Question One: (15 Marks) Start a new sheet of paper.
a) Find $\int \cos ^{3} x d x$.
[2]
b) Find $\int \frac{d x}{\sqrt{x^{2}+2 x+5}}$.
c) Evaluate $\int_{1}^{2} x \ln x d x$ (in exact form).
d)
i) Find real numbers a, b and c such that

$$
\begin{equation*}
\frac{1}{\left(x^{2}+1\right)(x+1)}=\frac{a x+b}{\left(x^{2}+1\right)}+\frac{c}{(x+1)} . \tag{2}
\end{equation*}
$$

ii) Hence evaluate $\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)(x+1)} d x$ (in exact form).
e) Use the substitution $x=\sin ^{2} \theta$ to evaluate $\int_{0}^{\frac{1}{2}} \frac{\sqrt{x}}{(1-x)^{\frac{3}{2}}} d x$

Question Two: (15 Marks) Start a new sheet of paper.
a) Given that $z=\sqrt{3}+\frac{1+i}{1-i}$ find:
i) $\operatorname{Im}(z)$
ii) \bar{z}
iii) z in mod/arg form.
b) Solve $z^{2}=3-4 i$.
c) Illustrate on an Argand diagram the region given by
$\left\{z: 0 \leq \arg (z+4+i) \leq \frac{2 \pi}{3} \operatorname{and}|z+4+i| \leq 4\right\}$.
d) $\quad z$ is a point on the circle $|z-1|=1$ and $\arg (z)=\theta$.
i) Find $\arg (z-1)$ in terms of θ.
ii) Hence find $\arg \left(z^{2}-3 z+2\right)$ in terms of θ.
e) Find the complex fifth root of $-i$, in mod/arg form, and show these roots on an Argand diagram.

Question Three: (15 Marks) Start a new sheet of paper.
a) The diagram shows the graph of $y=F(x)$. Draw neat sketches of (each should take about one third of a page):

i) $y=\frac{1}{F(x)}$
ii) $\quad y=F(x)-|F(x)|$
iii) $y=x \cdot F(x)$
iv) $y=e^{F(x)}$
v) $y=\sqrt{F(x)}$
b) The diagram shows the region bounded by the curve $y^{2}=4(x-2)$ and the line $x=6$. Use the method of cylindrical shells to find the volume of the solid formed by rotating the given region about the y-axis .

Question Four: (15 Marks) Start a new sheet of paper.
a)
i) Derive the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $P(a \cos \theta, b \sin \theta)$.
ii) If $P(a \cos \theta, b \sin \theta)$ is on the ellipse in the first quadrant, and the tangent at P meets the x-axis and the y-axis at X and Y respectively, find the coordinates of X and Y.
iii) For the triangle thus formed by $O X Y$, find the minimum area of this triangle, and the coordinates of P (in terms of a and b) for this case.
b)
i) Given $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ where n is a positive integer and $n \geq 2$, show that $I_{n}=\frac{1}{n-1}-I_{n-2}$.
ii) Hence evaluate $I_{5}=\int_{0}^{\frac{\pi}{4}} \tan ^{5} x d x$.

Question Five: (15 Marks) Start a new sheet of paper.
a) Factorise $Q(x)=x^{6}-3 x^{2}+2$ over the complex number field, given that it has two double roots.
b) The equation $x^{3}+p x+1=0$ has three real non-zero roots α, β and δ.
i) Find the values of $\alpha^{2}+\beta^{2}+\delta^{2}$ and $\alpha^{4}+\beta^{4}+\delta^{4}$ in terms of p, and show that p must be strictly negative.
ii) Find the monic equation, with co-efficients in terms of p, whose roots are $\frac{\alpha}{\beta \delta}, \frac{\beta}{\alpha \delta}, \frac{\delta}{\alpha \beta}$.
c) Let z_{1}, z_{2} and z_{3} be three complex numbers represented by the points Z_{1}, Z_{2} and Z_{3} respectively on the Argand diagram, where $Z_{1} \times Z_{3}=\left(z_{2}\right)^{2}$. Show that $O Z_{2}$ bisects $\angle Z_{1} O Z_{3}$.

Question Six: (15 Marks) Start a new sheet of paper.
a) PQRS is a cyclic quadrilateral. The bisector of $\angle \mathrm{PQS}$ cuts the segment PR at X and the circle at M , and RM cuts the segment QS at Y .
i) Draw a neat diagram showing the above information.
ii) Prove XQRY is a cyclic quadrilateral.
iii) Prove XY is parallel to PS.
b) Find the limiting sum of the series $\frac{1}{5}+\frac{2}{5^{2}}+\frac{3}{5^{3}}+\ldots+\frac{n}{5^{n}}+\ldots$
c) From DeMoivre's Theorem, we know $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$. Use this to solve the equation $16 x^{4}-16 x^{2}+1=0$, and deduce the exact values of $\cos \frac{\pi}{12}$ and $\cos \frac{5 \pi}{12}$.

