty}^{\infty} c \sigma \sigma x d\sigma c = J_{6}$		
$\frac{1}{2} \frac{1}{2} \frac{1}$	$y = \sqrt{2 - \pi^2}$			$J_6 = \begin{bmatrix} 2 \\ 5 \end{bmatrix} J_4$	Ocorrectuse	wall down
b) $\sin(4\pi\theta) = \sin 4 \cos^2 4 \sin 2\cos 4$ $-\infty$ $\sin(4\pi\theta) = \sin 4 \cos^2 - \sin 8 \cos^2 4$ $-\infty$ $\sin(4\pi\theta) = \sin 4 \cos^2 - \sin 8 \cos^2 4$ $-\infty$ $\sin(4\pi\theta) = \sin 4 \cos^2 - \sin^2 \cos^2 4$ $-\infty$ $\sin(4\pi\theta) = 2 \sin^2 \cos^2 - \sin^2 \cos^2 4$ $-\infty$ $\sin(4\pi\theta) = 2 \sin^2 \cos^2 - \sin^2 \cos^2 4$ $-\infty$ $= \frac{1}{3} \sin^2 \pi + \frac{1}{3} \sin^2 \pi + \frac{1}{3} \sin^2 \pi + \frac{1}{3}$ 0 correct ace $= \int_{2}^{1} (\sin 5\pi + 3\pi) + \sin (5\pi - 3\pi)) dx$ $= \int_{2}^{1} (\sin 5\pi + 3\pi) + \sin (5\pi - 3\pi)) dx$ $= \int_{2}^{1} (\sin 5\pi + \frac{1}{3} \sin^2 \pi + \frac{1}{3} \sin^2 \pi$	$\therefore con \theta = \frac{\sqrt{2\pi n}}{\sqrt{2}}$			$= \frac{6}{4} \frac{4}{2}$	of formula	· wen while,
$\frac{\sin(\theta-\theta) = \sin \theta \cos \theta - \sin \theta \cos \theta}{\sin(\theta+\theta) = 2 \sin \theta \cos \theta} = \frac{-6}{9}$ $\frac{\sin(\theta-\theta) = 2 \sin \theta \cos \theta}{\sin(\theta+\theta) = 2 \sin \theta \cos \theta} = \frac{-6}{9}$ $\frac{\sin(\theta+\theta) = 2 \sin \theta \cos \theta}{\sin(\theta+\theta) = 2 \sin \theta \cos \theta} = \frac{-6}{9}$ $\frac{-1}{9} \sin \theta x + 2 \sin $	b) $Sin(A+B) = Sin A con B + sun B con A - 0$	O showing			O evaluates To	
$\begin{aligned} sin(help) = 2 sinflet op B \qquad (D+S) \\ = \int 2 sin f x dx \\ = \int \frac{1}{2} sin f x dx \\ = \int \frac{1}{2}$	Sin(A-B) = sin A cooB - sin B coo A = (2)	relationship		= 48·) dar 15 clone	1) answer	
$ \int \Delta in 5x \cos 3x dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x) + \sin (5x - 3x) \right] dx $ $ = \left[\frac{1}{2} (\sin 5x + 3x +$	Sin(A+B)+sin(A+B) = 2 sin A cor B (D+(2)		a 1	$= \frac{48}{15\pi} L^{2}$		
$= \int_{2}^{1} (\sin (5x - 3x)) dx$ $= \int_{2}^{1} (\sin (5x - 5x)) dx$ $= \int_{2}^{1} (\sin (5x - 5x)) dx$. well done	<u> </u>		· · · · · · · · · · · · · · · · · · ·
$= \int 2(\sin (\pi + 3\pi) + 5 \sin (5\pi - 3\pi)) dx$ $= \int \frac{1}{2} \sin (2\pi + 3\pi) dx dx dx$ $= \int \frac{1}{2} \sin (2\pi + 3\pi) dx dx dx dx$ $= \int \frac{1}{2} \sin (2\pi + 3\pi) dx dx dx dx$ $= \int $	-) sun 5x cor 3x dox	1) correct use		QUESTION INO:		(1)
