

Name: \qquad

Teacher: \qquad

Class: \qquad

FORT STREEET HIGH SCHOOL

2006

HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 4: TRIAL HSC

Mathematics Extension 2

TIME ALLOWED: 3 HOURS (PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Determines the important features of graphs of a wide variety of functions, including conic sections	4,6	
Applies appropriate algebraic techniques to complex numbers and polynomials	2,3	
Applies further techniques of integration, such as slicing and cylindrical shells, integration by parts and recurrence formulae, to problems	1,5	
Synthesises mathematical solutions to harder problems and communicates them in appropriate form	7,8	

Question	1	2	3	4	5	6	7	8	Total	$\%$
Marks	$/ 15$	$/ 15$	$/ 15$	$/ 15$	$/ 15$	$/ 15$	$/ 15$	$/ 15$	$/ 120$	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used
- Each new question is to be started on a new page

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Question 1: (15 marks)

a) Find $\int \frac{d x}{x^{2}-4 x+9}$
b)
i. Express $\frac{4 x-2}{\left(x^{2}-1\right)(x-2)}$ in the form $\frac{A x+B}{x^{2}-1}+\frac{C}{x-2}$, where A, B and C are constants.
ii. Hence evaluate

$$
\int_{3}^{6} \frac{4 x-2}{\left(x^{2}-1\right)(x-2)} d x
$$

c) Find $\int \frac{e^{2 x}}{e^{x}-1} d x$ by using the substitution $u=e^{x}$.
d) Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$, where n is a non-negative integer.
i. Show that $I_{n}=(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x d x$, where $n \geq 2$.
ii. Deduce that $I_{n}=\left(\frac{n-1}{n}\right) I_{n-2}$ when $n \geq 2$.
iii. Evaluate I_{4}

Question 2: (15 marks)

a) Let $z=\sqrt{3}+i$
i. Express z in modulus/argument form.
b) Find the complex number $z=a+i b$, where a and b are real, such that

$$
\operatorname{Im}(z)+\bar{z}=\frac{1}{1+i}
$$

c) The complex number z satisfies the condition $|z-8|=2 \operatorname{Re}(z-2)$
i. Sketch the locus defined by this equation on an Argand diagram, showing any important features of the curve. State the type of curve and write down its equation.
ii. Write down the value of $|z+8|-|z-8|$
iii. Find the possible values of $\arg z$
d) P, Q represent complex numbers α, β respectively in an Argand diagram, where O is the origin and O, P and Q are not collinear. In $\triangle O P Q$, the median from O to the midpoint M of $P Q$ meets the median from Q to the midpoint N of $O P$ in the point R, where R represents the complex number z.
i. Show this information on a sketch
ii. Explain why there are positive real numbers k, L so that

$$
k z=\frac{1}{2}(\alpha+\beta) \text { and } L(z-\beta)=\frac{1}{2} \alpha-\beta
$$

Question 3: (15 marks)

a) The equation $x^{3}+b x^{2}+x+2=0$ where b is a real number has roots α, β, γ
i. Obtain an expression in terms of b for $\alpha^{2}+\beta^{2}+\gamma^{2}$
ii. Hence determine the set of possible values of b if the roots of the above equation are real.
iii. Write down the equation whose roots are $2 \alpha, 2 \beta, 2 \gamma$.
b)
i. Show that if a is a multiple root of the polynomial equation $f(x)=0$ then $f(a)=f^{\prime}(a)=0$.
ii. The polynomial $\alpha x^{n+1}+\beta x^{n}+1$ is divisible by $(x-1)^{2}$.

Show that $\alpha=n$ and $\beta=-(1+n)$.
iii. Prove that $1+x+\frac{x^{2}}{2!}+\cdots \cdots+\frac{x^{n}}{n!}$ has no multiple roots for $n \geq 1$.

