

Name:					

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2007

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 4: TRIAL HSC

Mathematics Extension 2

TIME ALLOWED: 3 HOURS (PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Determines the important features of graphs of a wide variety of	3, 5	
functions, including conic sections		
Applies appropriate algebraic techniques to complex numbers and	2, 4	
polynomials		
Applies further techniques of integration, such as slicing and	1,6	
cylindrical shells, integration by parts and recurrence formulae, to		
problems		
Synthesises mathematical solutions to harder problems and	7,8	
communicates them in an appropriate form		

Question	1	2	3	4	5	6	7	8	Total	%
Marks	/15	/15	/15	/15	/15	/15	/15	/15	/120	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started on a new page

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x$, x > 0

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1. (15 marks) Use a SEPARATE writing booklet. Find $\int \cos^5 x \sin x \, dx$. 2 (a) Find $\int \frac{2x}{\sqrt{x^2-4}} dx$ using the substitution $u = x^2 - 4$. (b) 3

(c) (i) Express
$$\frac{2-x^2}{(x^2+1)(x^2+4)}$$
 as a sum of partial fractions. 2

(ii) Hence show that
$$\int_0^3 \frac{2-x^2}{(x^2+1)(x^2+4)} dx = \tan^{-1}\left(\frac{3}{11}\right).$$
 4

(d) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 - \sin x}$.

Marks

(a) Let z = 1 + i and w = 1 - 2i. Find in the form x + iy,

(i) $z\overline{w}$ 1

(ii)
$$3z + iw$$
 1

(iii)
$$\frac{w}{z}$$
 1

(b) Let $\beta = -1 + i$

(i)	Express β in modulus-argument form.	2
(ii)	Express β^4 in modulus-argument form.	1
(iii)	Hence evaluate β^{20}	1

(c) (i) Sketch, on the same Argand diagram, the locus specified by, 4

- $1. \qquad |z-9| = |z+1|$
- $2. \qquad |z-2+i|=2$

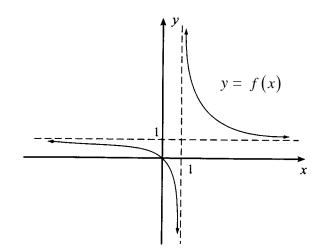
(ii) Hence write down all the values of z which satisfy simultaneously

|z-9| = |z+1| and |z-2+i| = 2

(d) Prove $|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2|z_1|^2 + 2|z_2|^2$ and interpret this result geometrically. **3**

Question 3. (15 marks) Use a SEPARATE writing booklet.

(a) The diagram bellows shows the graph of y = f(x)

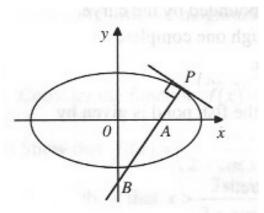


Draw separate one-third page sketches of the graphs of the following:

(i)
$$y = f(x-1)-1$$
 2
(ii) $y = |f(x)|$ 2
(iii) $y = e^{f(x)}$ 2

(iv)
$$y = \log_e(f(x))$$
 2

(b) $P(a\cos\theta, b\sin\theta)$, where $0 < \theta < \frac{\pi}{2}$, is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.



The normal at *P* cuts the *x* axis at *A* and the *y* axis at *B*.

(i) Show that the normal at *P* has the equation

$$ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$$

(ii) Show that triangle *OAB* has areas
$$\frac{(a^2 - b^2)^2 \sin \theta \cos \theta}{2ab}$$
 2

(iii) Find the maximum area of the triangle *OAB* and the coordinates of *P* when this maximum occurs.

2

- (a) Given that α , β and γ are the roots to the equation $x^3 x^2 + 5x 3 = 0$, find the equation whose roots are $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$
- (b) Let α be the complex root of the polynomial $z^7 = 1$ with the smallest possible argument.

Let $\theta = \alpha + \alpha^2 + \alpha^4$ and $\phi = \alpha^3 + \alpha^5 + \alpha^6$

- (i) Explain why $\alpha^7 = 1$ and $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6 = 0$ 2
- (ii) Show $\theta + \phi = -1$ and $\theta \phi = 2$ **3**

Hence write a quadratic equation whose roots are θ and ϕ

(iii) Show that
$$\theta = -\frac{1}{2} + \frac{i\sqrt{7}}{2}$$
 and $\phi = -\frac{1}{2} - \frac{i\sqrt{7}}{2}$ **2**

(iv) Write α in modulus argument form and show

$$\cos\frac{4\pi}{7} + \cos\frac{2\pi}{7} - \cos\frac{\pi}{7} = -\frac{1}{2}$$
 and $\sin\frac{4\pi}{7} + \sin\frac{2\pi}{7} - \sin\frac{\pi}{7} = \frac{\sqrt{7}}{2}$

(c) The polynomial P(z) is defined by $P(z) = z^4 - 2z^3 - z^2 + 2z + 10$.

Given that z-2+i is a factor of P(z), express P(z) as a product of real quadratic factors.

Marks

3

2

Question 5. (15 marks) Use a SEPARATE writing booklet.

(a) Consider the curve given by $5y - xy = x^2 - x - 2$

- (i) Show that the curve has stationary points at $5\pm 3\sqrt{2}$ 2
- (ii) Explain why the curve approaches that of y = -x 4 as $x \to \pm \infty$ 2

(b) For the hyperbola
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
, find

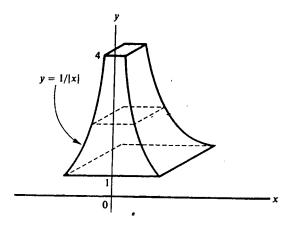
(i)	The eccentricity.	1
(ii)	The coordinates of the foci.	1
(iii)	The equations of the directrices.	1
(iv)	The equations of the asymptotes.	1
(v)	Sketch the hyperbola indicating the foci, the directrices and the asymptotes.	1
(vi)	Show that the point $P(2 \sec \theta, \sqrt{5} \tan \theta)$ lies on the hyperbola and prove that the	2

tangent to the hyperbola at *P* has the equation

$$\frac{x \sec \theta}{2} - \frac{y \tan \theta}{\sqrt{5}} = 1$$

(vii) If the tangent at *P* cuts the asymptotes at *L* and *M*, prove that LP = PM and the area of triangle *OLM* is independent of the position of *P*.

(a) The plan of a steeple is bounded by the curve $y = \frac{1}{|x|}$ and the lines y = 4 and y = 1.

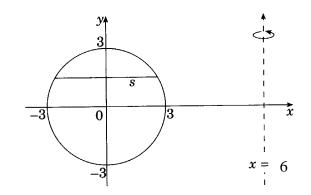


Each horizontal cross-section is a square.

Find the volume of the steeple.

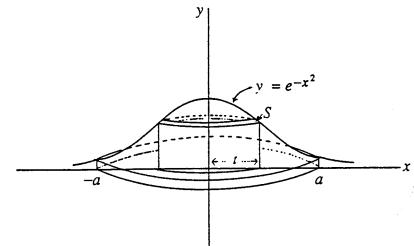
4

(b) The circle $x^2 + y^2 = 9$ is rotated about the line x = 6 to form a ring.



- (i) When the circle is rotated, the line segment *S* at height *y* sweeps out an annulus.2Find the area of the Annulus.
- (ii) Hence find the volume of the ring

(c) The region under the curve $y = e^{-x^2}$ and above the x-axis is rotated about the y axis for $-a \le x \le a$ to form a solid as shown below.



- (i) Divide the resulting solid into cylindrical shells S of radius t as shown in the diagram and show each shell S has an approximate volume given by $\delta V = 2\pi t e^{-t^2} \delta t$, where δt is the thickness of the shell.
- (ii) Hence calculate the volume of the solid.
- (iii) What is the limiting value of the volume of the solid as $a \rightarrow \infty$?

2

2

Question 7.