$= \begin{cases} 2 \sin 8x + 2 \sin 8x$	= $\int 2(\sin (5x+3x) + \sin (5x-3x)) dx$	of formula		$() (2) (2) (2) (2)^2$		· some sumple mutsates ma
$\frac{1}{16} \frac{1}{100} \frac{1}{$	$= \int \hat{z} \sin 8x + \hat{z} \sin 8x dx$			= (2 - c)		
$ \begin{array}{c} c \\ f \\ f \\ = \\ f \\ \hline dx^{(1)} + tan^{-1}x \\ dx \\ = \\ f \\ \hline dx^{(2)} + tan^{-1}x \\ dx \\ = \\ f \\ \hline dx^{(2)} + tan^{-1}x \\ dx \\ = \\ f \\ \hline dx^{(2)} + tan^{-1}x \\ dx \\ = \\ f \\ \hline dx^{(2)} + tan^{-1}x \\ dx \\ = \\ f \\ \hline dx^{(2)} + tan^{-1}x \\ dx \\ = \\ f \\ \hline dx^{(2)} + tan^{-1}x \\ dx \\ = \\ f \\ f \\ \hline dx^{(2)} + tan^{-1}x \\ dx \\ = \\ f \\ f$	<u>76 cos bx = 4 cos 2x + c</u>	1) Answer		$-2 - h^{2}$	1) answer	
$\int \frac{d}{dx} dx = \int \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} dx = \int \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} dx = \int \frac{d}{dx} $				$\frac{-3-4(}{-1)(\mathbb{Z})}$		
$= \int_{-1}^{\infty} \frac{dx}{dx} dx$	$\int d(x) = 1$. welldone	(1) $(\omega/(2+i))$ $(2+3i)$		· · ·
$= Lx \tan [x] - \int x + x^{2} dx$ $= (\overline{4} - 0) - \frac{1}{2} \int \frac{1 + x^{2}}{1 + x^{2}} dx$ $= (\overline{4} - 0) - \frac{1}{2} \int \frac{1 + x^{2}}{1 + x^{2}} dx$ $= \frac{1 + \frac{1}{2}}{12}$	=) die tan a dat	O correct integrat	sn.	-(2-31)(2+31) -4+6(+21)-3		· generally good
$= \frac{[4 - 0] - 2}{[4 - 2] [H(H \pi^2)]'}$ $= \frac{\pi}{4} - \frac{1}{2} \left[\ln(H \pi^2) \right]'$ $= \frac{\pi}{4} - \frac{1}{2} \left[\ln 2 - \ln 1 \right]'$ $= \frac{\pi}{4} - \frac{1}{2} \left[\ln 2 - \ln 1 \right]'$ $= \frac{\pi}{4} - \frac{1}{2} \ln 2$	$= Lx \tan x \int - \int x Hx^2 dx dx$	by parts	•	-4+9 <u>$1+8i$</u>	1) answer	
$= \frac{4}{4} - \frac{1}{2} \left[\ln 2 - \ln 1 \right]^{2}$ $= \frac{4}{4} - \frac{1}{2} \left[\ln 2 - \ln 1 \right]^{2}$ $= \frac{4}{4} - \frac{1}{2} \ln 2$ $= \frac{4}{4} - \frac{1}{2} \ln 2$ $= \frac{1}{4} - \frac{1}{4} \ln 2$ $= \frac{1}{4} \ln 2$ $= \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \ln 2$ $= \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}$	$= (4^{-0})^{-2} \int \frac{1}{1+x^{2}} dx$			-13		
$= \frac{1}{4} - \frac{1}{2} \ln 2$ $= \frac{1}{4} - \frac{1}{4} \ln 2$ $= \frac{1}{4} \ln 2$ $= \frac{1}{4} - \frac{1}{4} \ln 2$	$= 4 - 2 \ln(4\pi^2)$	Ocorrect log		$\frac{1}{3\pi}$	Oboundaries	
D'errect algebra 	$= 4 - 2(\ln 2 - \ln 1)$ = $\pi - 1 - 1 - 1$	untegration		arg2= 4	1) correct 121	· generally good.