Question 4: (15 marks)

The functions $S(x)$ and $C(x)$ are defined by the formulae

$$
S(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right) \text { and } C(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

a)
i. Verify that $S^{\prime}(x)=C(x)$
ii. Show that $S(x)$ is an increasing function for all real x.
iii. Prove that $\{C(x)\}^{2}=1+\{S(x)\}^{2}$.
b)
i. $S(x)$ has an inverse function, $S^{-1}(x)$ for all values of x. Briefly justify this statement
ii. Let $y=S^{-1}(x)$. Prove that $\frac{d y}{d x}=\frac{1}{\sqrt{1+x^{2}}}$
iii. Hence, or otherwise, show that

$$
\begin{equation*}
S^{-1}(x)=\ln \left\{x+\sqrt{1+x^{2}}\right\} \tag{1}
\end{equation*}
$$

iv. Show that $\int_{0}^{1} \frac{d x}{\sqrt{x^{2}+2 x+2}}=\ln \left\{\frac{2+\sqrt{5}}{1+\sqrt{2}}\right\}$

Question 5: (15 marks)

a) Using the method of cylindrical shells find the volume of the solid formed when the region bounded by the curve $y=x^{2}+1$ and the x-axis between $x=0$ and $x=2$ is rotated about the y axis.
b)
i. Using the substitution $x=a \sin \theta$, or otherwise, verify that

$$
\int_{0}^{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}} d x=\frac{1}{4} \pi a^{2}
$$

ii. Deduce that the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$.
iii. The diagram below shows a mound of height H. At height h above the horizontal base, the horizontal cross-section of the mound is elliptical in shape with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\lambda^{2}$ where $\lambda=1-\frac{h^{2}}{H^{2}}$ and x and y are appropriate coordinates in the plane of the cross-section.

Show that the volume of the mound is $\frac{8 \pi a b H}{15}$.

Question 6: (15 marks)

a) The graph below shows the curve $y=f(x)$ where $f(x)=x(2-x)$.

Without the use of calculus, sketch the following curves. Show any intercepts, asymptotes, end points and turning points.
i. $\quad y=f(2 x)$
ii. $y=\frac{1}{f(x)}$
iii. $|y|=f(x)$
iv. $y=\ln f(x)$
v. $y=f\left(e^{x}\right)$
b) Consider the function $f(x)=|1+x|+|1-x|$.
i. Show that $f(x)$ is an even function.
ii. Sketch the graph of $y=f(x)$ clearly showing essential features.
iii. Use the graph to find the set of values of the real number k for which $f(x)=k$ has exactly 2 real solutions.
c) On separate diagrams sketch the graphs of the following curves, showing the equations of any asymptotes
i. $y=\left(\tan ^{-1} x\right)^{2}$
ii. $y^{2}=\tan ^{-1} x$

Question 7: (15 marks)

a) The ellipse E has equation $\frac{x^{2}}{100}+\frac{y^{2}}{75}=1$
i. Sketch the curve E, showing on your diagram the coordinatesof the
foci and the equation of each directrix.
iii. If $s \neq 0$ and $s^{2} \neq t^{2}$, show that the tangents to H at P and $Q\left(2 s, \frac{2}{s}\right)$
intersect at $M\left(\frac{4 s t}{s+t}, \frac{4}{s+t}\right)$
iv. Suppose that in (iii) the parameter $s=-\frac{1}{t}$. Show that the locus of M is a straight line through, but excluding the origin.

Question 8: (15 marks)

a)

The region bounded by the lines $x=1, y=1$, and $y=-1$ and by the curve $x+y^{2}=0$ is rotated through 360° about the line $x=4$ to form a solid. As the region is rotated, the line segment S sweeps out an annulus.
i. Show that the area of the annulus swept by S at height y is equal to

$$
\pi\left(y^{4}+8 y^{2}+7\right)
$$

ii. Hence find the volume of the solid.
b) The point $P\left(x_{1}, y_{1}\right)$ lies on the hyperbola of equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

i. Find the equation of the normal at P.
ii. The normal at P meets the x axis at G, and N is the foot of the perpendicular from P to the x axis. Show that

$$
N G: O N=b^{2}: a^{2}
$$

where O is the origin.
c) Trieu took a wooden cylinder and carved it into the shape shown in the diagram below. The base of her shape is a circle with radius 8 cm .

Each vertical cross-section shown in the diagram is a square.

i. Show that the area A of the cross-section distance $x \mathrm{~cm}$ from the centre of the base is $A=4\left(64-x^{2}\right)$.
ii. Hence show that the volume V of the art project is given by

$$
V=8 \int_{0}^{8}\left(64-x^{2}\right) d x
$$

and evaluate the integral.