Question Seven: (15 Marks) Start a new sheet of paper.
a)

The region between $x=0$ and $x=4$ is rotated about the y-axis. The volume of the solid formed is found by taking slices perpendicular the the y-axis. The typical slice shown in the diagram is at a height y above the x-axis .
i) Deduce that α, x_{1}, x_{2} and β, as shown in the diagram, are the roots of $x^{4}-8 x^{3}+16 x^{2}-y=0$.
ii) Use the symmetry in the graph to explain why $\frac{x_{1}+x_{2}}{2}=2$ and $\frac{\alpha+\beta}{2}=2$. Hence, by considering the co-efficients of the equation in (i), show that $\alpha \beta=-x_{1} x_{2}$, and deduce that $x_{1} x_{2}=\sqrt{y}$ and that $x_{2}-x_{1}=2 \sqrt{4-\sqrt{y}}$.
iii) Show that the volume of the solid of revolution is given by
$V=8 \pi \int_{0}^{16} \sqrt{4-\sqrt{y}} d y$. Use the substitution $y=(4-u)^{2}$ to evaluate this integral and find the exact volume.
b)

A projectile, of initial speed $V \mathrm{~m} / \mathrm{s}$, is fired at an angle α from the origin O towards a target T , which is moving away from O along the x-axis .

You may assume that the projectile's trajectory is defined by the equations:
$x=V t \cos \alpha$ and $y=V t \sin \alpha-\frac{1}{2} g t^{2}$, where x and y are the horizontal and vertical displacements of the projectile in meters at time t seconds after firing, and where g is the acceleration due to gravity.
i) Show that the projectile is above the x-axis for a total of $\frac{2 V \sin \alpha}{g}$ seconds.
ii) Show that the horizontal range of the projectile is $\frac{2 V^{2} \sin \alpha \cos \alpha}{g}$ meters.
iii) At the instant the projectile is fired, the target T is d meters from O and is moving away at a constant speed of $u \mathrm{~m} / \mathrm{s}$.

Suppose that the projectile hits the target when fired at an angle of elevation α. Show that $u=V \cos \alpha-\frac{g d}{2 V \sin \alpha}$.

Question Eight: (15 Marks) Start a new sheet of paper.
a) Find the volume of the solid generated by rotating the region common to the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=8 x$ about their common chord.
b) Hyperbola H has equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and eccentricity e. Ellipse E has equation $\frac{x^{2}}{\left(a^{2}+b^{2}\right)}+\frac{y^{2}}{b^{2}}=1$. See diagram below.

i) Show that ellipse E has eccentricity $\frac{1}{e}$.
ii) If H and E intersect at P in the first quadrant, show that the acute angle α between the tangents to H and E at P is given by $\tan \alpha=\sqrt{2}\left(e+\frac{1}{e}\right)$.

TRIAL ASS. 2004 FORT ST, HIGH EXTENSION IT: SOLUTIONS

TRBL H.S.C. Roo 4 ForT ST. HIGH ExTENSION IT: Sownows
Q2)

$$
\text { a) } \begin{aligned}
z & =\sqrt{3}+\frac{11}{1-i} \times \frac{(1+i)}{(1+i)} \\
& =\sqrt{3}+\frac{2 i}{2} \\
& =\sqrt{3}+i
\end{aligned}
$$

$$
\therefore(i) \mathbb{I}(z)=1
$$

(ii) $\bar{z}=\sqrt{3}-i$
(iii)

$$
\begin{align*}
|z| & =\sqrt{a^{2}+b^{2}} \quad \arg (z)=\tan ^{-1} \frac{1}{\sqrt{3}} \tag{1}\\
& =\sqrt{6} \\
& =2 \\
\therefore & z=2 \cos \frac{\pi}{6}
\end{align*}
$$

$$
\text { b) } z^{2}=3-4 i
$$

$$
i(a+i b)^{2}=3-4 i \quad a, b \text { real }
$$

$$
\therefore a= \pm 2 \quad b=\mp 1
$$ not at $(-4,-1)$.

Comments
.Some wished to conclude the " i " in $\operatorname{Im}(z)$.

- some did modarg of \bar{z}.

$$
a^{2}-b^{2}+2 a b i=3-4 i
$$

$$
\left.\therefore a^{2}-b^{2}=3-1\right) \quad 2 a b=-4
$$

$$
b=\frac{-2}{a}-(2) \text { in (1) }
$$

$$
\therefore a^{2}-\left(\frac{-2}{a}\right)^{2}=3
$$

$$
a^{2}-\frac{4}{a^{2}}=3
$$

$$
\therefore a^{4}-3 a^{2}-4=0
$$

$$
\left(a^{2}-4\right)\left(a^{2}+1\right)=0
$$

so $a^{2}=4$ or $a^{2}=-1$ (reject as a is real)

$$
\therefore z_{1}=2-i \quad z_{2}=-2+i
$$

$$
\text { c) } \begin{aligned}
& 2+4+i \\
= & 2-(-4-i)
\end{aligned} \Rightarrow|2-(-4-i)| \leq 4 \text {, a conte }
$$

(0 correct I I interpret:
(1) correct arg interpret.
(1) correct diagram. - Some placed the center

- remember to write do ar
(1) correct solutions for z_{1}, z_{2}.
solutions, not just state a and!