algebra	-4 and	Donect				
	1	algebra	· · ·		1) correct ang	
					limits.	·
				\sim 1		

SOLUTIONS: YR 12 TRIAL HSC EXTN II: 200'	3 MARKING	COMMENTS p3	SOWTIONS : Yr 12 TRIAL H.S.C. EXTN II : 2003	MARKING	COMMENTS F
c) $(a+ib) = \sqrt{7+6i\sqrt{2}}$ a, b real $(a+ib)^2 = 7+6i\sqrt{2}$ $a^2-b^2 + 2abi = 7+6\sqrt{2}i$		(non-Markon and) and an annual sign of single and sign of single and sign of single and sign of single and sin	(ii) side CD is given by $Z_3 - Z_4$ or $(Z_4 - Z_3)$ as CD IIAB, $(Z_4 - Z_3) = k(Z_2 - Z_1)$ but opposite sides of a parallelugram are equal,	() side CD	r e e e e e e e e e e e e e e e e e e e
equating real and imaginary parts. $a^2 - b^2 = 7 - 0$ $2ab = 6\sqrt{2}$ $a^2 - b^2 = 7 - 0$ $a^2 = \frac{6\sqrt{2}}{2b}$ $= \frac{3\sqrt{2}}{b} - 2$	O setup a, b relations hip	. mostly well done. Some students tried to use fromulas for finding	$\begin{array}{rcl} \mathcal{A}0 & Z_4 - Z_3 = Z_2 - Z_1 & \Longrightarrow & k=\pm 1\\ k=1: & _' & Z_4 - Z_3 = Z_2 - Z_1\\ & & & \\ or & Z_1 - Z_2 - Z_3 + Z_4 = 0\\ k=-1: & _ & Z_4 - Z_3 = -(Z_2 - Z_1) \end{array}$	🛈 cleriving k	o not well done.
substituting 2 in 0: $\left(\frac{3.52}{b}\right)^2 - b^2 = 7$ $\frac{18}{b^2} - b^2 = 7$		square roots of complexe numbers (not very successfully	but from (ii), AB (or BA) can be either $2_2 - Z_1$ or $-(Z_2 - Z_1)$ $- Z_4 - Z_3 = Z_2 - Z_1$	\bigcirc both coses for k.	
$(a \ b^{+} + 7b^{2} - 18 = 0)$ $(b^{2} + 9)(b^{2} - 2) = 0$ $b^{2} = 2, -9$ reject $b^{2} = -9$ as b is real. $b^{2} = \pm 52$ in (2):	() resolve for correct b value		iv) the argument uses only real numbers, not complex numbers, thus $-1 = (a + ib)^2$, where all are real. $= a^2-b^2 + 2abi$	D identifies use of real nos to try and solve a complex no	· Some good answers, most realized something was wrong, but couldn't articulate what it was
$b = \sqrt{2} \qquad b = -\sqrt{2} a = \frac{3\sqrt{2}}{\sqrt{2}} \qquad a = \frac{3\sqrt{2}}{-\sqrt{2}} = 3 \qquad = -3 = -3 roots are 3 + Jzi - 3 - Jzi$	O correct roots.		$b=0 \implies \alpha^2=-1$, which cannot happen as a is real $Ao \ \alpha=0$ and $b^2=1 \implies b=\pm 1$ $-^{\prime}$. The roots are $-i$ and i $i^2=-1$ and $(-i)^2=(-1)^2i^2=-1$	problem 1) demonstrates correct proceedies (in some very)	· · · · · · · · · · · · · · · · · · ·
$\int for Z_1 \parallel Z_2, \ \theta = \phi Z_2 = f_2 \ dx \theta \theta = \frac{Z_2}{r_2}$		generally well done	$\frac{1}{2}\int J(x) \int f(x) = \int J(x) \cdot x \int J(x) = I(x) I(x) \neq \int (f(x) \cdot x \int f(x) + \int f(x) - f(x) - f(x) \int f(x) + \int (f(x) \cdot x \int f(x) + \int f(x) - f(x) - f(x) \int f(x) - f(x) \int f(x) - f(x) \int f(x) - f(x) \int f(x) - f(x) - f(x) \int f(x) - f(x) - f(x) \int f(x) - f(x) - f(x) - f(x) \int f(x) - f(x) - f(x) \int f(x) - f(x)$	J	