2006 Ext 2 Trial Solutions

Question 1
a)

$$
\begin{align*}
\int \frac{d x}{x^{2}-4 x+9} & =\int \frac{d x}{x^{2}-4 x+4+5} \\
& =\int \frac{d x}{(x-2)^{2}+5} \tag{1}\\
& =\frac{1}{\sqrt{5}} \tan ^{-1} \frac{x-2}{\sqrt{5}}+c \tag{1}
\end{align*}
$$

b) $(i$

$$
\left.\left.\begin{array}{l}
\text { (i) } \frac{4 x-2}{\left(x^{2}-1\right)(x-2)} \equiv \frac{A x+B}{x^{2}-1}+\frac{C}{x-2} \\
4 x-2=(x-2)(A x+B)+\left(x^{2}-1\right) C \\
\\
=A x^{2}+B x-2 A x^{-2 B}+C x^{2}-C \\
\\
=(A+C) x^{2}+(B-2 A) x-(2 B+C) \\
\therefore A+C=0 \Rightarrow A=-C \\
B-2 A \tag{2}
\end{array}\right)=4-0\right)
$$

©
(2) $\times 2 \quad 4 B-2 A=4$
(1) -(3)

$$
\begin{array}{r}
-3 B=0 \Rightarrow B=0 \\
A=-2, C=2 \tag{1}
\end{array}
$$

Hence $\frac{4 x-2}{\left(x^{2}-1\right)(x-2)}=\frac{-2 x}{x^{2}-1}+\frac{2}{x-2}$
(ii) $\int_{3}^{6} \frac{4 x-2}{\left(x^{2}-1\right)(x-2)} d x=\int_{3}^{6} \frac{-2 x}{x^{2}-1}+\frac{2}{x-2} d x$

$$
\begin{align*}
& =\left[-\ln \left(x^{2}-1\right)+2 \ln (x-2)\right]_{3}^{6} \\
& =\left[\ln \left\{\left(\frac{x-2)^{2}}{\left(x^{2}-1\right)}\right\}\right]_{3}^{6}\right. \tag{1}\\
& =\ln \frac{16}{35}-\ln \frac{1}{8} \\
& =\ln \frac{128}{35}
\end{align*}
$$

(1)
(c) $\int \frac{e^{2 x}}{e^{x}-1} d x$

$$
u=e^{x}
$$

$$
d u=e^{x} d x
$$

$$
=\int \frac{u}{u-1} d u
$$

$$
=\int \frac{u-1}{u-1}+\frac{1}{u-1} d u
$$

$$
\begin{equation*}
=\int 1+\frac{1}{u-1} d u \tag{0}
\end{equation*}
$$

$$
=u+\ln (u-1)+c
$$

$$
=e^{x}+\ln \left(e^{x}-1\right)+c(1)
$$

(d) C

$$
\text { d) (i) } \begin{aligned}
I_{n} & =\int_{0}^{\frac{\pi}{2}} \sin ^{n-1} x \sin x d x \\
& =\left[-\cos x \sin ^{n-1} x\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}-\cos x(n-1) \sin ^{n-2} x c c \\
& =0+(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{2} x \sin ^{n-2} x d x \\
\therefore \quad I_{n} & =\left(\frac{n-1)}{\int_{0}^{2}} \cos ^{2} x \sin ^{n-2} x d x d\right.
\end{aligned}
$$

$$
\text { (i) } \begin{align*}
I_{n} & =(n-1) \int_{0}^{\frac{\pi}{2}}\left(-\sin ^{2} x\right) \sin ^{n-2} x d x \\
& =(n-1) \int_{0}^{0} \sin ^{n-2} x-\sin ^{n} x \quad d x \\
\therefore I_{n} & =(n-1)\left(I_{n-2}-I_{n}\right) \\
& =(n-1) I_{n-2}-(n-1) I_{n}(n \geqslant E \\
n I_{n} & =(n-1) I_{n-2} \\
I_{n} & =\frac{n-1}{n} I_{n-2}
\end{align*}
$$

(iii) $\quad I_{4}=\frac{4-1}{4} \quad I_{2}$

$$
\begin{align*}
& =\frac{3}{4} \cdot \frac{1}{2} I_{0} \\
& =\frac{3}{8} \int_{0}^{\frac{\pi}{2}} d x \\
& =\frac{3 \pi}{16} \tag{1}
\end{align*}
$$

Question 2
a)

$$
\text { (i) } \begin{align*}
\sqrt{3}+i & =2\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
& =2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \tag{1}
\end{align*}
$$