- Let $I_n = \int_0^1 (1-x^2)^n dx$. (a)
 - Show by using integration by parts $I_n = \frac{2n}{2n+1}I_{n-1}$ for n = 0, 1, 2, 3, ...3 (i)

(ii) Hence evaluate
$$\int_{0}^{1} (1 - x^{2})^{4} dx$$
 3

- A special dish is designed by rotating the region bounded by the curve $y = 2\cos x$ ($0 \le x \le 2\pi$) (b) and the line y = 2 through 360° about the y axis.
 - Use the method of cylindrical shells to show that the volume of the dish is given by i)

$$4\pi\int_{0}^{2\pi}x(1-\cos x)dx.$$

- Hence find the volume. ii)
- The polynomial P(x) is given by $P(x) = 2x^3 9x^2 + 12x k$, where k is real. 3 (c)

Find the range of values for k for which P(x) = 0 has 3 real roots.

3

(15 marks) Use a SEPARATE writing booklet. Question 8.

Use integration by parts to find $\int \sin^{-1} x \, dx$. (a)

(b) (i) Use De Moivre's Theorem to show that
$$\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$$
 3

(iv) Show that the equation
$$16x^4 - 16x^2 + 1 = 0$$
 has roots

$$x_1 = \cos\frac{\pi}{12}, x_2 = -\cos\frac{\pi}{12}, x_3 = \cos\frac{5\pi}{12}, x_4 = -\cos\frac{5\pi}{12}$$

(iii) Hence show that
$$\cos\frac{\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$$
 2

P(x) is a polynomial of degree *n* with rational coefficients. (c)

If the leading coefficient is a_0 and $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ are the roots of P(x) = 0 prove that:

$$P'(x) = \frac{P(x)}{x - \alpha_1} + \frac{P(x)}{x - \alpha_2} + \frac{P(x)}{x - \alpha_3} + \dots \frac{P(x)}{x - \alpha_n}$$

Marks

3

4

FORT STREET HIGH SCHOOL

2007

HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 4: TRIAL HSC

Mathematics Extension 2

Solutions

(a) Find
$$\int \cos^5 x \sin x \, dx$$
.

$$= -\frac{1}{6}\cos^6 x + C$$

(b) Find
$$\int \frac{2x}{\sqrt{x^2-4}} dx$$
 using the substitution $u = x^2 - 4$.

Solution

$$u = x^{2} - 4$$

$$\int \frac{2x}{\sqrt{x^{2} - 4}} dx = \int \frac{2x}{\sqrt{u}} \frac{du}{2x}$$

$$= \int \frac{1}{\sqrt{u}} du$$

$$\int \frac{1}{\sqrt{u}} du = 2\sqrt{u} + C$$

$$= 2\sqrt{u} + C$$

$$= 2\sqrt{x^{2} - 4} + C$$

(c) (i) Express
$$\frac{2-x^2}{(x^2+1)(x^2+4)}$$
 as a sum of partial fractions.

Solution

$$\frac{2-x^2}{(x^2+1)(x^2+4)} = \frac{ax+b}{x^2+1} + \frac{cx+d}{x^2+4}$$

$$2 \quad \text{Correct Solution}$$

$$1 \quad \text{Finding the expansion or arithmetic error}$$

$$2-x^2 = (x^2+4)(ax+b) + (x^2+1)(cx+d)$$

$$2-x^2 = ax^3 + bx^2 + 4ax + 4b + cx^3 + dx^2 + cx + d$$

Equating co-efficients & solving simultaneously a = 0, b = 1, c = 0, d = -2

$$\frac{2-x^2}{(x^2+1)(x^2+4)} = \frac{1}{x^2+1} - \frac{2}{x^2+4}$$

2 Correct Solution 1 Omitting constant or negative sign

(ii) Hence show that
$$\int_0^3 \frac{2-x^2}{(x^2+1)(x^2+4)} = \tan^{-1}\left(\frac{3}{11}\right).$$

$$\int_{0}^{3} \frac{2 - x^{2}}{(x^{2} + 1)(x^{2} + 4)} dx = \int_{0}^{3} \frac{1}{x^{2} + 1} dx - \int_{0}^{3} \frac{2}{x^{2} + 4} dx$$
$$= \left[\tan^{-1} x \right]_{0}^{3} - 2 \int_{0}^{3} \frac{1}{4 + x^{2}} dx$$
$$= \tan^{-1} 3 - 2 \left[\frac{1}{2} \tan^{-1} \frac{x}{2} \right]_{0}^{3}$$
$$= \tan^{-1} 3 - \tan^{-1} \frac{3}{2}$$

Let
$$x = \tan^{-1} 3$$
 $y = \tan^{-1} \frac{3}{2}$

$$\tan x = 3, \qquad \frac{3}{2} = \tan y$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$
$$= \frac{3 - \frac{3}{2}}{1 + 3 \cdot \frac{3}{2}}$$
$$\tan(x-y) = \frac{3}{11}$$
$$x-y = \tan^{-1}\frac{3}{11}$$
$$\tan^{-1}3 - \tan^{-1}\frac{3}{2} = \tan^{-1}\frac{3}{11}$$

4 Correct Solution
3 One arithmetic error with correct process
2 Finding
$$\int_0^3 \frac{2-x^2}{(x^2+1)(x^2+4)} dx = \tan^{-1}3 - \tan^{-1}\frac{3}{2}$$

1 Finding $[\tan^{-1}x]_0^3 - 2\int_0^3 \frac{1}{4+x^2} dx$

(d) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 - \sin x}$.

$$t = \tan \frac{x}{2} \qquad \qquad \int_{0}^{\frac{\pi}{2}} \frac{dx}{2 - \sin x} = \int_{0}^{1} \frac{\frac{2dt}{1 + t^{2}}}{2 - \frac{2t}{1 + t^{2}}}$$
$$\frac{dt}{dx} = \frac{1}{2} \sec^{2} \frac{x}{2} = \int_{0}^{1} \frac{\frac{2dt}{1 + t^{2}}}{\frac{1 + t^{2}}{2 - 2t}}$$

$$\frac{dt}{dx} = \frac{1}{2} \left(1 + t^2 \right) = \int_0^1 \frac{1}{t^2 - t + 1} dt$$

$$dx = \frac{2dt}{1+t^2} = \int_0^1 \frac{1}{\left(t^2 - t + \frac{1}{4}\right) + \frac{3}{4}}$$

$$x = \frac{\pi}{2}, t = \tan \frac{\frac{\pi}{2}}{2} = 1$$
 =

$$x = 0, t = \tan \frac{\pi/2}{2} = 1$$

$$\int_{0}^{1} \frac{1}{\left(t^{2} - t + \frac{1}{4}\right) + \frac{3}{4}} dt$$
$$\int_{0}^{1} \frac{1}{\left(t^{2} - \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} dt$$
$$\left[\frac{2}{\sqrt{3}} \tan^{-1} \frac{2\left(t - \frac{1}{2}\right)}{\sqrt{3}}\right]_{0}^{1}$$

$$\frac{2\pi}{\sqrt{3}}\left(\frac{1}{3}\right)$$

=

=

4 Correct Solution
3 One error with correct process
2 Finding
$$\int_{0}^{1} \frac{1}{t^{2}-t+1} dt$$

1 Finding $dx = \frac{2dt}{1+t^{2}}$

(a) Let z = 1 + i and w = 1 - 2i. Find in the form x + iy,

(i)
$$z\overline{w}$$

Solution

 $z\overline{w} = (1+i)(1+2i)$ = -1+3i

(ii) 3z + iw

Solution

$$3z + iw = 3 + 3i + i(1 - 2i)$$
$$= 5 + 4i$$
(iii) $\frac{w}{z}$

Solution

$$\frac{w}{z} = \frac{1-2i}{1+i} \times \frac{1-i}{1-i}$$
$$= \frac{-1}{2} - \frac{3}{2}i$$
1 Correct Solution

1

1

Correct Solution

Correct Solution

(b) Let $\beta = -1 + i$

(i) Express β in modulus-argument form.