$= \Gamma_1 \cdot \frac{Z_2}{r_2}$ $= \frac{Z_1}{Z_1} = k Z_2 \text{where } k = \frac{\Gamma_1}{r_2}$	O deducing relationship.		a) j) $y = F(x)$ f(x) = 2 $f(x) = 3x^{2} - 3x^{2}$		
AB or BA			$f(1) = \frac{-1}{2}$ $f(0) = 0$ given $f(1) = \frac{-1}{2}$ $f(0) = 0$ given x = 0 , $x = 1$	1) axus	
$\begin{array}{ll} A+AB=OB & \Theta B+BA=OA \\ -\dot{A}B=OB-OA & -\dot{B}A=OA-OB \\ = Z_2-Z_1 & = Z_1-Z_2 \end{array}$	① for both possibilities	, oK		\emptyset turning pt. $\theta(1, \frac{-1}{2})$	
$=-(z_z-\overline{z_1})$					

SOLUTIONS: YF 12 TRIAL HSC. EXTN II: 2003	MAAKING	Comments p7	SOLUTIONS: Y. 12 TRIAL HSC EXTN II: 2003	MARKING	COMMENTS O
v) (cont) : $11 - \frac{\sqrt{99}}{5} = \frac{54}{5199}(\pi - 6)$	n na serie de la constante de l La constante de la constante de	na katala katala dari bahar tagi dan pada katalan katalan Katalan katalan dari bahar ta 2000 dan pada katalan katalan Katalan	$(11) - V = 2\pi \left[-3x + x^2 + x^3 - \frac{1}{2}x^4 \right]^{1}$	A. +	
$5\overline{199} = -99 = 54_{2} - 324$			$= 2\pi \left[\left[\left[\left(-3 + 1 + 1 - \frac{1}{2} \right) - \left(3 + 1 - 1 - \frac{1}{2} \right) \right] \right]$	interrect	. Full marks only for con
$0 = 54\pi - 5/97 - 225$			$=2\pi \left -\frac{12}{2} - 2\frac{1}{2} \right $	Descent	Source .
QUESTION 4:		······································	= 811 su	Correct	
a) i) at $P: 3-x^2 = x^2 - x$			b) $\therefore x = A(x-1)(x-2) + B(x-2) + c(x-1)^2$	470700-1	
$0 = 2x^2 - x - 3$			$(x-1)^{2}(x-2)$ $(x^{2}-1)^{2}(x-2)$		
$= 2x^{2} + 2x - 3x - 3$	() correct		$A = A(x-1)(x-2) + B(x-2) + c(x-1)^{2} - 0$	-	
$= 2\pi(x+1) - 3(x+1)$	when for a		u(0; x=1) $x=2$	() what	
=(x+1)(2x-3)	Vanice (or ~		$q_{wep:} = B(1-2)$ $q_{wep:} = C(2-1)^2$	Lind BCG	
$x = -1, \frac{3}{2}$			ie B = -1 $ie C = 2$	form all as mothed)	
x co-ord of P is -1 (as P is in 2nd quadrant)			abo, from (): x = A(x2-3x+2) + B(x-2) + C(x2-3x+1)	ung struk (man tok)	
ii) typical shell:			equating coefficients of x2:	() en un tino a-effe	
unarc radius : C = 1-x			0= A+C	to had A	• •
outer Radius ; R = 1-tx+ 8x)		•	-` A = -2		
- Area of annulus:	Darrach		$\frac{1}{x} = \frac{-2}{-1} + 2$		
$SA = \pi R^2 - \pi r^2$	angulus SA		$\overline{(\chi-1)^2(\chi-2)} = \overline{(\chi-1)} = \overline{(\chi+1)^2} = \overline{\chi-2}$		
$= \pi (1 - (\pi + ka)^2 - \pi h \cdot x)$	z		$\gamma^{\prime} x$		
$\pi = 1$ = $\pi \left[1 - 2(x + S_{x}) + (x + S_{x})^{2} - (1 - 2x + x^{2}) \right]$			$(x-1)^2(x-2)$ doc	Deprest	
$= \sqrt{1 - 2x - 28x + x^2 + 2x (x + 6x^2 - 1 + 2x - x^2)}$				rearrangement	• •
$= T \left(2x \delta x - 2\delta x + \delta x^2 \right)$			$= \int \frac{x}{(x-2)} - \frac{x}{x-1} - \frac{1}{(x-1)^2} dx$	to get to	
= 2TT (X-1) SX (LEMATING SX as		alternatively:	$\int_{-2}^{-2} 2$	integration	