e) $-i=\dot{\cos }\left(-\frac{\pi}{2}\right)$
let $z=r \cos \theta$

$$
\therefore z^{5}=r^{5} \text { us } 5 \theta \text { (by DeMoirresTheorem) }
$$

$$
\begin{aligned}
\therefore z_{0} & =\operatorname{cis}\left(-\frac{\pi \pi}{10}\right)\left(-\cos \frac{9 \pi}{10}\right) \\
z_{1} & =\cos \left(\frac{3 \pi}{10}\right) \\
z_{2} & =\operatorname{cis}\left(\frac{7 \pi}{10}\right) \\
z_{3} & =\cos \left(\frac{1 \pi}{10}\right) \\
z_{4} & =\operatorname{cis}\left(\frac{15 \pi}{10}\right) \\
& =\operatorname{cis}\left(\frac{3 \pi}{2}\right)(E-i)
\end{aligned}
$$

i) $\arg (2-1)-2 \theta$
ii)

$$
=\arg (z-2)+\arg (z-1)
$$

arg $(z=2)$ is external angle of Δ, s

$$
\begin{aligned}
\arg (z-2) & =\frac{\pi}{2}+\theta \\
\therefore \arg \left(z^{2}-3 z+2\right) & =\arg (z-2)+\arg (z-1) \\
& =\frac{\pi}{2}+\theta+2 \theta \\
& =3 \theta+\frac{\pi}{2}
\end{aligned}
$$

$$
\therefore r^{5} \cos 5 \theta=\operatorname{cis}\left(-\frac{\pi}{2}\right)
$$

$$
\therefore r=1,5 \theta=2 k \pi-\frac{\pi}{2}
$$

Marking Guidelines
(1) correct answer
"
(1) correct $\arg (2-2)$
(1) correct use of Demoivre and geneal solution.
(1) correct roots listed
(1) diagram correct

Comments

- those who drew diagram did quite w Those that dud not,c very poorly on the question!
- many tried to we π. the strought line unaucestufly.
- many had wrong uso θ_{1} $-i$!
- many did not make clear connection in the working, be tween DMT andeqn.
- general sol poorly dom

ThiAL HS.C. 2004. Font. ST. HigH ExTENSION T: Solutions

ii) $y=F(x)-|F(x)|$

TriAL H.S.C. 2004 Fort. S. Hat ExTENSION II: SONTTONS

4) a) (ii) (cont)

- no-one showed the area a minimum! The in basic minpaax proceed
- many mused this part out.

TriAL HSC 2004 Fort Sr. That Extension I: Solutions
3 b) (cont)

$$
\begin{aligned}
\therefore V & =\lim _{x \rightarrow 0} \sum_{x<2}^{6} 4 \pi y x \delta x \\
& =4 \pi \int_{2}^{6 y} x d x \\
& =4 \pi \int_{2}^{6} 2 x \sqrt{x-2} d x
\end{aligned}
$$

using $u=x-2: \quad d u=d x \quad$ and $x=\mu+2$
$x=6, \mu=4 \quad: \quad x=2, \mu=0$

$$
\therefore V=8 \pi \int_{0}^{4}(\mu+2) \sqrt{u} d u
$$

$$
=8 \pi \int_{0}^{4} u^{\frac{3}{2}}+2 u^{\frac{1}{2}} d u
$$

$$
=8 \pi\left[\begin{array}{c}
\left.\frac{2}{5} \mu^{\frac{5}{2}}+\frac{4}{5} \mu^{3 / 2}\right]^{4} \\
c^{2}
\end{array}\right.
$$

$$
=8 \pi\left[\left(\frac{2}{5} \cdot 4^{\frac{5}{2}}+\frac{4}{3} \cdot 4^{\frac{3}{2}}\right)_{0}^{0}-0\right]
$$

$$
=\frac{2816 \pi}{15} \text { ucbec units. }
$$

if a) i) $\frac{2 x}{a^{2}}+\frac{2 y}{b y} \frac{d y}{d x}=0 \quad$ (by implicit different).

$$
\begin{aligned}
\therefore \quad \frac{d y}{d x} & =-\frac{2 x}{a^{2}} \cdot \frac{b^{2}}{2 y} \\
& =-\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

at $P(a \cos \theta, b \sin \theta)^{-}$:

$$
\begin{aligned}
& x \theta / \cos : \\
& \frac{d y}{d x}=-\frac{b^{2} \cdot a \cos \theta}{a^{2} \cdot b \sin \theta} \\
&=-\frac{b \cos \theta}{a \sin \theta}
\end{aligned}
$$

\therefore tangent es:

$$
\begin{aligned}
& \therefore \operatorname{tangen} \sin \\
& y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
& a y \cos \theta-a b \sin ^{2} \theta=-x b \cos \theta+a b \cos ^{2} \theta \\
& b x \cos \theta+\tan \sin \theta=a b \cos ^{2} \theta+a b \operatorname{sen}^{2} \theta \\
& \therefore \quad \frac{x \cos \theta}{}+\frac{\sin \theta}{b}= \sin ^{2} \theta+\cos ^{2} \theta \\
& \therefore \quad \frac{x \cos \theta}{a}+\frac{\sin \theta}{b}=1
\end{aligned}
$$

(1) correct algalera to tangenteqn.
(1) correct dy at 1 .
(inc. differentiation shan)

$$
\text { at } x: y=0 \Rightarrow
$$

$\therefore x_{c}\left(\frac{a}{\cos \theta}, 0\right)$

$$
f \ddot{y}: x=0 \quad \Rightarrow \quad \frac{y_{\sin \theta}}{6}=1
$$

iii)

- many still unable pase reduce tho

1) $1 \times$.