Solution

$$|\beta| = \sqrt{(-1)^2 + (1)^2} = \sqrt{2} \qquad \arg \beta = \tan^{-1} \left(\frac{-1}{1}\right), \text{ in second quad.} = \frac{3\pi}{4}$$
$$\beta = \sqrt{2} \left(\cos\left(\frac{3\pi}{4}\right) + i \sin\left(\frac{3\pi}{4}\right) \right) \qquad \qquad \boxed{2 \qquad \text{Correct Solution}}\\ 1 \qquad \qquad \boxed{1 \qquad \text{Finding either } |\beta| \text{ or } \arg \beta}$$

(ii) Express β^4 in modulus-argument form.

Solution

$$\beta^{4} = \left[\sqrt{2}\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)\right]^{4}$$

$$= 4\left(\cos\left(3\pi\right) + i\sin\left(3\pi\right)\right) \quad \text{by De Moivre's theorem}$$

(iii) Hence evaluate
$$\beta^{20}$$

~

Solution

$$\beta^{20} = (\beta^4)^5$$

$$= (4(\cos(3\pi) + i\sin(3\pi)))^5$$

$$= (-4)^5$$

$$= -1024$$

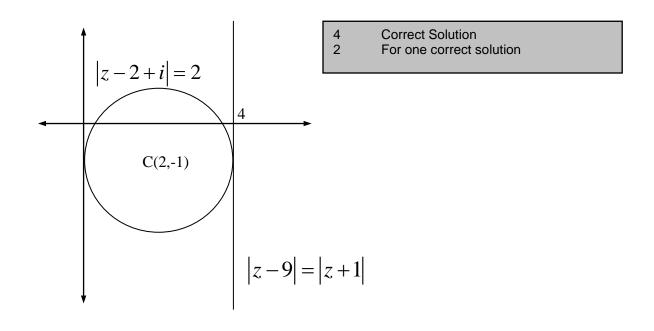
0 If student did not interpret HENCE reapplied De Moivre's Theorem	and

(c) (i) Sketch, on the same Argand diagram, the locus specified by,

1.
$$|z-9| = |z+1|$$

2. $|z-2+i| = 2$

Solution



(ii) Hence write down all the values of *z* which satisfy simultaneously

$$|z-9| = |z+1|$$
 and $|z-2+i| = 2$

Solution

$$z = 4 - i$$

Correct Solution

1

(d) Prove $|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2|z_1|^2 + 2|z_2|^2$ and interpret this result geometrically.

Solution

Using the property $|w|^2 = w\overline{w}$

LHS =
$$|z_1 - z_2|^2 + |z_1 + z_2|^2$$

= $(z_1 - z_2)(\overline{z_1 - z_2}) + (z_1 + z_2)(\overline{z_1 + z_2})$
= $(z_1 - z_2)(\overline{z_1} - \overline{z_2}) + (z_1 + z_2)(\overline{z_1} + \overline{z_2})$
= $z_1\overline{z_1} - z_1\overline{z_2} - z_2\overline{z_1} + z_2\overline{z_2} + z_1\overline{z_1} + z_1\overline{z_2} + z_2\overline{z_1} + z_2\overline{z_2}$
= $2z_1\overline{z_1} + 2z_2\overline{z_2}$
= $2|z_1|^2 + 2|z_2|^2$
= RHS

Geometric interpretation

Since $z_1 - z_2$ and $z_1 + z_2$ are diagonals of a parallelogram formed by opposite vertices z_1 and z_2 we can say

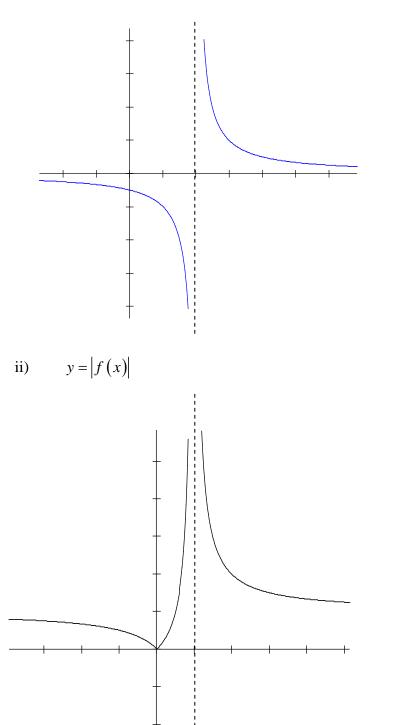
The sum of the diagonals squared is equal to 2 times the sum of adjacent sides squared.

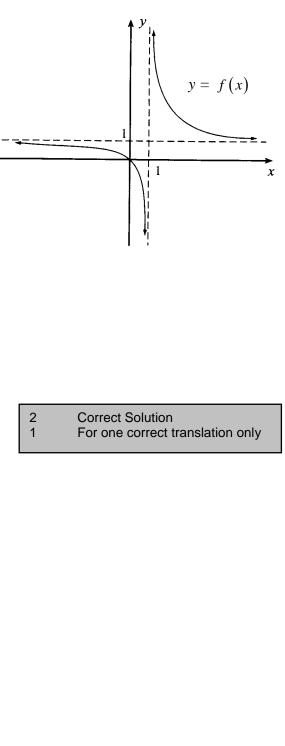
3 2	Correct Solution Showed identity without geometric interpretation.
1	Demonstrating $ w ^2 = w\overline{w}$ or $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$

(a) The diagram bellows shows the graph of y = f(x)

Draw separate one-third page sketches of the graphs

(i) y = f(x-1)-1





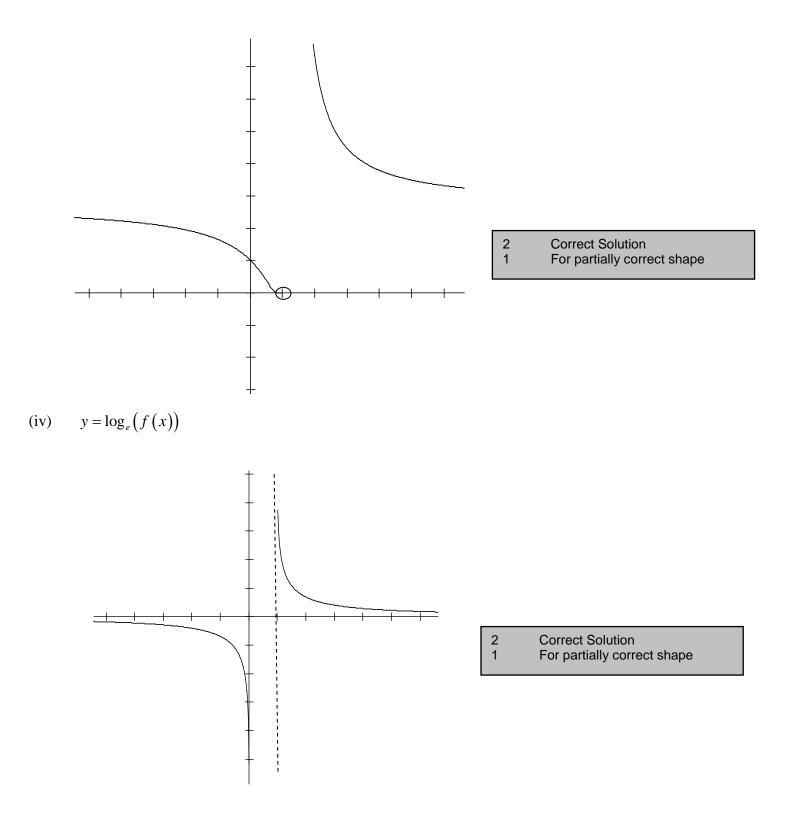
2

1

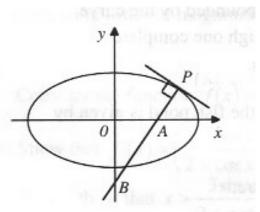
- 8 -

Correct Solution

Answer sans horizontal asymptote



(b) $P(a\cos\theta, b\sin\theta)$, where $0 < \theta < \frac{\pi}{2}$, is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.



