Question One: (15 Marks) Start a new sheet of paper.

a) Find
$$\int \cos^3 x dx$$
. [2]

b) Find
$$\int \frac{dx}{\sqrt{x^2 + 2x + 5}}$$
. [2]

c) Evaluate
$$\int_{1}^{2} x \ln x dx$$
 (in exact form). [3]

d)

i) Find real numbers
$$a, b$$
 and c such that

$$\frac{1}{(x^2+1)(x+1)} = \frac{ax+b}{(x^2+1)} + \frac{c}{(x+1)}.$$

ii) Hence evaluate
$$\int_{0}^{1} \frac{1}{(x^2+1)(x+1)} dx$$
 (in exact form). [2]

e) Use the substitution
$$x = \sin^2 \theta$$
 to evaluate $\int_{0}^{\frac{1}{2}} \frac{\sqrt{x}}{(1-x)^{\frac{3}{2}}} dx$ [4]

Question Two: (15 Marks) Start a new sheet of paper.

a) Given that
$$z = \sqrt{3} + \frac{1+i}{1-i}$$
 find:
i) $\operatorname{Im}(z)$ [1]
ii) \overline{z} [1]

iii)
$$z$$
 in mod/arg form. [2]

b) Solve
$$z^2 = 3 - 4i$$
. [2]

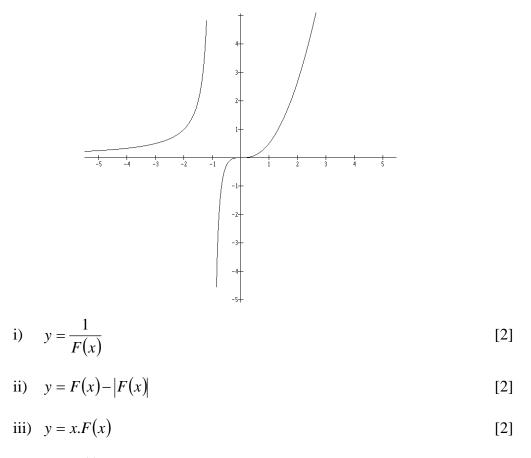
c) Illustrate on an Argand diagram the region given by

$$\left\{z: 0 \le \arg(z+4+i) \le \frac{2\pi}{3} and \left|z+4+i\right| \le 4\right\}.$$
[3]

(Question 2 continued over)

[2]

d) z is a point on the circle |z-1| = 1 and $\arg(z) = \theta$.

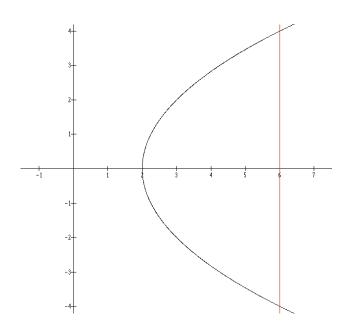

i) Find
$$\arg(z-1)$$
 in terms of θ . [1]

ii) Hence find
$$\arg(z^2 - 3z + 2)$$
 in terms of θ . [2]

e) Find the complex fifth root of -*i*, in mod/arg form, and show these roots on an Argand diagram.

Question Three: (15 Marks) Start a new sheet of paper.

a) The diagram shows the graph of y = F(x). Draw neat sketches of (each should take about one third of a page):



$$iv) \quad y = e^{F(x)}$$
[2]

v)
$$y = \sqrt{F(x)}$$
 [2]

(Question 3 continued over)

b) The diagram shows the region bounded by the curve $y^2 = 4(x-2)$ and the line x = 6. Use the method of cylindrical shells to find the volume of the solid formed by rotating the given region about the y - axis. [5]

Question Four: (15 Marks) Start a new sheet of paper.

a)

i) Derive the tangent to the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 at the point $P(a\cos\theta, b\sin\theta)$. [2]

- ii) If $P(a\cos\theta, b\sin\theta)$ is on the ellipse in the first quadrant, and the tangent at *P* meets the *x*-axis and the *y*-axis at *X* and *Y* respectively, find the coordinates of *X* and *Y*. [2]
- iii) For the triangle thus formed by OXY, find the minimum area of this triangle, and the coordinates of P (in terms of a and b) for this case.