tion const		I mark : vokume of typicalshell	= $\int \frac{1}{2-x} + \frac{1}{1-x} - \frac{1}{(2c-1)^2} dc$	9.000	
. a small volume of shell is quice by	Descrith	Imarke: correct limits			
$SV = SA.h$ where $h = (3-x^2) - (x^2 - x)$	leading to	marke: mregrarion	$= \left[-2\ln(2-n)(-1) + 2\ln(1-n)(-1) + \frac{1}{x-1} \right]_{0}^{2}$	O correct subst	
$=3+x-2x^{2}$	SV		$= \left[2 \ln (2-x) - 2 \ln (1-x) + \frac{1}{x-1} \right]_{1}^{1/2}$	to show	
:. $SV = 2\pi (x-1)(3+x-2x^2)Sx$			= 21n 3 + 21n2-2-(21n2-2h1-1)	answer.	· · · · ·
$= 2\pi (3x + x^2 - 2x^3 - 3 - x + 2x^2) S_x$			$= 2 \ln \frac{3}{4} + 2 \ln 2 - 2 - 2 \ln 2 + 0 + 1$		
$=2\pi (-3+2x+3x^2-2x^3) \delta x$	() correct cumming		$= 2 \ln(3) - 1.$		
.". Volume of the solid is given by	Cadena to		c) cos 2x = c = sin 3x c constant		
V= ZSV	integral		\therefore sin $3x = c$		
= $\int_{x \to 0}^{100} \frac{2}{x_{-1}} 2\pi (-3+3x+3x^2-2x^3) 5x$	- J		or $C_{07}(\frac{1}{2}-3\mu) = e$		
$=2\pi\int -3+2x+3x^2-2x^3 dx$			$\frac{1}{2} - 3\pi = coo^{-1}(c) + 2\pi n = 0, \pm 1, \pm 2$		
~1					

SOLUTIONS: YE12 TRIAL H.S.C. EXTN JE: 2003	MARKING	COMMENTS	٩م	SUUTIONS: Y. 12 TRIAL H.SC. EXTN II: 2003	MARKING	COMMENTS OI
c) (cont) : $-3x = \frac{1}{2} + 2\pi n + cos'(c)$	····		•	ii) for most $x = 1 - \alpha = 3$ $\rightarrow -(1 - x)$		e integration in an and it with the second
or $3x = \frac{\pi}{2} - 2\pi n - cor^{-1}(c)$	1) correct		۰.	. (1-x) un ean airrea:	Deament	· many simple algebraic
but cos2x=c abo,	setup of problem			$(1-x)^3 + 4(1-x)^2 + 2(1-x) - 3 = 0$	soture with mite	ептол
$Ao \qquad 2x = co^{-1}(c)$	(any method)			$1-3x+3x^{2}-x^{3}+4-8x+4x^{2}+7x^{2}-3=0$	Der up with 1003	
$3_{x} = \frac{\pi}{2} - 2\pi n - 2x$, j			$-\frac{1}{4} - \frac{1}{3x} + \frac{7}{7}x^2 - x^3 = 0$	eorrea egn.	
$5x = \left(\frac{1-4n}{2}\right)\pi$	Dorrect			$x^3 - 7x^2 + 13x - 4 = 0$		
$\sum_{n=1}^{\infty} x^n = \left(\frac{1-4n}{10}\right) \pi$	solutions in			iii) for roots x= x => x= x	1) setus with	
for 0 5 2 5 2 , we get (using n=0, n=-)	range.			$(\frac{1}{3})^{3} + 4(\frac{1}{3})^{2} + 2(\frac{1}{3}) - 3 = 0$	mots	
$\chi = \frac{\pi}{10}, \frac{\pi}{2}$	8		_	xx^{3} : 1 + 4x + 2x ² -3x^{3} = 0	1) correct egn	
d) let tan" 3x = 0 and tan" 2x = 0		· ·		or $3x^3 - 2x^2 - 4x - 1 = 0$		
$\therefore \tan \theta = 3x$ $\tan \phi = 2x$				b) let & be the root of multiplicity 3,		·
for $\tan^{-1}(\frac{1}{5}) = \tan^{-1}(3x) - \tan^{-1}(2x)$	1) correct use			then $P(\alpha) = P'(\alpha) = P''(\alpha) = o'$		· several used P"(a)=0
$= \Theta - \phi$	oftan			$\Gamma'(x) = 32x^3 - 75x^3 + 54x - 11$	() set up	· many shid not understan
taking tan of both sides:				$f''(x) = 96x^2 - 150x + 54$	problem with	the implications for a
$\tan(\tan^2 \overline{s}) = \tan(\Theta - \phi)$				if $P(x)=0$, α is the sola to $0=96x^2-150x+54$	P"(a)=0	root with multiplicity!