(ii) $z^{7}+64 z=2^{7}\left(\cos \frac{2 \pi}{6}+i \sin \frac{7 \pi}{6}\right)+$

$$
\begin{equation*}
64.2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \tag{1}
\end{equation*}
$$

$$
=2^{7}\left(-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)+2^{7}\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)
$$

$$
\begin{equation*}
=0 \tag{1}
\end{equation*}
$$

b)

$$
\begin{align*}
\ln (z)+\Sigma & =b+a-i b \\
& =(a+b)-i b \\
(a+b)-i b & =\frac{1}{1+i} \times \frac{1-i}{1-i} \\
& =\frac{1-i}{2} \tag{1}
\end{align*}
$$

$\therefore a+b=\frac{1}{2}, \quad b=\frac{1}{2} \Rightarrow a=0$
Hence $z=\frac{1}{2} i$
c) $|z-8|=2 \operatorname{Re}(z-2)$

Distance from z to $S(8,0)$ is twice distance from z to line L with equation $x=2$ and $\operatorname{Re} z \geqslant 2$.
locus is right hand branch of the hyperbola with focus S, directrix L and eccentricity $e=2$.

$$
L: x=2=\frac{4}{e} \quad s:(8,0)=(4 e, 0)
$$

Hence hyperbola is centred on (1)
the origin with $a=4, b^{2}=4^{2}\left(2^{2}-1\right)=48$ and equation $\frac{x^{2}}{16}-\frac{y^{2}}{48}=1$
name $\&$ equation of locus (1) sketch (1)

(ii) If P represents Z, then

$$
\begin{align*}
|z+8|-|z-8| & =P S^{\prime}-P S \\
& =2\left(P M^{\prime}-P M\right) \\
& =8 \tag{1}
\end{align*}
$$

where $S^{\prime}(-8,0)$ is the second focus of the hyperbola $\therefore x=-2$ is the second directrix and M^{\prime}, M are the feet of the perpendiculars from p to L^{\prime}, L resp 12
(ii) $\frac{b}{a}=\frac{4 \sqrt{3}}{4}=\sqrt{3}$

Hence the asymptotes of the hyperbola have equations $y= \pm \sqrt{3} x$
The asymptotes each make angle $\frac{\pi}{3}$ with the x axis Hence $-\frac{\pi}{3}<\arg z<\frac{\pi}{3}$
(d) (i)

(ii) By completing the parallelogram $P O Q S, \quad \overrightarrow{O M}=\frac{1}{I}(\alpha+\beta)$ (diagonals bisec:
Also $\overrightarrow{O M}=k \overrightarrow{O R}=k z$ (k cons

$$
\begin{aligned}
\therefore k z & =\frac{1}{2}(\alpha+\beta) \\
\overrightarrow{Q N} & =\frac{1}{2} \alpha-\beta \\
\overrightarrow{Q R} & =z-\beta \\
\overrightarrow{Q N} & =L(z-\beta)=\frac{1}{2} \alpha-\beta \\
\therefore \quad k z & =\frac{1}{2}(\alpha+\beta) \text { and } L(z-\beta)=\frac{1}{2} \alpha-
\end{aligned}
$$

Question 3
(a) $x^{3}+b x^{2}+x+2=0$
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$ $\alpha+\beta+\gamma=-b$
$\alpha \beta+\alpha \gamma+\beta \gamma=1$
$\therefore \alpha^{2}+\beta^{2}+\gamma^{2}=(-b)^{2}-2$

$$
\begin{equation*}
=b^{2}-2 \tag{1}
\end{equation*}
$$

(ii) For real roots, $\alpha^{2}+\beta^{2}+\gamma^{2} \geqslant 0$

$$
b^{2}-2 \geqslant 0
$$

i.e., $\quad b \leqslant-\sqrt{2}, \quad b \geqslant \sqrt{2}$
iii) $\left(\frac{x}{2}\right)^{3}+b\left(\frac{x}{2}\right)^{2}+\left(\frac{x}{x}\right)+2=0$

$$
-\frac{x^{3}}{8}+\frac{b x^{2}}{4}+\frac{x}{2}+2=0
$$

$\therefore x^{3}+26 x^{2}+4 x+16=0$ has roots $2 \alpha, 2 \beta, 2 \gamma$
b) (i) Let $f(x)=(x-a)^{r} Q(x), Q(a) \neq 0$

$$
\begin{align*}
f^{\prime}(x) & =r(x-a)^{r-1} Q(x)+(x-a)^{r} Q^{\prime}(x) \\
& =(x-a)^{r-1} Q_{1}(x) \tag{1}\\
\therefore f(a) & =f^{\prime}(a)=0
\end{align*}
$$