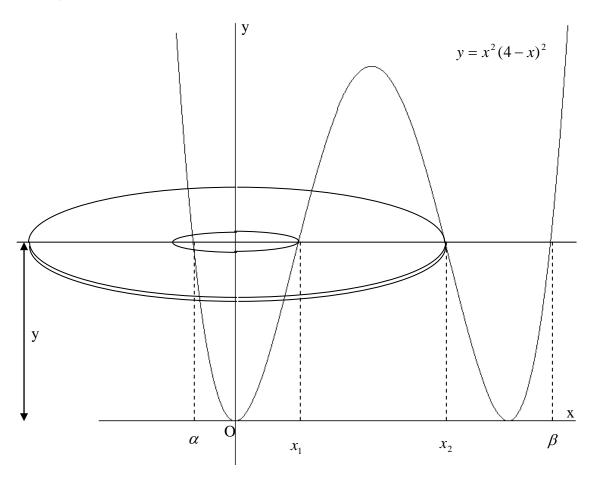
i) Given
$$I_n = \int_{0}^{\frac{\pi}{4}} \tan^n x dx$$
 where *n* is a positive integer and $n \ge 2$,

show that
$$I_n = \frac{1}{n-1} - I_{n-2}$$
. [4]

ii) Hence evaluate
$$I_5 = \int_0^{\frac{\pi}{4}} \tan^5 x dx$$
. [2]

Question Five: (15 Marks) Start a new sheet of paper.

- a) Factorise $Q(x) = x^6 3x^2 + 2$ over the complex number field, given that it has two double roots. [3]
- b) The equation $x^3 + px + 1 = 0$ has three real non-zero roots α, β and δ .
 - i) Find the values of $\alpha^2 + \beta^2 + \delta^2$ and $\alpha^4 + \beta^4 + \delta^4$ in terms of p, and show that p must be strictly negative. [4]
 - ii) Find the monic equation, with co-efficients in terms of p, whose roots are $\frac{\alpha}{\beta\delta}, \frac{\beta}{\alpha\delta}, \frac{\delta}{\alpha\beta}$. [4]
- c) Let z_1, z_2 and z_3 be three complex numbers represented by the points Z_1, Z_2 and Z_3 respectively on the Argand diagram, where $z_1 \times z_3 = (z_2)^2$. Show that OZ_2 bisects $\angle Z_1 OZ_3$. [4]

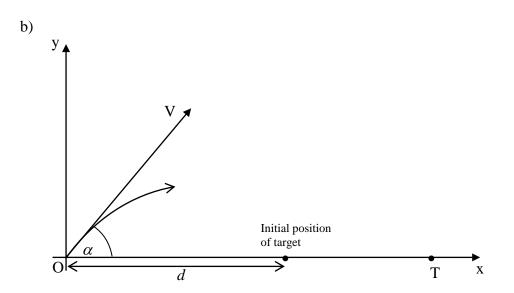

Question Six: (15 Marks) Start a new sheet of paper.

a) PQRS is a cyclic quadrilateral. The bisector of \angle PQS cuts the segment PR at X and the circle at M, and RM cuts the segment QS at Y.

i)	Draw a neat diagram showing the above information.	[1]
ii)	Prove XQRY is a cyclic quadrilateral.	[3]

- iii) Prove XY is parallel to PS. [3]
- b) Find the limiting sum of the series $\frac{1}{5} + \frac{2}{5^2} + \frac{3}{5^3} + ... + \frac{n}{5^n} + ...$ [3]
- c) From DeMoivre's Theorem, we know $\cos 4\theta = 8\cos^4 \theta 8\cos^2 \theta + 1$. Use this to solve the equation $16x^4 - 16x^2 + 1 = 0$, and deduce the exact values of $\cos \frac{\pi}{12}$ and $\cos \frac{5\pi}{12}$. [5]

The region between x = 0 and x = 4 is rotated about the y - axis. The volume of the solid formed is found by taking slices perpendicular the the y - axis. The typical slice shown in the diagram is at a height y above the x - axis.


i) Deduce that α, x_1, x_2 and β , as shown in the diagram, are the roots of $x^4 - 8x^3 + 16x^2 - y = 0$. [1]

ii) Use the symmetry in the graph to explain why $\frac{x_1 + x_2}{2} = 2$ and $\frac{\alpha + \beta}{2} = 2$. Hence, by considering the co-efficients of the equation in (i), show that $\alpha\beta = -x_1x_2$, and deduce that $x_1x_2 = \sqrt{y}$ and that $x_2 - x_1 = 2\sqrt{4 - \sqrt{y}}$. [5]

(Question 8(a) continued over)

iii) Show that the volume of the solid of revolution is given by

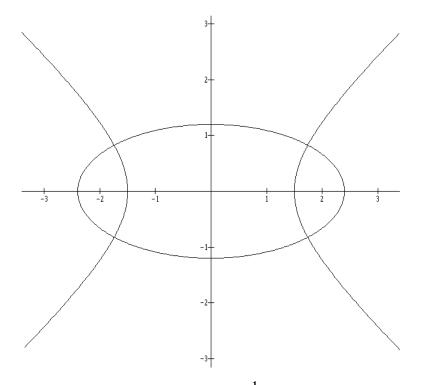
$$V = 8\pi \int_{0}^{16} \sqrt{4 - \sqrt{y}} \, dy$$
. Use the substitution $y = (4 - u)^2$ to evaluate this integral and find the exact volume. [4]

A projectile, of initial speed V m/s, is fired at an angle α from the origin O towards a target T, which is moving away from O along the x - axis.