The normal at *P* cuts the *x* axis at *A* and the *y* axis at *B*.

(i) Show that the normal at *P* has the equation

$$ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$$

Solution

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\frac{2y}{b^2} \frac{dy}{dx} = -\frac{2x}{a^2}$$

$$\frac{dy}{dx} = -\frac{2x^2}{a^2} \times \frac{b^2}{2y^2}$$

$$\frac{dy}{dx} = -\frac{b^2}{a^2} \times \frac{x}{y}$$

so the gradient of the tangent at $P(x_1, y_1)$ is $-\frac{b^2}{a^2} \times \frac{x_1}{y_1}$

The gradient of the normal is

$$-\frac{b^2}{a^2} \times \frac{x_1}{y_1} \times m = -1$$

$$m = \frac{a^2}{b^2} \times \frac{y_1}{x_1}$$

$$m = \frac{a}{b} \frac{\sin \theta}{\cos \theta}$$

So the equation of the normal is

$$y - b\sin\theta = \frac{a}{b}\frac{\sin\theta}{\cos\theta}(x - a\cos\theta)$$

$$by - b^2 \sin\theta = a \frac{\sin\theta}{\cos\theta} (x - a\cos\theta)$$

$$\frac{by}{\sin\theta} - b^2 = \frac{ax}{\cos\theta} - a^2$$

2	Correct Solution
1	Finding gradient of the tangent

$$ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$$

(ii) Show that triangle *OAB* has areas
$$\frac{(a^2 - b^2)^2 \sin \theta \cos \theta}{2ab}$$

Solution

For point A,
$$y = 0$$

 $ax \sin \theta - b(0) \cos \theta = (a^2 - b^2) \sin \theta \cos \theta$
 $x = \frac{(a^2 - b^2) \cos \theta}{a}$

For point B, x = 0

 $a(0)\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$ $y = \frac{(a^2 - b^2)\sin\theta}{-b}$ Area AOB = $\frac{1}{2} \times \left| \frac{(a^2 - b^2)\cos\theta}{a} \right| \times \left| \frac{(a^2 - b^2)\sin\theta}{-b} \right|$ $= \frac{(a^2 - b^2)^2\sin\theta\cos\theta}{2ab} \quad \text{since } a > b$ $= \frac{(a^2 - b^2)^2\sin\theta\cos\theta}{2ab} \times \frac{2}{2}$ $= \frac{(a^2 - b^2)^22\sin\theta\cos\theta}{4ab}$ $= \frac{(a^2 - b^2)^2\sin\theta\cos\theta}{4ab}$

(iii) Find the maximum area of the triangle *OAB* and the coordinates of *P* when this maximum occurs.

Solution

 $\frac{dA}{d\theta} = \frac{\left(a^2 - b^2\right)^2}{4ab}\cos 2\theta \times 2$

$$= \frac{\left(a^2 - b^2\right)^2 \cos 2\theta}{2ab}$$

Finding turning pts

$$\frac{\left(a^2-b^2\right)^2\cos 2\theta}{2ab} = 0$$

Alternatively

$$\frac{\left(a^2 - b^2\right)^2 \sin 2\theta}{4ab}$$
 is a maximum when $\sin 2\theta = 1$

$$\theta = \frac{\pi}{4}$$
, since $0 < \theta < \frac{\pi}{2}$

$$(a^{2}-b^{2})^{2}\cos 2\theta = 0$$

$$\cos 2\theta = 0$$

$$2\theta = \frac{\pi}{2}$$

$$\theta = \frac{\pi}{4}$$

Testing for max.

$$\frac{d^2 A}{d\theta^2} = \frac{\left(a^2 - b^2\right)^2}{2ab} (-\sin 2\theta) \times 2$$
$$= -\frac{\left(a^2 - b^2\right)^2 \sin 2\theta}{ab}$$
$$< 0 \quad \text{since } a > b \text{ and } 0 < \theta < \frac{\pi}{2}$$

So max when $\theta = \frac{\pi}{4}$

$$A = \frac{\left(a^2 - b^2\right)^2 \sin\left(2, \frac{\pi}{4}\right)}{4ab}$$

$$= \frac{\left(a^2 - b^2\right)^2}{4ab}$$

$$Solution 2 Correct Solution 2$$

$$\mathbf{P} = \left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$$

(a) Given that α , β and γ are the roots to the equation $x^3 - x^2 + 5x - 3 = 0$, find the equation whose roots are $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$

Solution

 $P(x) = x^{3} - x^{2} + 5x - 3$ $\alpha\beta, \beta\gamma, \alpha\beta = \frac{\alpha\beta\gamma}{\gamma}, \frac{\alpha\beta\gamma}{\alpha}, \frac{\alpha\beta\gamma}{\beta}$ $= \frac{3}{\gamma}, \frac{3}{\alpha}, \frac{3}{\beta} \qquad \text{since } \alpha\beta\gamma = 3$ $\text{Let } x = \frac{3}{\alpha} \implies \alpha = \frac{3}{x}$ $P(\alpha) = \left(\frac{3}{x}\right)^{3} - \left(\frac{3}{x}\right)^{2} + 5\left(\frac{3}{x}\right) - 3 = 0$ $\frac{27}{x^{3}} - \frac{9}{x^{2}} + \frac{15}{x} - 3 = 0$ $x^{3} - 5x^{2} + 3x - 9 = 0$

3	Correct Solution
2	Substituting $\alpha = \frac{3}{r}$
1	Finding $\alpha\beta\gamma = 3$

(b) Let α be the complex root of the polynomial $z^7 = 1$ with the smallest possible argument.

Let $\theta = \alpha + \alpha^2 + \alpha^4$ and $\phi = \alpha^3 + \alpha^5 + \alpha^6$

(i) Explain why $\alpha^7 = 1$ and $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6 = 0$

Solution

Let $P(x) = z^7 - 1 = 0$ since α is a root $P(\alpha) = \alpha^7 - 1 = 0 \Rightarrow \alpha^7 = 1$ by remainder theorem

Also

Since $\alpha \neq 1$

o $P(x) = z^7 - 1 = (z - 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1)$

Again since α is a root

$$P(\alpha) = (\alpha - 1)(\alpha^{6} + \alpha^{5} + \alpha^{4} + \alpha^{3} + \alpha^{2} + \alpha + 1) = 0$$
$$(\alpha^{6} + \alpha^{5} + \alpha^{4} + \alpha^{3} + \alpha^{2} + \alpha + 1) = 0$$

(ii) Show $\theta + \phi = -1$ and $\theta \phi = 2$

Hence write a quadratic equation whose roots are θ and ϕ

Solution

$$\theta + \phi = \alpha + \alpha^{2} + \alpha^{4} + \alpha^{3} + \alpha^{5} + \alpha^{6}$$

$$= \alpha + \alpha^{2} + \alpha^{3} + \alpha^{4} + \alpha^{5} + \alpha^{6}$$

$$= -1 \quad \text{using pt (i)}$$

$$\theta \phi = \left(\alpha + \alpha^{2} + \alpha^{4}\right) \left(\alpha^{3} + \alpha^{5} + \alpha^{6}\right)$$

$$= \alpha^{4} + \alpha^{6} + \alpha^{7} + \alpha^{5} + \alpha^{7} + \alpha^{8} + \alpha^{7} + \alpha^{9} + \alpha^{1}$$

$$= \alpha^{4} + \alpha^{6} + 1 + \alpha^{5} + 1 + \alpha\alpha^{7} + 1 + \alpha^{7}\alpha^{2} + \alpha^{7}\alpha^{3}$$

$$= \alpha^{4} + \alpha^{6} + 1 + \alpha^{5} + 1 + \alpha^{4} + 1 + \alpha^{2} + \alpha^{3}$$

$$= \alpha + \alpha^{2} + \alpha^{3} + \alpha^{4} + \alpha^{5} + \alpha^{6} + 3$$