(ii) $\angle e t \quad f(x)=\alpha x^{n+1}+\beta x^{n}+1$
then $f^{\prime}(x)=\alpha(n+i) x^{n}+\beta n x^{n-1}$ (1)

$$
\begin{align*}
\hat{f}(1) & =\alpha+\beta+1=0 \\
f^{\prime}(1) & =\alpha(n+1)+\beta n=0 \\
& =\alpha n+\alpha+\beta n=0 \\
& =(\alpha+\beta) n+\alpha=0 \tag{1}
\end{align*}
$$

From (1) $\alpha+\beta=-1$

$$
\begin{align*}
\therefore-n+\alpha & =0 \Rightarrow \alpha=+n \\
\beta & =-1-n \\
& =-(1+n) \tag{1}
\end{align*}
$$

(iii)

Let $P(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}$

$$
\begin{align*}
& P^{\prime}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n-1}}{(n-1)!} \tag{1}\\
\therefore & P(x)-P^{\prime}(x)=\frac{x^{n}}{n!}
\end{align*}
$$

Let α be a multiple zero of $P(x)$. Then $P(-)=P^{\prime}(\alpha)=0$, and $P(\alpha)-P^{\prime}(\alpha)=0 \Rightarrow \alpha=0$. But $P(0) \neq 0$.
Hence $P(x)$ has no multiple zero.

$$
\therefore \alpha=n \text { and } \beta=-(1+n)
$$

Question 4
(a) (i)

$$
\begin{aligned}
S(x) & =\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
S^{\prime}(x) & =\frac{1}{2}\left(e^{x}-\left(-e^{-x}\right)\right. \\
& =\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& =C(x)
\end{aligned}
$$

(ii) $S^{\prime}(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
$e^{x}>0$ for all x

$$
e^{-x}>0 \text { for all } x
$$

$\therefore S^{\prime}(x)>0$ for all x
Hence $S(x)$ is an increasing
function for all real x (1)
(iii) $\{c(x)\}^{2}=\frac{1}{4}\left(e^{2 x}+2+e^{-2 x}\right) 0$

$$
1+\{S(x)\}^{2}=1+\frac{1}{4}\left(e^{2 x}-2+e^{-2 x}\right)
$$

$$
\begin{equation*}
=\frac{1}{4}\left(e^{2 x}+2+e^{-2 x}\right) \tag{i}
\end{equation*}
$$

$$
\therefore\{c(x)\}^{2}=1+\{s(x)\}^{2}
$$

$$
=\ln \left\{\frac{2+\sqrt{5}}{1+\sqrt{2}}\right\}
$$

(b) (i) $S(x)$ is a monotonic increasing function.
i.e., it is a one-one
function.
$\therefore S(x)$ has an inverse
function, $S^{-1}(x)$ for all x
(ii) $\quad S(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$
$S^{-1}(x): \quad x=\frac{1}{2}\left(e^{y}-e^{-y}\right) 0$

$$
\begin{aligned}
\frac{d x}{d y} & =\frac{1}{2}\left(e^{y}+e^{-y}\right) \\
& =\sqrt{1+x^{2}} \quad \text { from (i) } \\
\therefore \frac{\text { (a) (iii) }}{d x} & =\frac{1}{\sqrt{1+x^{2}}}
\end{aligned}
$$

(iv) $\int_{0}^{1} \frac{d x}{\sqrt{x^{2}+2 x+2}}=[\ln \{(x+1)+\sqrt{1+(x+1)}$

$$
\begin{equation*}
=\ln \{2+\sqrt{5}\}-\ln \{1+\sqrt{2}\} \tag{1}
\end{equation*}
$$