You may assume that the projectile's trajectory is defined by the equations:

 $x = Vt \cos \alpha$ and $y = Vt \sin \alpha - \frac{1}{2}gt^2$, where x and y are the horizontal and vertical displacements of the projectile in meters at time t seconds after firing, and where g is the acceleration due to gravity.

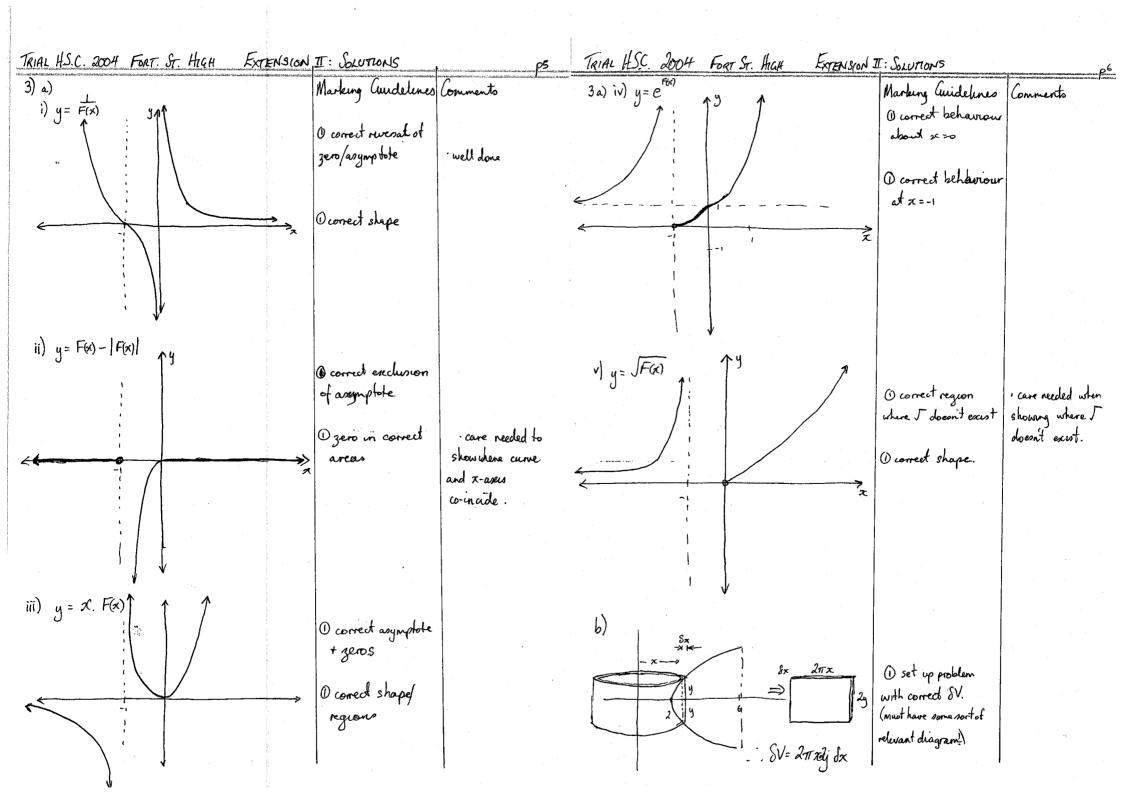
i) Show that the projectile is above the x - axis for a total of $\frac{2V \sin \alpha}{g}$ seconds. [1]


ii) Show that the horizontal range of the projectile is $\frac{2V^2 \sin \alpha \cos \alpha}{g}$ meters. [1]

iii) At the instant the projectile is fired, the target T is d meters from O and is moving away at a constant speed of u m/s.

Suppose that the projectile hits the target when fired at an angle of elevation α . Show that $u = V \cos \alpha - \frac{gd}{2V \sin \alpha}$. [3]

Question Eight: (15 Marks) Start a new sheet of paper.