 $= 2 \qquad \text{using } \theta + \phi = -1$

A quadratic whose roots are θ, ϕ easiest quadratic would be monic

$$\theta + \phi = \frac{-b}{a}$$
 $\theta \phi = \frac{c}{a}$

 $-1 = -b$
 $2 = c$
since $a = 1$ with monic polynomial

 $P(x) = x^2 + x + 2 = 0$

 3 Correct Solution 2 Finding 2 correct answers 1 Finding 1 correct answer 	
---	--

(iii) Show that
$$\theta = -\frac{1}{2} + \frac{i\sqrt{7}}{2}$$
 and $\phi = -\frac{1}{2} - \frac{i\sqrt{7}}{2}$

Solving $x^2 + x + 2 = 0$

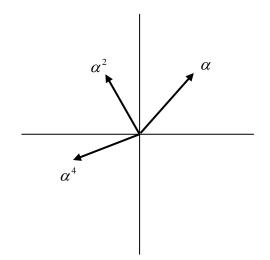
$$x = \frac{-1 \pm \sqrt{1^2 - 4.1.2}}{2.1}$$
$$= \frac{-1 \pm \sqrt{-7}}{2}$$
$$= \frac{-1 \pm \sqrt{7}i}{2}$$

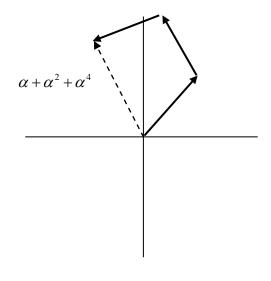
Determining whether
$$\theta = -\frac{1}{2} + \frac{i\sqrt{7}}{2}$$
 OR $\phi = -\frac{1}{2} + \frac{i\sqrt{7}}{2}$

Method 1 We can examine

$$\operatorname{Im}(\alpha + \alpha^{2} + \alpha^{4}) = \sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7}$$
 [found by solving $z^{7} = 1$ using $\operatorname{cis} \frac{2k\pi}{n}$
> 0 from calculator

Method 2 we can consider addition of vectors $\alpha + \alpha^2 + \alpha^4$ [found by solving $z^7 = 1$ using $cis \frac{2k\pi}{n}$]





]

Since $\alpha + \alpha^2 + \alpha^4$ has a positive argument

$$\theta = -\frac{1}{2} + \frac{i\sqrt{7}}{2}$$
 and $\phi = -\frac{1}{2} - \frac{i\sqrt{7}}{2}$

2	Correct Solution
1	for finding $x = \frac{-1 \pm \sqrt{-7}}{2}$

(iv) Write α in modulus argument form and show

$$\cos\frac{4\pi}{7} + \cos\frac{2\pi}{7} - \cos\frac{\pi}{7} = -\frac{1}{2}$$
 and $\sin\frac{4\pi}{7} + \sin\frac{2\pi}{7} - \sin\frac{\pi}{7} = \frac{\sqrt{7}}{2}$

Solution

 $\alpha = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$ $\alpha^2 = \cos \frac{4\pi}{7} + i \sin \frac{4\pi}{7}$ $\alpha^4 = \cos \frac{8\pi}{7} + i \sin \frac{8\pi}{7}$

$$\theta = \alpha + \alpha^{2} + \alpha^{4}$$

$$= \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7} + \cos \frac{4\pi}{7} + i \sin \frac{4\pi}{7} + \cos \frac{8\pi}{7} + i \sin \frac{8\pi}{7}$$

$$= \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} - \cos \frac{\pi}{7} + i \sin \frac{2\pi}{7} + i \sin \frac{4\pi}{7} - i \sin \frac{\pi}{7}$$

Equating real & imaginary parts (using pt iii)

Correct Solution for finding α

(c) The polynomial P(z) is defined by $P(z) = z^4 - 2z^3 - z^2 + 2z + 10$.

Solution

Given that z-2+i is a factor of P(z), express P(z) as a product of real quadratic factors.

Factors are written in the form $(z-z_1)$

So
$$z-2+i = \left[z-(2-i)\right]$$

Since complex roots in a polynomial with real co-efficients occur in complex conjugates another factor is

$$= \left[z - (2+i)\right]$$

Forming a quadratic factor

$$\begin{bmatrix} z - (2-i) \end{bmatrix} \begin{bmatrix} z - (2+i) \end{bmatrix} = \begin{bmatrix} z - 2 + i \end{bmatrix} \begin{bmatrix} z - 2 - i \end{bmatrix}$$
$$= z^2 - 4z + 5$$

Finding another factor

$$\frac{z^2 + 2z + 2}{z^2 - 4z + 5 z^4 - 2z^3 - z^2 + 2z + 10}$$

So product of real quadratic factors

$$P(z) = (z^{2} + 2z + 2)(z^{2} - 4z + 5)$$

- 3 Correct Solution
- 2 for showing long division but with error
- 1 For finding $z^2 4z + 5$

(a) Consider the curve given by $5y - xy = x^2 - x - 2$

(i) Show that the curve has stationary points at $5\pm 3\sqrt{2}$

Solution

$$5\frac{dy}{dx} - x\frac{dy}{dx} - y = 2x - 1$$

$$(5-x)\frac{dy}{dx} = 2x + y - 1$$

$$\frac{dy}{dx} = \frac{2x + y - 1}{5 - x}$$
Stationary pts at $\frac{dy}{dx} = 0$

$$\frac{2x + y - 1}{5 - x} = 0$$

$$2x + y - 1 = 0$$

$$y = 1 - 2x$$

Solving for *x*

$$5(1-2x)-x(1-2x) = (1-2x)^{2}-(1-2x)-2$$

$$5-11x+2x^{2} = x^{2}-x-2$$

$$x^{2}-10x+7 = 0$$

$$x = \frac{10\pm\sqrt{10^{2}-4.1.7}}{2.1}$$

$$= 5\pm 3\sqrt{2}$$

$$2 \quad Co$$

$$1 \quad fo$$

2 Correct Solution 1 for finding $\frac{dy}{dx} = \frac{2x+y-1}{5-x}$

- 19 -

$$5y - xy = x^{2} - x - 2$$

$$(5 - x)y = x^{2} - x - 2$$

$$y = \frac{x^{2} - x - 2}{5 - x} - x + 5 \overline{\smash{\big)} x^{2} - x - 2}$$

$$= -x - 4 + \frac{18}{-x + 5}$$

Now $\lim_{x \to \pm \infty} -x - 4 + \frac{18}{-x + 5} = -x - 4$

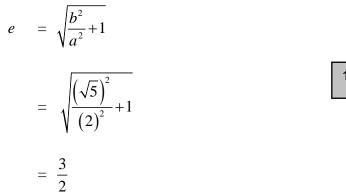
$$2 \quad \text{Correct Solution}$$

1 for working with partial error

(b) For the hyperbola
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
, find

(i) The eccentricity.

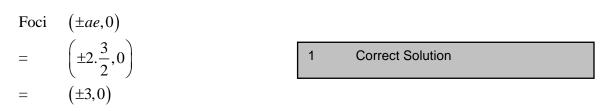
Solution



1	Correct Solution

(ii) The coordinates of the foci.

Solution



(iii) The equations of the directrices.

Solution

Directrices $x = \pm \frac{a}{e} \Rightarrow x = \pm \frac{4}{3}$ 1 Correct Solution

(iv) The equations of the asymptotes.

Solution

 $y = \pm \frac{b}{a}x \implies y = \pm \frac{\sqrt{5}}{2}x$ 1 Correct Solution

(v) Sketch the hyperbola indicating the foci, the directrices and the asymptotes.