Question 5
a)

$$
\delta v=\pi\left(x^{2}+1\right) 2 x \quad \delta x
$$

$$
V=2 \pi \int_{0}^{2} x^{3}+x d x
$$

$$
\begin{align*}
& =2 \pi\left[\frac{x^{4}}{4}+\frac{x^{2}}{2}\right]_{0}^{2} \tag{1}\\
& =2 \pi[4+2-0]
\end{align*}
$$

$$
\therefore \text { Volume }=12 \pi \text { units }^{3} \text { (1) }
$$

$$
\begin{align*}
& \text { b) (i) } \begin{array}{c}
x \\
=a \sin \theta \\
d x \\
d \theta
\end{array}=a \cos \theta \\
& a=a \sin \theta, \theta=\frac{\pi}{2}(1) \\
& 0=a \sin \theta, \theta=0 \\
& \therefore \int_{0}^{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}} d x \\
&=\int_{0}^{\left(\frac{1}{(a}-a^{2} \sin ^{2} \theta\right)^{\frac{1}{2}} a \cos \theta d \theta} \\
&=a^{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \\
&= a^{2} \int_{0}^{\frac{\pi}{2}} \cos 2 \theta+1 d \theta(1) \\
&= \frac{a^{2}}{2}\left[\frac{\sin 2 \theta}{2}+\theta\right]_{0}^{\frac{\pi}{2}} \\
&= \frac{a^{2}}{2}\left[\frac{\pi}{2}-0\right] \\
&= \frac{\pi a^{2}}{4}
\end{align*}
$$

(ii)

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
y^{2}=b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)
$$

$$
y=\frac{b}{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}}
$$

$$
A=4 \int_{0}^{a} \frac{b}{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}} d x
$$

$$
=4: \frac{b}{a} \times \frac{\pi a^{2}}{4}
$$

$$
=\pi a b
$$

(iii)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\lambda^{2} \\
& \frac{x^{2}}{\lambda^{2} a^{2}}+\frac{y^{2}}{\lambda^{2} b^{2}}=1 \\
& \text { A exipise }=\pi \cdot \lambda a \cdot \lambda b \text { from } i \\
& =\pi \lambda^{2} a b \\
& =\prod_{a b}\left(1-\frac{h^{2}}{H^{2}}\right)^{2} \\
& \therefore \quad V=\pi a b \int_{0}^{H} 1-\frac{2 h^{2}}{H^{2}}+\frac{h^{4}}{H^{4}} \\
& =\pi a b\left[h-\frac{2 h^{3}}{3 H^{2}}+\frac{h^{5}}{5 H^{4}}\right]_{0}^{4} \\
& =\pi a b \times \frac{8 H}{15} \\
& =\frac{8 \pi a b H}{15} \\
& H-\frac{2 H}{3}+\frac{H}{5} \\
& \text { 15H-10H+3H }
\end{aligned}
$$

Question 6
(a)
(i)

(i)

(iv)

(v)

(b)

$$
\text { (i) } \begin{aligned}
f(x) & =|1+x|+|1-x| \\
f(-x) & =|1+(-x)|+\mid 1-(-x) \\
& =|1-x|+|1+x| \\
& =f(x)
\end{aligned}
$$

$\therefore f(x)$ is even.
(ii)

$$
\begin{array}{ll}
f(x)=1+x+1-x=2 & -k<x<1 \\
f(x)=2 x & x>1 \\
f(x)=-2 x & x<-1 \\
&
\end{array}
$$

(iii) $f(x)>2$ for 2 solns.

$$
\begin{equation*}
i . e ., \frac{k>2}{1 y} \tag{c}
\end{equation*}
$$

Question 7
a) (i) $\frac{x^{2}}{100}+\frac{y^{2}}{75}=1$

$$
\begin{aligned}
a=10, b=5 \sqrt{3}, \quad & b^{2}=a^{2}\left(1-e^{2}\right) \\
& e^{2}=1-\frac{75}{100} \\
& e=\frac{1}{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\frac{2 x}{100}+2 y d y & =0 \\
\frac{d y}{d x} & =-\frac{3 x}{4 y}
\end{aligned}
$$

$$
=-\frac{1}{2} \text { at }(5,2.5)
$$

\therefore gradient nomal $=2$

$$
y-7.5=2(x-5)
$$

(any form)

$$
\begin{equation*}
\therefore y=2 x-2.5 \tag{1}
\end{equation*}
$$

is the equation of the nomal
(i) Centre: pt incterection of nomable at $P * Q$.