- a) Find the volume of the solid generated by rotating the region common to the circles $x^2 + y^2 = 16$ and $x^2 + y^2 = 8x$ about their common chord.
- b) Hyperbola *H* has equation $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and eccentricity *e*. Ellipse *E* has equation $\frac{x^2}{(a^2 + b^2)} + \frac{y^2}{b^2} = 1$. See diagram below.

- i) Show that ellipse *E* has eccentricity $\frac{1}{e}$. [1]
- ii) If *H* and *E* intersect at *P* in the first quadrant, show that the acute angle α between the tangents to *H* and *E* at *P* is given by $\tan \alpha = \sqrt{2} \left(e + \frac{1}{e} \right).$ [6]

[8]

TRIAL H.S.C. 2004 FORT ST. HIGH EXTENSION	(II: Solutions	ing search webs revisions in the Nation General and the search in the second second second second second second	TRIAL H.S.C. 2004 FORT ST. HIGH EXTENSION.		
$(Q_2)_{a} = \sqrt{3} + \frac{1+i}{1-i} \times \frac{(1+i)}{(1+i)}$	Marking Evidelines	Comments	d)	Marking Cuidelines	Comments
$=\sqrt{3}+\frac{\chi_{c}}{2}$			7-1		
$=\sqrt{3}+i$		Some wished toundude	6		· those who drewa
$\therefore (i) \mathbb{Z}_{\text{FM}}(z) = 1$	0	Some wished founduale the "i" in Im(Z).			diagram did quite w
$ (ii) \overline{Z} = \sqrt{3} - i $	0			2	Those that did not, c
$(iii) z = \sqrt{a^2 + b^2} \arg(z) = \tan^2 \sqrt{3}$		 some dud mod∫arg of Ξ. 	i) $\arg(2-1) = 20$	\mathbf{U}	very poorly on this
$=\sqrt{3+1} = \frac{\pi}{6}$ $= 2$	1) mod	ot Z.	ii) $\arg (z^2 - 3z + 2) = \arg [(z - 2)(z - 1)]$		question!
. Z = 2 cus E	() angle		$= \arg(z-2) + \arg(z-1)$		1 . 1 1
			$\arg(z^2)$ is external angle of Δ , as	(1) correct arg (2-2)	· many tried to use the
b) $2^2 = 3 - 4i$			$\arg(z-2) = 2+\Theta$		the straight line -
ie $(a+ib)^2 = 3-4i$ a, b real			$\therefore \arg (2^{2} - 3z + 2) = \arg (z - 2) + \arg (z - 1) = \frac{\pi}{2} + \Theta + 2\Theta$	O correct answer	insuccessfully.
$a^2-b^2+2abi=3-4i$	á.		= 30 + 5		
$\therefore a^2 - b^2 = 3 - 0$ $2ab = -4$					
$b = \frac{-2}{2} - 0$ in (b)			$e) -i = \cos(-\overline{z})$		· many had wrong eso,
$a^2 - \left(\frac{-2}{a}\right)^2 = 3$			let Z= r as O		• many had wrong eso, -i!
$a^2 - \frac{4}{4^2} = 3$	O appropriate method		: Z ⁵ = r ⁵ us 50 (by De Moiores Theorem)		· many did not make
$a^{4} - 3a^{2} - 4 = 0$	O appro prate method for getting J		$r^{5} \alpha 5\theta = \cos\left(\frac{\pi}{2}\right)$	O correct use of	clear connections in the
$(a^2 - 4)(a^2 + y) = 0$			\therefore r=1, $5\theta = 2k\pi - \frac{\pi}{2}$	De Moivre and general	working, between DMT
so a ² =4 or a ² =1 (reject as a wreal)		· remember to write down	$\Theta = \frac{\pi}{10} (4k-1) k=0,1,2,3,4.$	solution.	and eqn.
$a = \pm 2$ $b = \mp 1$	O correct solutions	solutions, not just state	$\therefore z_{0} = Cis\left(\frac{-\pi}{10}\right) \left(= cis\left(\frac{-\pi}{10}\right)\right)$		·general soln poorly dow
$z_{1} = 2 - i z_{2} = -2 + i \eta$	for 21, 22	a and b!	$Z_{i} = cu_{i} \left(\frac{3u}{10} \right)$	O correct roots listed	
			$\mathcal{Z}_{2} = \mathcal{U}_{0}\left(\frac{7\pi}{10}\right)$		с. С. С. С
C) $2 + 4 + i = 2 - (-4 - i) ^{2} 4$, a circle	Ocorrect interpret.		$\begin{aligned} \mathcal{Z}_{3} &= Co\left(\frac{\mu T}{10}\right) \\ \mathcal{Z}_{\mu} &= Cu\left(\frac{15\pi}{10}\right) \end{aligned}$		
= Z - (-4 - i) contract (4-i) $\Delta In o \leq \arg(2 - (-4 - i)) \leq \frac{2\pi}{3} = 7 \text{ sector}.$	O correct any interpret.		$\mathcal{Z}_{\mu} = Cig\left(\frac{3T}{2}\right) (=-i)$		
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} $	V correct any interptel.	•		A diament	· many incorrect due 1
TITT 1	© correct diagram.	· some placed the center	Za	1) d'agren correct	not graphing -i
	c contact origination.	n_{o} t at (-4,-1).			correctly!
11/1-1/1/10 2 4 Re			2, 20		J
			Ī.		