Solution

[Pending]

(vi) Show that the point $P(2 \sec \theta, \sqrt{5} \tan \theta)$ lies on the hyperbola and prove that the tangent to the hyperbola at *P* has the equation

1

Correct Solution

$$\frac{x \sec \theta}{2} - \frac{y \tan \theta}{\sqrt{5}} = 1$$

Solution

Sub *P* into eqn. for hyperbola

LHS =
$$\frac{(2 \sec \theta)^2}{4} - \frac{(\sqrt{5} \tan \theta)^2}{5}$$
$$= \frac{4 \sec^2 \theta}{4} - \frac{5 \tan^2 \theta}{5}$$
$$= \sec^2 \theta - \tan^2 \theta$$
$$= \tan^2 \theta + 1 - \tan^2 \theta$$
$$= 1$$
$$= RHS$$

Showing the tangent is $\frac{x \sec \theta}{2} - \frac{y \tan \theta}{\sqrt{5}} = 1$ $\frac{x^2}{4} - \frac{y^2}{5} = 1$ $\frac{2x}{4} - \frac{2y}{5} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{5x}{4y}$

At
$$P$$
 $\frac{dy}{dx} = \frac{5 \sec \theta}{2\sqrt{5} \tan \theta}$

Equation of a line

 $y - \sqrt{5} \tan \theta = \frac{5 \sec \theta}{2\sqrt{5} \tan \theta} (x - 2 \sec \theta)$ $2\sqrt{5} \tan \theta y - 10 \tan^2 \theta = x5 \sec \theta - 10 \sec^2 \theta$ $2\sqrt{5} \tan \theta y - 10 \tan^2 \theta = x5 \sec \theta - 10 \tan^2 \theta - 10$ $5 \sec \theta x - 2\sqrt{5} \tan \theta y = 10$ $\frac{x \sec \theta}{2} - \frac{y\sqrt{5} \tan \theta}{5} = 1$ $\frac{x \sec \theta}{2} - \frac{y \tan \theta}{\sqrt{5}} = 1$ $\sin \frac{\sqrt{5}}{5} = \frac{1}{\sqrt{5}}$

Correct Solution for showing pt lies on the hyperbola

2

1

(vii) If the tangent at *P* cuts the asymptotes at *L* and *M*, prove that LP = PM and the area of triangle *OLM* is independent of the position of *P*.

Solution

Proving LP = PM

Finding co-ordinates of L & M

Sub asymptote $y = \pm \frac{\sqrt{5}}{2}x$ into the eqn for the tangent

$$\frac{x \sec \theta}{2} - \frac{\left(\frac{\sqrt{5}}{2}x\right) \tan \theta}{\sqrt{5}} = 1$$

$$\frac{x \sec \theta}{2} - \frac{\left(\frac{\sqrt{5}}{2}x\right) \tan \theta}{\sqrt{5}} = 1$$

$$\frac{x \sec \theta}{2} - \frac{x \tan \theta}{2} = 1$$

$$\frac{x \sec \theta}{2} - \frac{x \tan \theta}{2} = 1$$

$$(\sec \theta - \tan \theta)x = 2$$

$$x = \frac{2}{(\sec \theta - \tan \theta)}$$

$$x = \frac{2}{(\sec \theta - \tan \theta)}$$

$$x = \frac{\sqrt{5}}{(\sec \theta - \tan \theta)}$$

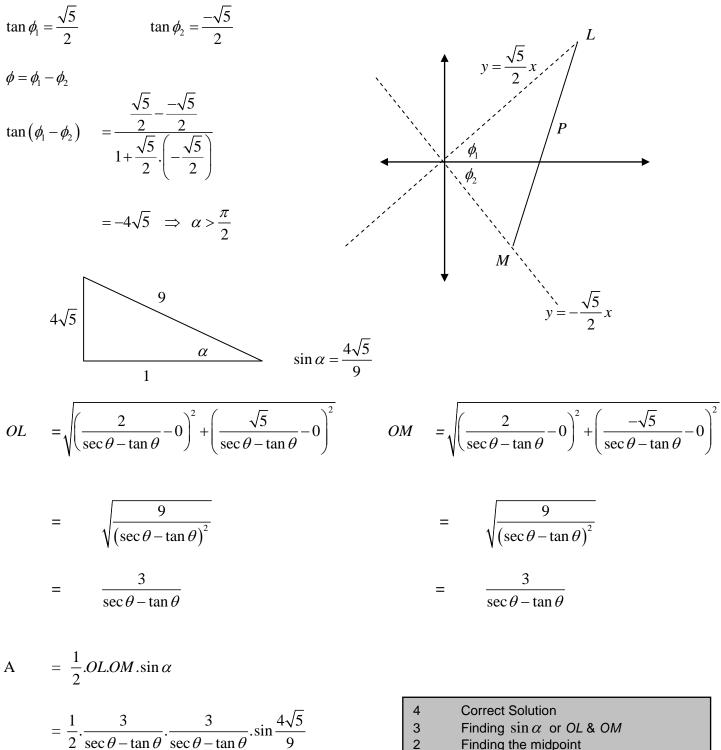
$$y = \frac{-\sqrt{5}}{(\sec \theta + \tan \theta)}$$

$$L\left(\frac{2}{(\sec\theta - \tan\theta)}, \frac{\sqrt{5}}{(\sec\theta - \tan\theta)}\right) \qquad M\left(\frac{2}{(\sec\theta + \tan\theta)}, \frac{-\sqrt{5}}{(\sec\theta + \tan\theta)}\right)$$

Note finding the distance LP & LM was too troublesome (part marks may be awarded for those who tried) Better to show P is the midpoint of LM

$$x = \frac{\frac{2}{(\sec\theta - \tan\theta)} + \frac{2}{(\sec\theta + \tan\theta)}}{2} \qquad y = \frac{\frac{\sqrt{5}}{(\sec\theta - \tan\theta)} + \frac{-\sqrt{5}}{(\sec\theta + \tan\theta)}}{2}$$
$$= \frac{1}{(\sec\theta - \tan\theta)} + \frac{1}{(\sec\theta + \tan\theta)} \qquad = \frac{\sqrt{5}}{2} \left(\frac{1}{(\sec\theta - \tan\theta)} - \frac{1}{(\sec\theta + \tan\theta)}\right)$$
$$= \frac{2\sec\theta}{\sec^2\theta - \tan^2\theta} \qquad = \frac{\sqrt{5}}{2} \left(\frac{2\tan\theta}{\sec^2\theta - \tan^2\theta}\right)$$
$$= \frac{2\sec\theta}{\tan^2\theta + 1 - \tan^2\theta} \qquad = \frac{\sqrt{5}\tan\theta}{\tan^2\theta + 1 - \tan^2\theta}$$
$$= \sqrt{5}\tan\theta$$

Proving OLM is independent of P

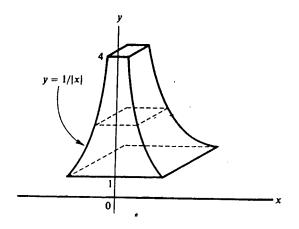


1 Finding the co-ordinates of L & M

Which is a constant term and therefore independent of P

 $= 2\sqrt{5}$

(a) The plan of a steeple is bounded by the curve $y = \frac{1}{|x|}$ and the lines y = 4 and y = 1.



Each horizontal cross-section is a square.

Find the volume of the steeple.

Solution

$$\delta V = (2x)(2x)\delta y$$

$$= 4x^{2}\delta y$$

$$= 4.\frac{1}{y^{2}}\delta y$$

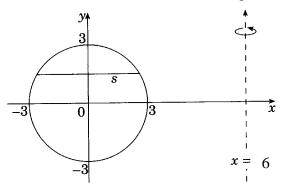
$$V = \lim_{\delta y \to 0} \sum_{1}^{4} \frac{4}{y^{2}}\delta y$$

$$= \int_{1}^{4} 4y^{-2} dy$$

$$= \left[\frac{-4}{y}\right]_{1}^{4}$$

= 3 units³

4 Correct Solution 3 One arithmetic error with correct procedure 2 Finding $\delta V = 4 \cdot \frac{1}{y^2} \cdot \delta y$ 1 For finding area of a slice (b) The circle $x^2 + y^2 = 9$ is rotated about the line x = 6 to form a ring.