$$
\left.\begin{array}{rl}
P: & y=2 x-2.5 \\
Q: & y=-2 x+2.5
\end{array}\right\}
$$

Centre $(1.25,0)$
Radins: distance from centre to p

$$
\begin{align*}
r^{2} & =(5-1.25)^{2}+(7.5-0)^{2} \\
& =\frac{1125}{16} \tag{1}
\end{align*}
$$

Circle: $\quad\left(x-\frac{5}{4}\right)^{2}+y^{2}=\frac{1125}{16}$

(ii)

$$
\begin{array}{rl}
x=2 t & y=2 t^{-1} \\
\frac{d x}{d t}=2 & \frac{d y}{d t}=-2 t^{-2}=-\frac{2}{t^{2}}
\end{array}
$$

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{2}{t^{2}} \times \frac{1}{2}=-\frac{1}{t^{2}} \tag{1}
\end{equation*}
$$

$$
y-\frac{22}{t}=-\frac{1}{t^{2}}(x-2 t)
$$

$$
\begin{equation*}
t^{2} y-2 t=-x+2 t \tag{1}
\end{equation*}
$$

$$
x+t^{2} y=4 t
$$

(ii)

$$
\begin{equation*}
x+t^{2} y=4 t z \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left.x+s^{2} y=4 s\right\} \tag{2}
\end{equation*}
$$

(iv)

$$
\begin{array}{r}
s=-\frac{1}{2} \Rightarrow x=\frac{-4 t}{t-t}=\frac{-4 t}{t^{2}-1} \\
t \neq 0 \quad y=\frac{4 t}{t+t}=\frac{4 t}{t^{2}-1} \\
\therefore \quad y=-x \quad 0, \quad x \neq 0 \text { as } \\
\text { (straight line) } \quad t \neq 0 \tag{1}
\end{array}
$$

(straight line)
i.e., locus of M is the equation $y=-x$ excluding equation $y=$
the oxigh.

$$
\begin{align*}
& \text { (1) }- \text { (2) }=\left(t^{2}-s^{2}\right) y=4(t-5) \\
& y=\frac{4(t-s)}{(t-s)(t+s)} \\
& =\frac{4}{5+t} \\
& \text { From (1) } \\
& x=4 t-t^{2}\left(\frac{t}{s t+}\right) \\
& =\frac{4 t(s+t)-4 t^{2}}{s+t} \\
& \begin{array}{c}
4 s t \\
s+t
\end{array} \\
& \therefore \quad M=\left(\frac{4 s t}{s+t}, \frac{4}{s+t}\right)
\end{align*}
$$

Question 8
a) (i) $x+y^{2}=0$

$$
r_{1}=-x+4
$$

$$
r_{2}=3
$$

$$
\begin{aligned}
\text { A. annulus } & =\pi\left[(4-x)^{2}-9\right] \\
& =\pi\left[16-8 x+x^{2}-9\right] \\
& =\pi\left[7-8 x+x^{2}\right] \\
& =\pi\left(7+8 y^{2}+y^{4}\right) \\
& =\pi\left(y^{4}+8 y^{2}+7\right)(1)
\end{aligned}
$$

(ii)

$$
\begin{align*}
V & =\int_{-1}^{1} y^{4}+8 y^{2}+7 d y \\
& =2 \pi\left[\frac{y^{5}}{5}+\frac{8 y^{3}}{3}+7 y\right]_{0}^{1} \tag{1}\\
& =2 \pi\left(\frac{1}{5}+\frac{8}{3}+7-0\right)
\end{align*}
$$

\therefore Volume $=19 \frac{11}{15} \pi$ units 3 (1)

$$
V=\int_{-8}^{8} 4\left(64-x^{2}\right) d x
$$

b) (i)

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \tag{1}\\
& \frac{d y}{d x}=\frac{b^{2} x^{2}}{a^{2} y} \\
& \therefore \text { graokint nomul }=\frac{-a^{2} y_{1} 0}{b^{2} x_{1}}
\end{align*}
$$

$$
=8 \int_{0}^{8}\left(64-x^{2}\right)
$$

$$
=8\left[64 x-\frac{x^{3}}{3}\right]_{0}^{8}
$$

$$
=8\left(512-\frac{5 / 2}{3}\right)_{3}
$$

at $\left(x_{1}, y_{1}\right)$

$$
\begin{align*}
& y-y_{1}=-\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right) \tag{1}\\
& b^{2} x_{1} y-b^{2} x_{1} y_{1}=-a^{2} x_{1} \\
&+a^{2} x_{1} y_{1} \\
& a^{2} y_{1} x+b^{2} x_{1} y= x_{1} y_{1}\left(a^{2}+b^{2}\right) \\
& \frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}(1)
\end{align*}
$$