- many students were unable to complete the integration.
- many gnomes not reduced to the standard form.

$$
\therefore y_{i s}\left(0, \frac{b}{\sin \theta}\right)
$$

$$
\begin{aligned}
A_{\text {lxx }} & =\frac{1}{2} \cdot 0 x \cdot 0 y \\
& =\frac{1}{2} \cdot \frac{a}{\cos \theta} \cdot \frac{b}{\sin \theta} \\
& =\frac{a b}{2 \sin \theta \cos \theta} \\
& =\frac{a b}{\sin 2 \theta .} \\
\therefore \frac{d A}{d \theta} & =-\frac{1 \cdot a b}{}(\sin 2 \theta)^{-2} \cdot 2 \cos 2 \theta . \\
& =\frac{-2 a b \cos 2 \theta}{\sin ^{2} 2 \theta}
\end{aligned}
$$

ii)

TriAl ASC. 2004 Fort. ST. Hath ExTENSION II: SOLUTONS
b) i) $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$
$=\int_{0}^{\frac{\pi}{4}} \tan ^{n-2} x \cdot \tan ^{2} x d x$
$=\int_{0}^{\frac{\pi}{4}} \tan ^{n-2} x\left(\sec ^{2} x-1\right) d x$
$=\int_{0}^{0} \tan ^{\frac{\pi}{4}} x \sec ^{2} x d x-\int_{0}^{\frac{\pi}{2}} \tan ^{n-2} x d x$
$=\left[\frac{1}{n-1} \tan ^{n-1} x\right]_{0}^{\frac{\pi}{4}}-I_{n-2}$
$=\left(\frac{1}{n-1} \tan ^{n-1 \pi} \frac{\pi}{4}-\frac{1}{n-1} \cdot 0\right)-I_{n=2}$
$=\frac{1}{n-1}-I_{n-2}$
ii) from $I_{n}=\frac{1}{n-1}-I_{n-2}$
then $I_{5}=\frac{1}{4}-I_{3}$

$$
=\frac{1}{4}-\left(\frac{1}{2}-I_{1}\right)
$$

now $I_{1}=\int_{0}^{\frac{\pi}{4}} \tan x d x$
$=[\ln (\cos x)]_{0}^{\frac{\pi}{4}}$
$=\ln \frac{1}{\sqrt{2}}-\ln 1$
$=\ln 2^{-\frac{1}{2}}$
$=-\frac{1}{2} \ln 2$
$\therefore I_{5}=\frac{1}{4}-\left(\frac{1}{2}-\frac{-1}{2} \ln 2\right)$

$$
=\frac{1}{2}+\frac{1}{2} \ln 2
$$

$$
\begin{aligned}
& =2+2 \ln 2 \\
& =\frac{1}{2}(1+\ln 2)
\end{aligned}
$$

5) a) $Q(x)=x^{6}-3 x^{2}+2$
$Q^{\prime}(x)=6 x^{5}-6 x$

$$
=6 x\left(x^{4}-1\right)
$$

root of $Q^{\prime}(x)$ are $0, \pm 1, \pm i$
$Q(0) \neq 0 \quad Q(1)=0 \quad Q(i) \neq 0$
$Q(-1)=0 \quad Q(-i) \neq 0$
$\therefore \pm 1$ are the double roots.

$|$| Marking Cudelines | Comments |
| :--- | :--- |
| (1) correct tan ${ }^{n} x$ method | -noteould tart the |
| procedure. | |

TriAL H.S.C. 2004 FORT. S. HaH EXTENSION II: Solutions 5) a) (cont)

$$
\begin{aligned}
\therefore Q(x) & =(x-1)^{2}(x+1)^{2} R(x) \\
& =\left(x^{2}-2 x+1\right)\left(x^{2}+2 x+1\right) R(x) \\
& =\left(x^{4}-2 x^{2}+1\right) \cdot R(x)
\end{aligned}
$$

$$
\therefore R(x)=\frac{Q(x)}{\left(x^{4}-2 x^{2}+1\right)}
$$

$$
\begin{array}{r}
x ^ { 4 } - x ^ { 2 } + 1 \longdiv { x ^ { 6 } - 3 x ^ { 2 } } + 2 \\
\frac{x^{6}-2 x^{4}+x^{2}}{2 x^{4}-4 x^{2}+2} \\
\frac{2 x^{4}-4 x^{2}+2}{}
\end{array}
$$

$$
\begin{aligned}
\because Q(x) & =(x-1)^{2}(x+1)^{2}\left(x^{2}+2\right) \\
& =(x-1)^{2}(x+1)^{2}(x+\sqrt{2} i)(x-\sqrt{2} i)
\end{aligned}
$$

b) i) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha)$

$$
\begin{aligned}
& \text { now } \alpha+\beta+\gamma=0 \\
& \alpha \beta+\beta \gamma+\alpha \gamma=\rho
\end{aligned}
$$

$$
\begin{gathered}
\alpha \beta \gamma=+1 \\
\therefore \alpha^{2}+\beta^{2}+\gamma^{2}=
\end{gathered}
$$

$$
=-2 p
$$

$$
\text { since } \alpha, \beta \text { and } \gamma \text { are nonzero and real }
$$

$$
\begin{gathered}
-2 p>0, \infty \\
\text { for } \alpha^{4}+\beta^{4}+\gamma^{4}: \begin{array}{l}
p^{\prime}=0 \\
x^{3}=-p x-1 \\
x^{4}=-\infty x^{2}-x
\end{array}
\end{gathered}
$$