TRIAL A.S.C. 2004 FORT. ST. HIGH EXTENSION IT; SOLUTIONS TRIAL H.S.C. 2004 FORT. ST. HIGH EXTENSION IT: SOLUTIONS b) i) In = j[#] tan'x dx Marking Cudelines Comments Marking Cuiclelenes Comments 5)a) (cont) $(Q(x) = (x-1)^{2}(x+1)^{2}R(x)$ O correct tan" x method . nortcould start this proceedure. = $\int_{0}^{\infty} \tan^{n-2} x$. $\tan^{n} x \, dx$ $= (\pi^{2} - 2x + i) (x^{2} + 2x + i) R(x)$ $=(x^{4}-2x^{2}+1).R(x)$ $= \int_{0}^{\infty} \tan^{n-z} x \left(\sec^{2} x - 1 \right) dx$ $\int R(x) = \frac{Q(x)}{(x^4 - 2x^2 + i)}$. well done (correct RG) (any $= \int fan^{n-2} x \sec^2 x \, dx - \int fan^{n-2} x \, dx$ O correct integrals $\frac{\dot{\alpha}}{\chi^{4} - 2\chi^{2} + 1} \frac{\chi^{2} + 2}{\chi^{6} - 3\chi^{2}} + 2$. many tried "by part" method - must show at thespoint! Why? working) $= \left[\frac{1}{n-1} \tan^{n-1} x\right]^{\frac{n}{4}} - I_{n-2}$ = $\left(\frac{1}{n-1} \tan^{n-1} \frac{\pi}{4} - \frac{1}{n-1} \cdot 0\right) - I_{n-2}$ O correct substitutions $\frac{x^{6}-2x^{4}+x^{2}}{2x^{4}-4x^{2}}+2$ " Orecognises In-2. $= \frac{1}{n-1} - I_{n-2}$ 2x4 -4x2 + 2 ii) from In = 1-1 - In-2 () factored ore o complex field $(\chi - 1)^{2} (\chi - 1)^{2} (\chi + 1)^{2} (\chi^{2} + 2)$ then $I_5 = \frac{1}{4} - \frac{1}{7}3$ $= (x_{-1})^{2} (x_{+1})^{2} (x_{+} \sqrt{2} i) (x_{-} \sqrt{2} i)$ · many did notuse $= \frac{1}{4} - (\frac{1}{2} - I_{i})$ reduction formula O correct evaluation of I. now $I_r = \int_{a}^{a} \tan x \, dx$ b) i) $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha \beta + \beta \gamma + \alpha \gamma)$ properly- tried to find I3. NOW X+B+X=0 $= \left[ln(cox) \right]^{\frac{1}{4}}$ $\alpha\beta + \beta\gamma + \alpha\gamma = \rho$ () correct value of a + p 2 + y2 $\alpha \beta Y = +1$ -'. $\alpha^{2} + \beta^{2} + \gamma^{2} = 0^{2} - 2(\rho)$ = ln t= - In 1 Evaluate I, or Io = ln 2 2 in a reduction formula! · well done except $= -\frac{1}{2} \ln 2$ O correct use of for careless errors =-2p reduction formula for $I_5 = \frac{1}{4} - (\frac{1}{2} - \frac{1}{2} \ln 2)$ 1) reasoning for p<0 many notable to since x, band Y are non-zero and real = = = + = /n2 answer. repolve In the to -2p70, so $= \frac{1}{2}(1+\ln 2)$ for $x^4 + \beta^4 + \gamma^4$: $x^3 = -px - 1$ its In 2 equivalent. O method for x 4. 5) a) $Q(x) = \chi^6 - 3\chi^2 + 2$ $x^{4} = -p \pi^{2} - \pi$ ie $\alpha^{4} = -p \alpha^{2} - \alpha$ $Q'(x) = 6x^5 - 6x$ $= 6x(x^{4}-1)$ $\beta^{4} = -\rho^{2} - \beta^{2} - \beta$ $\gamma^{4} = -\rho^{2} - \gamma$ O double roots clearly roots of Q'G) are 0, ±1, ±i $: \alpha^{4} + \beta^{4} + \delta^{4} = -p(\alpha^{2} + \beta^{2} + \delta^{2}) - (\alpha + \beta + \delta)$ O correct value of x 4+p 4+ y 4 identified (with reasons). $Q(o) \neq 0$ Q(l) = 0 $Q(i) \neq 0$ $Q(-i) = 0 \quad Q(-i) \neq 0$ =-p(-2p) - 0. I are the double roots.