(i) When the circle is rotated, the line segment *S* at height *y* sweeps out an annulus.Find the area of the Annulus.

Solution

Α

 $= \pi (R^{2} - r^{2})$ $= \pi ([6+x]^{2} - [6-x]^{2})$ $= \pi ([6+x] - [6-x])([6+x] + [6-x])$ $= 24\pi x$

 δy

2	Correct Solution
1	for showing pt lies on the hyperbola

(ii) Hence find the volume of the ring

Solution

$$\delta V = 24\pi x \delta y$$

$$V = \lim_{\delta y \to 0} \sum_{-3}^{3} 24\pi \left(\sqrt{9 - y^2}\right)$$

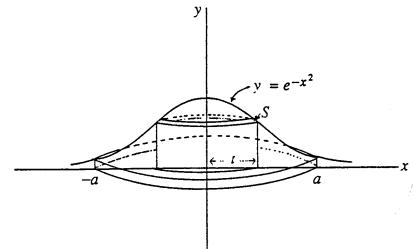
$$= 24\pi \int_{-3}^{3} \sqrt{9 - y^2} \, dy$$

$$= 108\pi^2 \quad \text{units}^3$$

3 Correct Solution 2 Showing V = $24\pi \int_{-3}^{3} \sqrt{9-y^2} dy$ 1 Finding $\delta V = 24\pi x \delta y$

Note $\int_{-3}^{3} \sqrt{9 - y^2} \, dy$ is equal to the area of a semi-circle radius 3

(c) The region under the curve $y = e^{-x^2}$ and above the x-axis is rotated about the y axis for $-a \le x \le a$ to form a solid as shown below.



(i) Divide the resulting solid into cylindrical shells S of radius t as shown in the diagram and show each shell S has an approximate volume given by $\delta V = 2\pi t e^{-t^2} \delta t$, where δt is the thickness of the shell.

Solution

$$\delta V = 2\pi rh \ \delta t$$
$$= 2\pi (t) (e^{-t^2}) \ \delta t$$
$$= \delta V = 2\pi t e^{-t^2} \ \delta t$$

Correct Solution For partial answer

2 1

(ii) Hence calculate the volume of the solid.

Solution

$$V = \lim_{\delta t \to 0} \sum_{0}^{a} 2\pi t e^{-t^{2}} \delta t$$
$$= \pi \int_{0}^{a} 2t e^{-t^{2}} dt$$
$$= -\pi \int_{0}^{a} -2t e^{-t^{2}} dt$$
$$= -\pi \left[e^{-t^{2}} \right]_{0}^{a}$$
$$= \pi \left(1 - e^{-a^{2}} \right)$$

2 Correct Solution1 For some attempt to integrate

(iii) What is the limiting value of the volume of the solid as $a \rightarrow \infty$?

Solution

As $a \to \infty$, $e^{-a^2} \to 0$ So $\lim_{a \to \infty} \pi \left(1 - e^{-a^2} \right) = \pi$ 2Correct Solution
For some attempt to integrate

Question 7.

(15 marks) Use a SEPARATE writing booklet.

(a) Let
$$I_n = \int_0^1 (1-x^2)^n dx$$
.
(i) Show by using integration by parts $I_n = \frac{2n}{2n+1} I_{n-1}$ for $n = 0, 1, 2, 3, ...$

Solution

$$I_{n} = \int_{0}^{1} (1-x^{2})^{n} dx = \int_{0}^{1} 1 \cdot (1-x^{2})^{n} dx$$

$$= \left[x (1-x^{2})^{n} \right]_{0}^{1} - \int_{0}^{1} x (n) (1-x^{2})^{n-1} (-2x) d :$$

$$= 0 - 2n \int_{0}^{1} -x^{2} (1-x^{2})^{n-1} dx$$

$$= -2n \int_{0}^{1} (1-x^{2}-1) (1-x^{2})^{n-1} dx$$

$$= -2n \int_{0}^{1} (1-x^{2}) (1-x^{2})^{n-1} -1 (1-x^{2})^{n-1} dx$$

$$= -2n \int_{0}^{1} (1-x^{2}) (1-x^{2})^{n-1} -1 (1-x^{2})^{n-1} dx$$

$$= -2n \int_{0}^{1} (1-x^{2})^{n} + 2n \int_{0}^{1} (1-x^{2})^{n-1} dx$$

$$I_{n} = -2n I_{n} + 2n I_{n-1}$$

$$I_{n} = \frac{2n}{2n+1} I_{n-1}$$

$$I_{n} = \frac{2n}{2n+1} I_{n-1}$$

(ii) Hence evaluate
$$\int_{0}^{1} (1 - x^2)^4 dx$$

 I_n

$$I_{n} = \frac{2n}{2n+1}I_{n-1}$$

$$I_{4} = \frac{8}{9}I_{3}$$

$$= \frac{8}{9}\left[\frac{6}{7}I_{2}\right]$$

$$= \frac{8}{9}\left[\frac{6}{7}\right]\left[\frac{4}{5}I_{1}\right]$$

$$= \frac{8}{9}\left[\frac{6}{7}\right]\left[\frac{4}{5}\right]\left[\frac{2}{3}I_{0}\right]$$

$$= \frac{128}{315} \text{ as } I_{0} = \int_{0}^{1}1dx = 1$$

$$3 \quad \text{Correct Solution}$$

$$2 \quad \text{For using recurrence without evaluating last integral}$$

$$1 \quad \text{For some evidence of correct procedure}$$

- A special dish is designed by rotating the region bounded by the curve $y = 2\cos x$ ($0 \le x \le 2\pi$) (b) and the line y = 2 through 360° about the y axis.
 - i) Use the method of cylindrical shells to show that the volume of the dish is given by

$$4\pi\int_{0}^{2\pi}x(1-\cos x)dx.$$

Solution

Each cylindrical shell has height h=2-y and radius *x*.

$$\delta V = 2\pi r h \,\delta x$$

$$\delta V = 2\pi x \left(2 - y\right) \delta x$$

$$\delta V = 2\pi x \left(2 - 2\cos x\right) \delta x$$

Volume of dish =
$$\lim_{dx \to 0} \sum_{x=0}^{2\pi} 2\pi x \left(2 - 2\cos x\right) \delta x$$

$$= 4\pi \int_{0}^{2\pi} x \left(1 - \cos x\right) dx$$

Correct Solution 3 For showing $\lim_{x\to 0} \sum_{x=1}^{2\pi} 2\pi x (2-2\cos x) \delta x$ 2 For showing $\delta V = 2\pi x (2 - y) \delta x$ 1

$$V = 4\pi \int_{0}^{2\pi} x \left(1 - \cos x\right) dx$$

$$V = 4\pi \int_{0}^{2\pi} x dx - 4\pi \int_{0}^{2\pi} x \cos x dx$$

$$V = 4\pi \left[\frac{x^{2}}{2}\right]_{0}^{2\pi} - 4\pi \left\{\left[x \sin x\right]_{0}^{2\pi} - \int_{0}^{2\pi} \sin x dx\right\}\right\}$$

$$V = 4\pi \left[\frac{x^{2}}{2} - x \sin x - \cos x\right]_{0}^{2\pi}$$

$$V = 4\pi \left[\frac{4\pi^{2}}{2} - 0 - 1 - (0 - 0 - 1)\right]$$

$$V = 8\pi^{3} units^{3}$$

$$3 \quad \text{Correct Solution}$$

$$2 \quad \text{For showing } 4\pi \left[\frac{x^{2}}{2} - x \sin x - \cos x\right]_{0}^{2\pi}$$

$$1 \quad \text{For showing } 4\pi \left[\frac{x^{2}}{2}\right]_{0}^{2\pi} - 4\pi \left\{\left[x \sin x\right]_{0}^{2\pi} - \int_{0}^{2\pi} \sin x dx\right\}$$

(c) The polynomial P(x) is given by $P(x) = 2x^3 - 9x^2 + 12x - k$, where k is real. Find the range of values for k for which P(x) = 0 has 3 real roots.