$$
\dot{e} \alpha^{4}=-p \alpha^{2}-\alpha
$$

$$
\begin{aligned}
& \beta^{4}=-\rho \beta^{2}-\beta \\
& \gamma^{4}=-\rho \gamma^{2}-\gamma
\end{aligned}
$$

$$
\begin{aligned}
\gamma^{4} & =-p \gamma^{2}-\gamma \\
\therefore \alpha^{4}+\beta^{4}+\gamma^{4} & =-p\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-(\alpha+\beta+\gamma)
\end{aligned}
$$

$$
\begin{aligned}
& =-p(-2 p)-0 \\
& =2 p^{2}
\end{aligned}
$$

(1) method for x^{4}.
(1) correct value of $\alpha^{4}+\beta^{4}+\gamma^{4}$

TRIAL HSC. 2004 FORT. ST. HACH ExTENSSON II: SoLuTONS
5) b) (ii)
for roots $\frac{\alpha}{\beta \gamma}, \frac{\beta}{\alpha \gamma}, \frac{\gamma}{\alpha \beta}$, notung $\alpha \beta \gamma=-1$ geves $\frac{\alpha^{2}}{\alpha \beta \gamma}=\frac{\alpha^{2}}{\alpha \beta \gamma}=-\alpha^{2}$

$$
\dot{i} \quad x=-\alpha^{2}
$$

$$
\text { so } \alpha=\sqrt{-x}
$$

in oregenal equation:

$$
\begin{aligned}
& (\sqrt{-x})^{3}+p \sqrt{-x}+1=0 \\
& \sqrt{-x}(p-x)=-1
\end{aligned}
$$

squarng:
$-x(p-x)^{2}=1$

$$
\begin{aligned}
& -x\left(p^{2}-2 p x+x^{2}\right)=1 \\
& -p^{2} x+2 p x^{2}-x^{3}=1
\end{aligned}
$$

so $\quad 0=x^{3}-2 p x^{2}+p^{2} x+1$
ω required eqn.

$$
\begin{aligned}
& \text { c) } \quad z_{1} \cdot z_{3}=\left(z_{2}\right)^{2} \\
& \text { ie } \arg \left(z_{1}\right)+\arg \left(z_{3}\right)=2 \arg \left(z_{2}\right) \\
& \dot{a} \arg \left(z_{2}\right)=\frac{1}{2}\left(\arg \left(z_{1}\right)+\arg \left(z_{3}\right)\right)
\end{aligned}
$$

a $\arg \left(z_{2}\right)-\arg \left(z_{1}\right)=\arg \left(z_{3}\right)-\arg \left(z_{2}\right)$
$\dot{\varphi} \angle Z_{2} O Z_{1}=\angle Z_{3} O Z_{2}$
$\Rightarrow O Z_{2}$ beecto $\angle Z_{3} O Z_{1}$

Markung Cuidelines \mid Comments ${ }^{\text {º }}$
(1) use of $\alpha \beta \gamma=-1$
(1) using α to form eqn.
(1) working, including squaring to resolver
(1) final eqn.
(1) correct arg relationshop : not well done many students have
(1) expression for ärg z. difficulty comneiting complex numbers with geometry.
(1) diagram showing relationshups is correct
(1) correct inteppretation linking α, β with args

Trial HSC. 2004 Fort fr. Hich Extension II: Solutions
6)

ii) Prove $X Q R Y$ a cyclec quadrilateral: $\angle P Q M=\angle P R M$ (angles a t circumference LPQN \quad standingon arc $P M$)
$\angle P Q M=\angle S Q M$ (given $Q M$ bisecto $\angle P Q S$)
$\therefore \angle S Q M=\angle P R M \quad$ (both $=\angle P Q M)$
$\therefore \operatorname{arc} X Y^{\prime}$ subtends equal angles at Q and R
$\dot{a} \angle X Q Y(\equiv \angle S Q M)=\angle X R Y(\equiv L P R M)$
$\therefore X Q R Y$ wa cyclec quadrilateral.
iii) $\angle R Q Y=\angle R X Y$ (angles at circumference

$\therefore X Y / \mid P S$ (corresponding angles ave equal),
b)

$$
\begin{aligned}
& \frac{1}{5}+\frac{2}{5^{2}}+\frac{3}{5^{3}}+\ldots \\
= & \frac{1}{5}+\left(\frac{1}{5^{2}}+\frac{1}{5^{2}}\right)+\left(\frac{1}{5^{3}}+\frac{1}{5^{3}}+\frac{1}{5^{3}}\right)+\ldots \\
= & \left(\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5}+\ldots\right)+\left(\frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots\right)+\left(\frac{1}{5}+\frac{1}{5^{4}}+\ldots\right)
\end{aligned}
$$ each is a $A P$ with $r=\frac{1}{5}$, and differng ais.

$\dot{\text { i }: ~} \frac{1}{5}+\frac{1}{5^{2}} \quad \frac{1}{5}$ (with $S_{\infty}=\frac{a}{1-r}$):

$$
\begin{aligned}
& =\frac{\frac{1}{5}}{1-\frac{1}{5}}+\frac{\frac{1}{5^{2}}}{1-\frac{1}{5}}+\frac{\frac{1}{5} 3}{1-\frac{1}{5}}+\cdots \\
& =\frac{\frac{1}{5}}{4 / 5}+\frac{\frac{1}{5} 2}{4 / 5}+\frac{\frac{1}{53}}{4 / 5}+\cdots \\
& =\frac{1}{4}+\frac{1}{20}+\frac{1}{100}+\ldots
\end{aligned}
$$

another GP with $a=\frac{1}{4}, r=\frac{1}{5}$

Marking Cuidelines
(1) diagram correct.
Commento

- poorly done
- diagranes were generally not reat
(1) linking $\angle Q$ to $L R$
(1) using bisector
(1) recognioing subtended angles on arc $X y$.
(1) angles from both cyche quads
(1) linking these angles
(1) conclusion (withnewoso)
(1) rearrangung pattem seeung any pattem.