EXTENSION IL : SOLUTIONS TRIAL H.S.C. 2004 FORT. Sr. HIGH TRIAL HSC. 2004 FORT ST. HIGH EXTENSION IT: SOLUTIONS Comments Marking auidelines Marking auidelines Comments 5) b) (ii) 6) a) i) p m for roots $\frac{\alpha}{\beta \gamma}$, $\frac{\beta}{\alpha \gamma}$, $\frac{\beta}{\alpha \beta}$, noting $\alpha\beta\delta = -1$ gives $\frac{\alpha}{\alpha\beta\gamma} = \frac{\alpha^2}{\alpha\beta\gamma} = -\alpha^2$ ie $\chi = -\alpha^2$ @ use of 2p8=-1 () diagram correct. () using & to form eyn. NO Q = V-X · poorly done in original equation: · diàgrames were $(\sqrt{2})^{2} + p\sqrt{-x} + 1 = 0$ ii) Prove XQRY a cyclic quadrilateral: generally not neat $\sqrt{-x}(p-x) = -1$ Dlinking LQ to LR LPQM = LPRM (angles at circumference O working, including squaring to resolve J syyang: -x (p-x)2 = 1 standing on arc PM) LPQM = LBQM (guen QM bisecto LPQS) $-x(p^2-2px+x^2) = 1$ $-p^{2}x + 2px^{2} - x^{3} = 1$ so $0 = x^{3} - 2px^{2} + p^{2}x + 1$ is required eqn. $\therefore LSQM = LPRM$ (both = LPQM) O wing bisector @ final egn. .: arc XY' subtends equal angles at Q and R Drecognioing subtended angles on arc XI. ie LXQY(=LSQM) = LXRY (= LPRM) c) $Z_1, Z_3 = (Z_2)^2$. XQRY wa cyclic quadrilateral. " ie arg(Z,) + arg(Z) = 2 arg(Z) () correct any relationship o not well done many students have ie arg (Z2) = 2 (arg (Z1) + arg(Z3)) iii) LRQY = LRXY (angles at circumference O expression for ang 21 difficulty connecting standing on arc RY) LRPS = LRQS (angles at circumference complex numbers () angles from both with geometry. standing on arc RS) cyclic quado () diagram showing relationships is correct _: LRXY = LRPS (both equal to LRQY (= LRQS)) D linking these ungles $arg(z_2) = \frac{1}{2}(\kappa + \beta)$ $\alpha_{arg}(z_1) - arg(z_1) = arg(z_3) - arg(z_2)$. XY // PS (corresponding angles are equal) @ conclusion (with reason) O correct interpretation linking x, B with anys $(z \perp Z_2OZ, = \perp Z_3OZ_2)$ =>0Z_2 busects $\perp Z_3OZ, \mu$ b) $\frac{1}{5+\frac{2}{5^2}+\frac{3}{5^3}+\ldots}$ · most had trouble seeing any pattern =(+時+売)+(テ+売+元)+(テ+売+元)+(テ+時+元) O rearranging pattern each is a GP with r= \$, and differing as. $\dot{e}: \frac{1}{1-\frac{5}{5}} + \frac{\frac{1}{5}}{1-\frac{5}{5}} + \frac{\frac{1}{5}}{1-\frac{5}{5}} + \frac{\frac{1}{5}}{1-\frac{5}{5}} + \frac{\frac{1}{5}}{1-\frac{5}{5}} + \frac{\frac{1}{5}}{1-\frac{5}{5}} + \frac{\frac{1}{5}}{1-\frac{5}{5}} + \frac{1}{5}$ $= \frac{5}{4} + \frac{$ 1) Ist Suff groups. another GP with a=4, r=5