(ii)

Asquare pqes $=(2 y)^{2}$

$$
\begin{aligned}
& =4 y^{2} \\
& =4\left(64-x^{2}\right)
\end{aligned}
$$

$$
\therefore \text { Volume }=2730 \frac{2}{3} \mathrm{~cm}^{3}
$$

(ii) Let $y=0$,

$$
\begin{align*}
x & =\frac{x_{1}\left(a^{2}+b^{2}\right)}{a^{2}} \\
N G & =\frac{x_{1}\left(a^{2}+b^{2}\right)}{a^{2}}-x_{1} \\
& =\frac{x_{1} b^{2}}{a^{2}} \tag{1}\\
O N & =x_{1} \tag{1}
\end{align*}
$$

$$
\begin{equation*}
N G: O N=\frac{O N}{O, b^{2}} a^{2}: x_{1}=x_{1}^{2}=a^{2} \tag{2}
\end{equation*}
$$

- Mostly Well done

Reduction formula some people tried pull out
$\sin ^{2} x$ ester of $\sin x$
Some Integrals not
properly forme d.

0
2
(c) i) \& ii very well done
(b) very well dane
(c) i) well done, most students established the eqn of hyperbola using co-ord geometry. techniques
ii) poorly done many foiled to seolise

$$
\begin{aligned}
& \text { fol led to } \\
&|2+8|-|2-8|=p S^{\prime}-p s \\
&=2\left(p M^{\prime}-p u\right) \\
&=2 \mu^{\prime} \\
&=8
\end{aligned}
$$

Mic) Well done \rightarrow many didnct equal n
(d) i) well done
ii) some success
iii) poorly done
fraser
4.

Not Well done
$S^{\prime \prime}(x)>0$ is nobs an increascy function

$$
\begin{aligned}
& y=\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& \therefore x=\frac{1}{2}\left(e^{y}-e^{-y}\right) \\
& 2 x=e^{y}-e^{-y}=e^{y}-\frac{1}{e y} \\
& \therefore e^{2 y}-2 x e^{y}-1=0 \\
& \therefore e^{y}=\frac{2 x \pm \sqrt{4 x^{2}+4}}{2} \\
& \therefore y=\ln \left(x+\sqrt{x^{2}+1}\right) \text { as } e^{y}>0
\end{aligned}
$$

or

$$
\begin{aligned}
y & =\int \frac{1}{\sqrt{1 \rightarrow x^{2}}} d x \\
& =\ln \left(x+\sqrt{x^{2}+1}\right)
\end{aligned}
$$

Standard integrals.
bee) Areas of concern
a) very well done, some. students got muddled setting up integral
be) routine work well done
ii) some students quoted formula instead of using colcalus
iii) stadenls either knew how to proceed or did not get started.

Fairly well done
Using the namals at $P+Q$. to find the centre of th ircle un a parb-(iii) confused many
the explanation of why the lows of M exclude a the origin has messy. It was based on th fact which was gives) that $t \neq 0$ and if you write x and y interns of $\frac{1}{-4}$

$$
x=\frac{-4 t}{t^{2}-1} \text { and } y=\frac{4 t}{t^{2}-1}
$$

(you can also easily, see $y=-x$ is Corns)
then if $t \neq 0 \quad x \neq 0, y \neq 0$
parts (iii) (v)
in (v) some used $e^{f(x)}$ instead of $f\left(e^{x}\right)$.
b(i) well done
(ii) could be done algebraically or by adding the ordinates of the two graphs. In some cases errors were made for either method.
(iii) more errors here than expected
(c) question specifically mentioned equation of asymptotes - which was poorly done.
1 mark was awarded for correct shape for both parts on correct aryugtotes for both Parts.
8. a) i) Some students wrote $r_{1}=x+4$ rather then $-x+4$.
ii) well done
b) i) often carelessness in determining grodiat of normal.
iii) This proudad difficulty for some students.
c) i) 8 ai) very will dave fraser