TRIAL HSC. 2004 FORT of. Hiah
b) b) (cont)

$$
\text { b) } \begin{aligned}
&(\text { con } t) \\
& \therefore S_{\infty}=\frac{\frac{1}{4}}{4 / 5} \\
&=\frac{5}{16}
\end{aligned}
$$

Extension II: Socutions
6).c) Let $x=\cos \theta$
$\therefore 16 \cos ^{4} \theta-16 \cos ^{2} \theta+1=0$
ce $8 \cos ^{4} \theta-8 \cos ^{2} \theta \neq 1=\frac{1}{2}$
or $\quad \cos 4 \theta=\frac{1}{2}$
$4 \theta=2 n \pi \pm \cos ^{-1}\left(\frac{1}{2}\right)$
$=\frac{2 n \pi \pm}{\pi(6 n \pm 1)}$
$\begin{aligned} & =2 n \pi \pm 13 \\ & =\frac{\pi(6 n \pm 1)}{3} \\ \therefore \theta & =\left(\frac{\left(\frac{n}{12}\right)}{12}\right) \pi \quad n=0, \pm 1, \pm 2 .\end{aligned}$
\therefore for $0 \leq \theta \leq 2 \pi: \theta=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{7 \pi}{12}, \frac{14 \pi}{12}, \frac{13 \pi}{12}, \frac{19 \pi}{12}, \frac{23 \pi}{12}$,
for $x=\cos \theta$; uneque values are
$\begin{array}{ll}x_{1}=\cos \frac{\pi}{12} & \quad\left(=\cos \frac{23 \pi}{12}\right) \\ x_{2}=\cos \frac{5 \pi}{12} & \left(=\cos \frac{19 \pi}{12}\right) \\ x_{3}=\cos \frac{7 \pi}{12} & \left(=\cos \frac{7 \pi}{12}\right) \\ x_{4}=\cos \frac{4 \pi}{12} \quad\left(=\cos \frac{13 \pi}{12}\right)\end{array}$
we abo note $\cos \frac{\pi}{12}=-\cos \frac{11 \pi}{\frac{5 \pi}{2}} \quad\left(x_{1}=-x_{4}\right)$
and $\cos \frac{5 \pi}{12}=-\cos \frac{7 \pi}{12}\left(x_{3}=-x_{3}\right)$
Similarly, buy useng $\mu=x^{2}$, we get
$\begin{aligned} i+\mu & =\frac{16 \pm \sqrt{192}}{} \\ & =\frac{16 \pm 32 \sqrt{3}}{32}\end{aligned}$
$=\frac{16 \pm 12 \sqrt{3}}{32}$
$\begin{aligned} \therefore x^{2} & =\frac{1}{4}(2 \pm \sqrt{3}) \\ \text { so } x & = \pm \frac{1}{2} \sqrt{2 \pm \sqrt{3}}\end{aligned}$
These munt correspond to the x_{1} to x_{4} above, so
$\cos \frac{\pi}{12}$ is the largest pontive, then:
and $\quad \cos \frac{1}{12}=\frac{1}{2} \sqrt{2 \pi} \sqrt{2+\sqrt{3}}=\frac{1}{2} \sqrt{2-\sqrt{3}}$ (the othertve)
Marking Cuidelines

1) 2nd CP with
correet soln.
(1) values for θ gemerator or other
method.
(1) unique values for
roots ... : o:

TriAl H.SC 2004 Fort. St. HIGH Extension II: Solutions
7)(a) iii)

The slice has volume δV, gen by

$$
\begin{aligned}
\delta V & =\pi\left(x_{2}^{2}-x_{1}^{2}\right) \delta y \\
& =\pi\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}\right) \delta y \\
& =8 \pi \sqrt{4-\sqrt{y}} \delta y_{y}
\end{aligned}
$$

(using results from (ii))
Hence

$$
\begin{aligned}
V & =\lim _{y y \rightarrow 0} \sum_{y=0}^{16} 8 \pi \sqrt{4-\sqrt{y}} \delta y \\
& =8 \pi \int_{0}^{16} \sqrt{4-\sqrt{y}} d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { using } y=(4-u)^{2} \\
& \begin{array}{ll}
d y=-2(4-u) d u & y=0, \quad u=4 \\
4-\sqrt{y}=4-(4-u) & y=16, \quad u=0
\end{array} \\
& 4-\sqrt{y}=4-(4-u) \\
& \therefore \quad V=8 \pi \int_{4}^{0} \sqrt{u} \cdot(-2(4-u)) d u \\
& =16 \pi \int_{4}^{0} \mu^{3 / 2}-4 \mu^{1 / 2} d \mu \\
& =16 \pi^{4}\left[\frac{2}{5} u^{5 / 2}-\frac{8}{3} \mu^{3 / 2}\right]_{4}^{0} \\
& =16 \pi\left[0-\left(\frac{2}{5} 4^{5 / 2}-\frac{\pi}{3} 4^{\frac{3}{2}}\right)\right] \\
& =16 \pi\left(-\frac{64}{5}+\frac{64}{3}\right) \\
& =\frac{2048 \pi}{15} \text { cubic units } \% \text {. }
\end{aligned}
$$