$5 = \frac{1}{1 + tang} \frac{1}{tang}$	C			or 0=48x2- <u>75x+27</u>		
$= \frac{3x - 2x}{1 + 3x \cdot 2x}$	1) forms			$\therefore x = \frac{75 \pm \sqrt{2625 - 4.48.27}}{-96}$		
$1+6\pi^2 = 5\pi$	quadrati			$=\frac{75\pm J441}{76}$		
$or o = 6x^2 - 5x + 1$	v			$=\frac{75\pm21}{96}$	1) correct	
$= 6x^2 - 3x - 2x + 1$				=1,7	possibilities for	
= 3x(2x-1)-1(2x-1)	O correct			$n_{0}\omega, P(1) = 32 - 75 + 54 - 11$	tripple root.	
$= (2\mathbf{x}-1)(3\mathbf{x}-1)$	answers	· · · ·		= 0		
x ÷ 2, 3			<u></u>	and P(1) = 8-25+27-11+1		
QUESTION 5:				= 0		and to explicitly state
a) $\alpha + \beta + \vartheta = -4$. (x-1) is a factor of (x)	1 correct	the other root. (8x-1) as
$\alpha \beta + \alpha Y + \beta Y = 2$		· ·		so a =1 is the tripple root.	tripple root with	a factor implies a root of
$\alpha\beta\gamma = 3$. some had an incorrect		$Alao, a^3, \beta = \overline{8}$	reasons	$x = \frac{1}{3}$
1) $\alpha + (3 + 8) = (\alpha + \beta + 8) - 2(\alpha \beta + \beta 8 + \alpha 8)$	1) answer	squares expansion .		.: B= 8 is the other root.	Dother root	
= (-4) - 2(2)				c) let x, B, 8 and S be the roots of the equation		
- 12				i) :. x= x+1 is a root of the regid eqn	() correct subst	•
				AO K = X - I	for root.	
				(x-1)' + 4(x-1)' + 5(x-1) + 2(x-1) - 20 = 0		<i>i</i>

SOLUTIONS: YO12 TRIAL H.S.C. EXTN II: 2003	MARKING	Comments pil	SOLUTIONS: Yr 12 TRIAL H.S.C. EXTN II: 2003	MARKING	COMMENTS PI
i) (cont):	O correct alg.	· many errors expanding	$ (i) [C(c)]^2 = \int_{2}^{2} (e^{x} + e^{-x})^2$	(i) er contra	a na sa n
$(x^{4}-4x^{3}+6x^{2}-4x+1)+(4x^{3}-12x^{2}+12x-4)+(5x^{2}-10x+5)+2x-2-2$	to sola.	this	$=\frac{1}{4}(e^{2x}+2e^{x}-x+e^{-2x})$	for (Car)2	-
$x^{4} - x^{2} - 20 = 0$ as read.			$=\frac{1}{4}(e^{2\kappa}+e^{-2\kappa}+2)$	Compart	
ii) now $x^4 - x^2 - 20 = 0$			$[1 + [S_{(k)}]^{2} = [1 + [\frac{1}{2}(e^{x} - e^{-x})]^{2}]$	comec	
$(x^2-5)(x^2+4) = 0$		h h h h h h h h h h h h	$= 1 + \frac{1}{4} (e^{2x} - 2e^{x} - e^{-x} + e^{-2x})$	Oreduction	
$x^{2} = 5, -4$	Wearrest roots	Many had House unsing	$= \frac{1}{4} \left(4 + e^{2x} - 2 + e^{-2x} \right)$	f 1 + [gr)]	
$x = \pm \sqrt{5} \pm 2i$	for x-x-20:0	original with x=x-1	$=\frac{1}{4}(e^{2x}+e^{-2x}-2)$	correct (or	
-: the roots of x+ 4x3+5x2+2x-20=0	O correct		= [(G)] ² from above	equivalent)	
are guen by $x = x - 1$	roots for orig.		iv) as S(x) is monotonically increasing	(i) approviate	· many attempted explainate
. roots are -1+15, -1-15 -1+2i, -1-2i	egn.		reach x must produce a unique y value	enslamation	revealed a lack of unders
QUESTION 6:		· link back to the definition	=> S(x) has a 1-1 correspondence.		of what inverse means.