Solution

 $P(x) = 2x^3 - 9x^2 + 12x - k$ will have 3 real roots when P(x) has turning points on either side of the x axis.

1

Finding turning points:

$$P'(x) = 6x^{2} - 18x + 12$$

$$x^{2} - 3x + 2 = 0$$

$$(x - 2)(x + 1) = 0$$

$$x = 2, -1$$

$$y = 4 - k, 5 - k$$

If turning points are on opposite sides $y_1y_2 < 0$

(4-k)(5-k) < 04 < k < 5

3 Correct Solution

2 For finding the turning points and $y_1y_2 < 0$

For finding the turning points

(a) Use integration by parts to find $\int \sin^{-1} x \, dx$.

Solution

$$\int \sin^{-1} x \, dx = x \sin^{-1} x - \int x \cdot \frac{1}{\sqrt{1 - x^2}}$$
$$= x \sin^{-1} x - \int x \left(1 - x^2\right)^{-\frac{1}{2}}$$
$$= x \sin^{-1} x + \sqrt{1 - x^2} + C$$

3 Correct Solution 2 For finding $x \sin^{-1} x - \int x \cdot \frac{1}{\sqrt{1 - x^2}}$ 1 For finding one part of the IBP e.g. $x \sin^{-1} x$

$$x\sin^{-1}x + \sqrt{1 - x^{2}} + C \qquad \text{as} \quad x(1 - x^{2})^{-\frac{1}{2}} = \int -f'(x)f(x)$$

(b) (i) Use De Moivre's Theorem to show that $\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$

Solution

Let $z = \cos \theta + i \sin \theta$

$$z^{4} = (\cos\theta + i\sin\theta)^{4}$$

= $\cos^{4}\theta + 4\cos^{3}\theta i\sin\theta + 6\cos^{2}\theta i^{2}\sin^{2}\theta + 4\cos\theta i^{3}\sin^{3}\theta + i^{4}\sin^{4}\theta$
= $\cos^{4}\theta + 4\cos^{3}\theta i\sin\theta - 6\cos^{2}\theta \sin^{2}\theta - 4\cos\theta i\sin^{3}\theta + \sin^{4}\theta$
= $\cos^{4}\theta - 6\cos^{2}\theta \sin^{2}\theta + \sin^{4}\theta$ + $4\cos^{3}\theta i\sin\theta - 4\cos\theta i\sin^{3}\theta$

Also by De Moivre's theorem

$$z^{4} = (\cos \theta + i \sin \theta)^{4}$$
$$= \cos 4\theta + i \sin 4\theta$$

Equating real parts

$$\cos 4\theta = \cos^{4} \theta - 6\cos^{2} \theta \sin^{2} \theta + \sin^{4} \theta$$

$$= \cos^{4} \theta - 6\cos^{2} \theta (1 - \cos^{2} \theta) + (\sin^{2} \theta) (\sin^{2} \theta)$$

$$= \cos^{4} \theta - 6\cos^{2} \theta + 6\cos^{4} \theta + (1 - \cos^{2} \theta) (1 - \cos^{2} \theta)$$

$$= 8\cos^{4} \theta - 8\cos^{2} \theta + 1$$

3	Correct Solution
2	For finding $\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$
1	For finding $z^4 = \cos 4\theta + i \sin 4\theta$

(iv) Show that the equation $16x^4 - 16x^2 + 1 = 0$ has roots

$$x_1 = \cos\frac{\pi}{12}, x_2 = -\cos\frac{\pi}{12}, x_3 = \cos\frac{5\pi}{12}, x_4 = -\cos\frac{5\pi}{12}$$

Solution

$$16x^4 - 16x^2 + 1 = 0$$

Let $x = \cos \theta$

 $16\cos^4\theta - 16\cos^2\theta + 1 = 0$

$$2(8\cos^{4}\theta - 16\cos^{2}\theta + 1) - 1 = 0$$

$$2\cos 4\theta - 1 = 0$$

$$\cos 4\theta = \frac{1}{2}$$

$$3 \quad \text{Correct Solution}$$

$$2 \quad \text{For finding } \theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12}, \dots$$

$$1 \quad \text{For finding } 2(8\cos^{4}\theta - 16\cos^{2}\theta + 1) - 1 = 0$$

$$4\theta = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \dots$$
$$\theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12}, \dots$$

Now $x = \cos \theta$

$$x = \cos\frac{\pi}{12}$$
, $x = \cos\frac{5\pi}{12}$, $x = \cos\frac{7\pi}{12} = -\cos\frac{5\pi}{12}$, $x = \cos\frac{11\pi}{12} = -\cos\frac{\pi}{12}$

(iii) Hence show that
$$\cos\frac{\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$$

Solution

Solving $16x^4 - 16x^2 + 1 = 0$ by using quadratics

Let $m = x^2$

$$16m^2 - 16m^2 + 1 = 0$$

$$m = \frac{16 \pm \sqrt{\left(-16\right)^2 - 4.16.1}}{2.16}$$

$$m = \frac{16 \pm 8\sqrt{3}}{32}$$
$$m = \frac{2 \pm \sqrt{3}}{4}$$
$$x^{2} = \frac{2 \pm \sqrt{3}}{4}$$
$$x = \pm \sqrt{\frac{2 \pm \sqrt{3}}{4}}$$

Examining the positive roots as $\cos \frac{\pi}{12} > 0$

$$= \frac{\sqrt{2+\sqrt{3}}}{2} \quad \text{or} \quad \frac{\sqrt{2-\sqrt{3}}}{2}$$

Since
$$\frac{\sqrt{2+\sqrt{3}}}{2} > \frac{\sqrt{2-\sqrt{3}}}{2}$$
 and $\cos\frac{\pi}{12} > \cos\frac{5\pi}{12}$
 $\cos\frac{\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$

(c) P(x) is a polynomial of degree *n* with rational coefficients.

If the leading coefficient is a_0 and $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ are the roots of P(x) = 0 prove that:

$$P'(x) = \frac{P(x)}{x - \alpha_1} + \frac{P(x)}{x - \alpha_2} + \frac{P(x)}{x - \alpha_3} + \dots + \frac{P(x)}{x - \alpha_n}$$

Solution

$$P(x) = a_0(x - \alpha_1)(x - \alpha_2)(x - \alpha_3)...(x - \alpha_n)$$

 $\log_e P(x) = \log_e a_0(x-\alpha_1)(x-\alpha_2)(x-\alpha_3)...(x-\alpha_n)$

$$\log_{e} P(x) = \log_{e} a_{0} + \log_{e} (x - \alpha_{1}) + \log_{e} (x - \alpha_{2}) + \log_{e} (x - \alpha_{3}) + \dots + \log_{e} a_{0} (x - \alpha_{n})$$

$$\frac{P'(x)}{P(x)} = 0 + \frac{1}{(x-\alpha_1)} + \frac{1}{(x-\alpha_2)} + \frac{1}{(x-\alpha_3)} + \dots + \frac{1}{(x-\alpha_n)}$$

$$P'(x) = \frac{P(x)}{x-\alpha_1} + \frac{P(x)}{x-\alpha_2} + \frac{P(x)}{x-\alpha_3} + \dots + \frac{P(x)}{x-\alpha_n}$$

$$4 \qquad \text{Correct Solution}$$

$$3 \qquad \text{For finding}$$

$$P(x) = a_0 (x-\alpha_1) (x-\alpha_2) (x-\alpha_3) \dots (x-\alpha_n)$$