b)

$$
\begin{aligned}
\text {)i) from } y= & V t \sin \alpha-\frac{1}{2} g t^{2} \\
y=0: & =V t \sin \alpha-\frac{1}{2} g t^{2} \\
& =t\left(v \sin \alpha-\frac{1}{2} g t\right) \\
\text { ie } t=0 \quad \text { or } t & =V \sin \alpha-\frac{1}{2 g} t \\
\frac{1}{2} g t & =V \operatorname{sen} \alpha \\
20 t & =\frac{2 V \sin \alpha}{g *} \text { as read } 1 \prime
\end{aligned}
$$

Trial HSC. 2004 Fort St. Huh Extension II: Solutions 8) a) (cont)

$$
\begin{aligned}
\therefore \delta V & =\delta A \cdot \delta y \\
& =\pi\left(20-y^{2}-4 \sqrt{16-y^{2}}\right) \delta y
\end{aligned}
$$

$$
\therefore V=\lim _{x y \rightarrow 0 y-2 \sqrt{313}}^{2 \sqrt{5}} \pi\left(20-y^{2}-4 \sqrt{16-y^{2}}\right) \delta y
$$

$$
=\int_{-2 \sqrt{3}}^{2 \sqrt{3}} \pi \sqrt{3}\left(20-y^{2}-4 \sqrt{16-y^{2}}\right) d y
$$

$$
=2 \pi \int_{0}^{2 \sqrt{3}} 20-y^{2}-4 \sqrt{16-y^{2}} d y \text {.fromymuter) }
$$

$$
\begin{aligned}
& =2 \pi\left[20 y-\frac{1}{3} y^{3}\right]_{0}^{2 \sqrt{3}}-2 \pi \int_{0}^{2 \sqrt{3}} 4 \sqrt{16-y^{2}} d y \\
& =\text { using } y=4 \sin \theta \\
& d y=4 \cos \theta d \theta \quad \begin{array}{l}
y=0 \Rightarrow \theta=0 \\
y=2 \sqrt{3} \Rightarrow \theta=\frac{\pi}{3}
\end{array} \\
& \hline, 5
\end{aligned}
$$

$$
=2 \pi\left[40 \sqrt{3}-\frac{1}{3}(2 \sqrt{3})^{3}-(0)\right]-8 \pi \int_{0}^{\frac{5}{16}} \sqrt{16-16 \sin ^{2} \theta \cdot 4 \cos d \theta}
$$

$$
=2 \pi(40 \sqrt{3}-8 \sqrt{3})-128 \pi \int_{0}^{\frac{\pi}{3}} \cos ^{2} \theta d \theta
$$

$$
=64 \pi \sqrt{3}-128 \pi \int_{0}^{\frac{\pi}{3}} \frac{1}{2}(1+\cos 2 \theta) d \theta
$$

$$
=64 \pi \sqrt{3}-64 \pi\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\frac{\pi}{3}}
$$

$$
=64 \pi\left(\sqrt{3}-\left[\left(\frac{\pi}{3}+\frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right)-0\right]\right)
$$

b) (i) for $H: \quad b^{2}=a^{2}\left(e^{2}-1\right)$

$$
\begin{aligned}
e^{2}-1 & =\frac{b^{2}}{a^{2}} \\
s o e^{2} & =\frac{b^{2}}{a^{2}}+1 \\
& =\frac{b^{2}+a^{2}}{a^{2}}
\end{aligned}
$$

For E; call its eccentricity ε

$$
\begin{aligned}
& \therefore b^{2}=\left(a^{2}+b^{2}\right)\left(1-\varepsilon^{2}\right) \\
& \dot{u} 1-\varepsilon^{2}=\frac{b^{2}}{a^{2}+b^{2} b^{2}}
\end{aligned}
$$

or $\varepsilon^{2}=1-\frac{b^{2}}{a^{2}+b^{2}}$
(1) work eng to substitution
(1) correct work eng on substitution
Marking Guidelines
(1) correct express e
for V
(1) working to
substet union
(1) correct worker n
in substitution
(1) correct answer

Comments

- those wang shell o setup the wrong radius exprencon with
He wrong ' y ' exprecenur and morally the wrong limits!
(1) correct answer

TRet HSC. 2004 Fort ST. HiGh Extension II: Solutions
8) b) (i) (cont)

$$
\begin{aligned}
& \begin{array}{l}
\text { (cont) } \\
\therefore \varepsilon^{2}=\frac{\left(a^{2}+b^{2}\right)-b^{2}}{a^{2}+b^{2}}
\end{array} \\
& =\frac{a^{2}}{a^{2}+b^{2}} \\
& =\frac{1}{e^{2}} \\
& \therefore \varepsilon=\frac{1}{e}
\end{aligned}
$$

hence the ellipse E has eccentricity $\frac{1}{e_{\text {"r }}}$
ii) For P in quadrant 1 ;

$$
\begin{array}{r}
x^{2}-y^{2} q^{2}=1-1\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1\right. \\
\text { but from }(i) e^{2}=\frac{a^{2}+b^{2}}{a^{2}} \\
\text { so } a^{2}+b^{2}=a^{2} e^{2}
\end{array}
$$