Test 452 2004 For J. Hull Ecretion I. Jurness

$$0 \ge 0 \pmod{10^{-1}}$$

 $1 \le \frac{1}{2}$
 $1 \le \frac{1}{2}$

Tane U.S. 2004 For S. Hull Examines S. Surners
$$\mu$$

No all \mathbb{R} be to be reduce SV given by \mathbb{R} be defined for \mathbb{R} . The disc has reduce SV given by \mathbb{R} be defined by \mathbb{R} is $x = V \operatorname{prime}^{\mathbb{R}}$ in $x = V \operatorname{prime}^{\mathbb{R}}$ is $v = V \operatorname{prime}^{\mathbb{R}}$ in $v = V \operatorname{prime}^{\mathbb{R}}$ is $v = V \operatorname{prime}^{\mathbb{R}}$

TRIAL H.S.C. 2004 FORT ST. HIGH EXTENSION II: SAUTIONS EXTENSION II: SLUTIONS p18 Marking Caudelines Comments. 11م TRIAL H.S.C. 2004 FORT ST. HIGH 8) a) (cont) : $SV = SA \cdot Sy$ = $\pi (20 - y^2 - 4 \sqrt{16 - y^2}) Sy$ Marking Cuidelines Comments 8) b) (i) (cont) $= \frac{a^2 + b^2}{a^2 + b^2} = \frac{a^2 + b^2}{a^2 + b^2}$ $=\overline{a^2+b^2}$ D working to E. . those using shells 1) correct esepression set up the wrong for V radius expression ... $V = \lim_{xy \to 0} \frac{2^{1/3}}{y^{-2/3}} T \left(20 - y^2 - 4 \sqrt{16 - y^2} \right) \delta y$ radius expression with hence the ellipse E has eccentricity to, the wrong 'y' expression $= \int_{-215}^{213} \pi (20 - y^2 - 4\sqrt{16} - y^2) dy$ and usually the ii) For P in quadrant 1; $\frac{\chi^2}{q^2} - \frac{y}{b^2} = 1 - D \frac{\chi^2}{(q^2+b^2)} + \frac{y^2}{b^2} = 1$ wrong limits! · most did not find = 2π / 20 - y² - 4 √16 - y² dy (from symmetry) the point P - or the but from (i) $e^2 = \frac{q^2+b^2}{a^2}$ to give it generic $= 2\pi \left[20y - \frac{1}{3}y^3 \right]_0^{2/3} - 2\pi \left[\frac{4\sqrt{16} - y^2}{4\sqrt{16} - y^2} dy \right]_0^{2/3}$ I working to substitution $so a^2 + b^2 = a^2 e^2$ co-ordinates. giving area + Jb2 = 1-0 $(1+2) gues: \frac{7}{a^2} \frac{x^2}{a^2} + \frac{x^2}{q^2} = 2 \\ \frac{x^2}{a^2} \left(\frac{1}{a^2} + 1\right) = 2$ 1) working for simultaneous equs. $a^2 e^2 (1+e^2) = 2$ $= 2\pi \left[\frac{40}{3} - \frac{1}{3} \left(2\sqrt{3} \right)^3 - (0) \right] - 8\pi \left(\sqrt{16 - 16\sin^2 \theta} \cdot 4\cos \theta \theta \right)$ $e^{2} \times 0 : \frac{x^{2}}{a^{2}} + \frac{e^{2} u^{2}}{b^{2}} = e^{2} - 3$ so (3-1) gives: $\frac{e^2y^2}{b^2} + \frac{y^2}{b^2} = e^2 - 1$ $\frac{y^2}{b^2} (e^2 + 1) = e^2 - 1$ $\therefore at P \quad \chi^2 = \frac{2a^2e^2}{e^2 + 1} \qquad y^2 = \frac{b^2(e^2 - 1)}{e^2 + 1}$ so $\chi = ae \sqrt{\frac{2}{e^2 + 1}} \qquad y = b \sqrt{\frac{e^2 - 1}{e^2 + 1}}$ () correct working in substitution $= 2\pi \left(40.53 - 8.53 \right) - 1.28\pi \int_{0}^{3} \cos^{2} \Theta \, d\Theta$ $= 64\pi 53 - 128\pi \int \frac{1}{2} (1 + con 2\theta) d\theta$ O correct values of x y at P for tan α , we need the imple at P on H: $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$ $= 64\pi \sqrt{3} - 64\pi \left[\theta + \frac{1}{2} \sin 2\theta \right]^{\frac{3}{3}}$ = $64\pi \left(\sqrt{3} - \left[\frac{\pi}{3} + \frac{1}{2} \cdot \frac{\pi}{2} \right] - 0 \right]$ = $64\pi \left(\frac{3\sqrt{3}}{4} - \frac{\pi}{3} \right)$ cu. units 1 O correct answer at P: $dy = \frac{b^2}{q^2} \cdot \frac{a \in J^2}{\sqrt{e^2 + i}} \cdot \frac{\sqrt{e^2 + i}}{b \cdot le^{2 - i}}$ $= \frac{b}{q} e J_2 \cdot \frac{J_2}{\sqrt{e^2 - i}}$ 1 correct use of . most who got this far b) (i) for $H: b^2 = a^2(e^2 - 1)$ $e^2 - 1 = \frac{b^2}{a^2}$ $b^2 = a^2(e^2 - 1)$ did not use this to for $H: b^2 = a^2(e^2 - 1)$ get expressions in ten or $b = a \sqrt{e^2 - 1}$ so $\frac{dy}{dx} = \frac{a \sqrt{e^2 - 1}}{a} e \sqrt{2} \cdot \frac{1}{\sqrt{e^2 - 1}}$ $A e^{2} = \frac{b}{a^{2}} + 1 = \frac{b^{2} + a^{2}}{a^{2}}$ 1) tangent gradient of e'. at P on H. $=e\sqrt{2}.$ · use a different For E; call its eccentricity E $at P on E: \frac{x^2}{a^2+b^2} + \frac{y^2}{b^2} = 1$ $b^{2} = (a^{2} + b^{2})(1 - \epsilon^{2})$ symbol for the $u' - e' = \frac{b}{a^2 + b^2}$ eccentricity of the $r = \frac{x^2}{a^2e^2} + \frac{y^2}{b^2} = 1$ or $e^2 = 1 - \frac{1}{q^2 + b^2}$ ellipse!