a) i) $x_0 = OS$ $y_0 = OT$	() each	given in the diagram. This is the starting point, and many	. S'(a) exists for all values of a		
= 5 cor O = 3 sin O	answer	ninned it.	$v) = S^{-1}(x)$. very few piched up the lin
ii) -: $\frac{26}{5} = cor\Theta$ and $\frac{3}{3} = sin\Theta$		· "eliminate O" => show how	$\int S(q) = \infty$	Dinverse	to S(x) and GO in the previ
$\frac{\chi^2}{25} = \cos^2 \Theta \qquad \frac{\psi^2}{9} = \sin^2 \Theta$	() correct	this happens, don't just write	du = S(u)	to give due	parts, so many futile a
$\frac{1}{25} + \frac{1}{4} = co^{2}\theta + sin^{2}\theta$	ean.	The Equation Constant	= C(4)	and	lished parts like this one-
so $\frac{\pi^2}{85} + \frac{4}{9} = 1$ to the cartesian entry			$=\sqrt{1+\beta(u)^2}$	(1) connect cul et	make the colution simple
III) normal to an ellipse is given by		· many found tangent instead	$=\sqrt{1+\tau^2}$	to formula	
$\frac{ax}{coo} - \frac{by}{dino} = a^2 - b^2$ where $a = 5, b = 3$		of normal.	$\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$	ie german.	
$\Theta = \frac{\pi}{3}$	O correct pubet	· put your ensurer into one of	$\frac{dx}{dt} = \left(\frac{dx}{dt+x^2}\right) = \int dx = \frac{dx}{dt+x^2}$	Queduction	. The question is to show +
$\frac{5x}{40\pi} = \frac{3y}{45-9}$	in formula	left their answer unfinished	$d\sigma = \log^2 \theta d\theta$	at a cara la	relationship => not us
$10x - \frac{6y}{10} = 16$	(1) correct page		$= \left(\frac{\operatorname{Aec}^2 \Theta \mathrm{d} \Theta}{\operatorname{Full holds}} \right)^{-1} \operatorname{dis}^{-1} \operatorname$	() at (the standardintegral table. I
103x-64-165=0 10 ean	(any form)		= (sec ² 0 do	of some of s	its not part of something
b) i) $S(a) = \frac{d}{da} (\frac{1}{2} (e^{x} - e^{x}))$			$= \left(A \theta c \theta d \theta \right)$	a second chit	bigger
$=\frac{1}{2}(e^{x}+e^{-x})$	1) set out		$= \left(\frac{\sec \Theta(\sec \theta + \tan \theta)}{\csc \theta + \tan \theta} d\theta \right)$	to air an tra	
= C(x)	dearly.		= ln (peco + tand) + c	lo gue y in iems	
ii) ex>0 for allx		· esked to show => give	$\mu = \ln(x + \sqrt{1 + x^2}) + c$	Q 72.	
ex>0 for all x	<i>i</i> .	reasons why SG)>0 Just	RUFSTION 7:		
: externo for alla	Degreet	svaring it can be a way.	a)it To base A DAB:	Dennet	
: C(x)>0 for all x	reasoning		A $GB = A$ $AB = T$	at a of	
ie S'(d) >0 for all a	J.		F/	Jacoblas	
=> S(x) is monotorically increasing				Variances	
	• • • •	н на	A Control B	н. н	

.

SOLUTIONS: Yr 12 TRIAL HSC. EXTN IT: 2003 MARKING COMMENTS DI7 d) $\chi^2 - (2\cos\theta)\chi + 1 = 0$ i) $\chi^2 - (2\cos\theta)\kappa + \cos^2\theta = -1 + \cos^2\theta$ both $(x - \cos \theta)^2 = -\sin^2 \theta$ () answers : x-coo = tipino : x = coo tisino $\therefore \alpha = co\theta + i \sin \theta$ $\beta = co\theta - i \sin \theta$ \vec{i} $\alpha = cis \theta$ O correct use -. α''= (ωθ)" of de Moivren = cis 100 by deMoivres Theorem similarly $\beta = cis0$ so $\beta'' = (cis0)''$ Theorem 1) correct use of cist = 1000 1 correct - . d"+ B" = coolo + coolo + algebra to = con 100 + isin 100 + con 100 - isin 100 soln. = 2 cor 10 0 as read.