$\frac{x^{2}}{a^{2}}\left(\frac{1}{e^{2}}+1\right)=2$
or $\frac{x^{2}}{a^{2} e^{2}}\left(1+e^{2}\right)=2$
$e^{2} \times\left(\right.$ (1) : $\frac{x^{2}}{a^{2}}+\frac{e y^{2}}{b^{2}}=e^{2}$-(3)
$\begin{array}{ll}=\text { (3) - (1) gives: } & \frac{e^{2} y^{2}}{y^{2}}+\frac{y^{2}}{y^{2}}=e^{2}-1 \\ y^{2} \\ x_{2}^{2} & \left(e^{2}+1\right)=e^{2}-1\end{array}$

for $\tan \alpha$, were need the
at $P_{\text {on }} H: \frac{x^{2}}{a^{2}}-y_{2^{2}}^{2}=1$
$\frac{2 x}{4^{2}}-\frac{2 y}{b^{2}} \cdot \frac{d y}{d y}=0$

$$
\begin{aligned}
& b^{5} \frac{d y c}{-0} b^{2} x \\
& \therefore \frac{d x}{d x}=\frac{b^{2}}{a^{2}} \frac{b^{2}}{d x}
\end{aligned}
$$

at $P: \quad \frac{d x}{d x}=\frac{b^{2}}{a^{2}} \cdot \frac{a e \sqrt{2}}{\sqrt{e^{2}+1} \cdot} \cdot \frac{\sqrt{e^{2}+1}}{b \sqrt{e^{2}-1}}$
for $H: b^{2}=a^{2}\left(e^{2}-1\right)$
or $b=a \sqrt{e^{2}-1}$

- use a different
symbol for the
eccentricity of the
ellipse!
at P on E :

Marking Coudelines Comments.
(1) working to $\frac{1}{e}$.
mort did not find the point P-or tries to gere it gevenc coordinates.
(1) working for simultioneons equs.
(1) correct valuer of x, y at P
(1) correct use of $b^{2}=a^{2}\left(e^{2}-1\right)$
(1) tangent gradient of ' e '.

- most tho gat the for did not use thin to get expremom on ten

TriAl H.S.C. 2004 Fort ST. Heat
8) b) ii) (cont)
is $m_{1}=e \sqrt{2} \quad m_{2}=-\sqrt{2}$. $\frac{1}{e}$
$\tan \alpha=\left|\frac{\sqrt{2} e-\left(-\sqrt{2} \frac{1}{e}\right)}{1+\sqrt{2} e\left(-\sqrt{2} \cdot \frac{1}{e}\right)}\right|$

$$
=\left|\frac{\sqrt{2}\left(e+\frac{1}{e}\right)}{1-2}\right|
$$

$$
=\sqrt{2}\left(e+\frac{1}{e}\right)
$$

Extension II: Solutions
Marking Guidelines
o tangent gradient
at P on E.
(1) correct working
in angle between
two l lines formula n

Altematuce "Shul li" method solution to $Q 8$ (a)
$\quad y=\sqrt{16-x^{2}}$

- note radius expression if using circle, centered at O.

$$
\delta V=2 \pi \cdot 2 y(x-2) \delta x
$$

$$
=4 \pi y(x-2) \delta x
$$

$$
=4 \pi(x-2) \sqrt{16-x^{2}} \delta x
$$

$$
\text { - note limits, given use of } \uparrow
$$

$$
. V
$$

$$
\begin{array}{rll}
V & =4 \pi)_{2}(x-2) \sqrt{16-x^{2}} d x & x=4 \sin \theta \\
d x=4 \cos \theta d \theta & x=4 \quad x=\frac{\pi}{2} \\
& =4 \pi \int_{\frac{\pi}{6}}^{2}(4 \sin \theta-2) \sqrt{16-16 \sin ^{2} \theta} \cdot 4 \cos \theta d \theta &
\end{array}
$$

$$
=16 \pi \int_{\frac{\pi}{0}} 2(2 \operatorname{len} \theta-1) 4 \cdot \cos \theta \cos \theta d \theta
$$

$$
=128 \pi \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(2 \sin \theta-1) \cos ^{2} \theta d \theta
$$

$$
=128 \pi \int 2 \sin \theta \cos ^{2} \theta-\cos ^{2} \theta d \theta
$$

$$
=128 \pi \int 2 \operatorname{sen} \theta \cos ^{2} \theta-\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) d \theta
$$

$$
=128 \pi\left[-\frac{2}{3} \cos ^{3} \theta-\frac{\theta}{2}-\frac{1}{4} \sin 2 \theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}
$$

$$
=128 \pi\left[0-\frac{\pi}{4}-0-\left(-\frac{2}{3}\left(\frac{\sqrt{3}}{2}\right)^{3}-\frac{\pi}{12}-\frac{1}{4} \frac{\sqrt{3}}{2}\right)\right]
$$

$$
=128 \pi\left[-\frac{\pi}{4}+\frac{\sqrt{3}}{4}+\frac{\pi}{12}+\frac{\sqrt{3}}{8}\right]
$$

$$
=128 \pi\left[\frac{3 \sqrt{3}}{2}-\frac{\pi}{6}\right]
$$

$$
=64 \pi\left[\frac{3 \sqrt{3}}{4}-\frac{\pi}{3}\right]
$$