Alternative "Shells" method solution to Q8 (a) 217 (5c-2) TRIAL H.S.C. 2004 FORT Sr. HIGH EXTENSION I SLUTIONS Marking auidelines Commento. $y = \sqrt{16 - x^2}$ 8) b) ii) (cont) $\frac{2x}{a^2e^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0$ at P: dy = - q2e2. Je2+ · note radius expression if SV= 2TT. 2y (x-2) Sx O tangent gradient at P on E. $= -\frac{bJ^2}{ae} \cdot \frac{1}{\sqrt{e^2 - 1}}$ $= -\frac{\sqrt{2}}{e} \cdot \frac{a\sqrt{e^2 - 1}}{a} \cdot \frac{1}{\sqrt{e^2 - 1}}$ using circle, centered at 0. = $4\pi y(x-z) \delta x$ ie M, = eJZ $M_2 = -\sqrt{2}.\dot{e}$. whilst many recognised = $4\pi (x-2) \sqrt{16-x^2} \delta x$ · note limits, given use of T. the need to use this. $fan \alpha = \left| \frac{\sqrt{2}e - (-\sqrt{2}e)}{1 + \sqrt{2}e(-\sqrt{2}e)} \right|$ the lass of co-ords $= 4\pi \int_{2}^{\pi} (\chi - 2)\sqrt{16 - \chi^2} d\theta$ $= 4\pi \int_{2}^{\pi} (4\pi i n \theta - 2)\sqrt{16 - 16\pi i n^2} \theta + 2\pi \theta = \frac{\pi}{2}$ $= 4\pi \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sqrt{16 - 16\pi i n^2} \theta + 4\pi \theta = \frac{\pi}{2}$ () correct working $V = 4\pi \int_{2}^{4} (x-2)\sqrt{16-x^2} \, dx$ for P in terms of e in angle between $= \left| \frac{\sqrt{2} \left(e + \frac{1}{e} \right)}{1 - 2} \right|$ furolines formula. made this impossible to work out. $=\sqrt{2}\left(e+\frac{1}{e}\right)$ // = $16\pi \int_{\pi} 2(kun\theta - 1) 4.cos\theta cos\theta d\theta$ =128 TT ST (2 sint - 1) cos 20 dt = 128 T [2 sint co 20 - co 20 d = 1287 / 2 sun & cos 2 - (2 + 2 cos 20) dt $= 128\pi \left[\frac{-2}{3}\cos^3 \Theta - \frac{1}{2} - \frac{1}{4} \sin 2\Theta \right]_{\rm II}$ $= (28\pi \left(0 - \frac{\pi}{4} - 0 - \left(-\frac{2}{3} \left(\frac{3}{3} \right)^{3} - \frac{\pi}{12} - \frac{1}{4} \left(\frac{3}{3} \right) \right)$ $= 128\pi \left[-\frac{\pi}{4} + \frac{\sqrt{3}}{4} + \frac{\pi}{12} + \frac{\sqrt{3}}{8} \right]$ $= 128_{\text{TT}} \left(\begin{array}{c} 3\sqrt{3} \\ \overline{3} \\ \overline{3}$ $= 64\pi \left[\frac{3\sqrt{3}}{4} - \frac{7}{3} \right]$