

Girraween High School

2015 Year 12 Trial Higher School Certificate

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks – 100

Section I

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section
- For Section II: Questions 11 16 MUST be returned in clearly marked *separate* sections.
- On each page of your answers, clearly write:
 - > the QUESTION being answered
 - > YOUR NAME
 - > your Mathematics TEACHER'S NAME.
- Start each new question on a NEW PAGE.
- You may ask for extra pieces of paper if you need them.

Multiple choice: Questions 1 - 10: Colour in the correct answer on your multiple choice answer sheet.

Question 1

If z = 1 + 2i and w = 3i - 4 then $z\overline{w} =$ (A) -2 + 11i (B) 2 - 11i (C) 2 - 3i (D) 4 + i

Question 2

If $\overrightarrow{OA} = z$ on the diagram below and |z| > 1 then $\overrightarrow{OB} = \frac{1}{z}$ could be \geq х (A) (B) (C) (D) y у y y B $\rightarrow x$ х \rightarrow х В в

В

х

Question 3 In modulus and argument form, $\sqrt{5} - i\sqrt{15}$ is

(A)
$$2\sqrt{5} \operatorname{cis} - \frac{\pi}{3}$$
 (B) $2\sqrt{5} \operatorname{cis} - \frac{\pi}{6}$ (C) $2\sqrt{5} \operatorname{cis} \frac{\pi}{6}$ (D) $2\sqrt{5} \operatorname{cis} \frac{\pi}{3}$

Question 4

If α , β , and γ are the roots of the polynomial equation $24x^3 - 14x^2 - 11x + 6 = 0$ then the polynomial equation with roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$ is

(A) $6x^3 - 11x^2 - 14x + 24 = 0$ (B) $6x^3 - 5x^2 - 22x + 24 = 0$ (C) $24x^3 - 11x^2 - 14x - 6 = 0$ (D) $6x^3 + 5x^2 - 22x + 24 = 0$

Question 5

The directices of the hyperbola $\frac{y^2}{9} - \frac{x^2}{16} = 1$ are

(A)
$$x = \pm \frac{9}{5}$$
 (B) $y = \pm \frac{9}{5}$ (C) $y = \pm 5$ (D) $x = \pm 5$

Question 6

The foci of the ellipse $\frac{(x-1)^2}{25} + \frac{(y+2)^2}{9} = 1$ are (A) (±4,0) (B) (0,±4) (C) (1,2) and (1,-6) (D) (5,-2) and (-3,-2)

Question 7

$$\int \frac{\cos x}{\cos 2x - 2} dx =$$
(A) $\frac{1}{\sqrt{3}} \tan^{-1}(\sin x) + C$ (B) $\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{\sin x}{\sqrt{3}}\right) + C$ (C) $-\frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{\sin x}{\sqrt{2}}\right) + C$
(D) $-\frac{1}{\sqrt{2}} \tan^{-1}\left(\sqrt{2}\sin x\right) + C$

Question 8

The volume obtained by rotating the area enclosed by $y = 4 - x^2$ and the x axis about the line y = 4

would be obtained using the expression

(A)
$$\pi \int_{-2}^{2} (16 - 8x^2 + x^4) dx$$
 (B) $\pi \int_{-2}^{2} (16 - x^4) dx$
(C) $4\pi \int_{0}^{4} (4 - y) \sqrt{4 - y} dy$ (D) $4\pi \int_{0}^{4} \sqrt{4 - y} dy$

Question 9

A particle is launched vertically upwards. It experiences air resistance which is proportional to the square of its velocity and gravity. Given up is positive, its acceleration could be expressed as:

(A)
$$\ddot{x} = -g - kv^2$$
 (B) $\ddot{x} = g + kv^2$ (C) $\ddot{x} = g - kv^2$ (D) $\ddot{x} = -g + kv^2$

Question 10

Taking into account only tension and gravity in the conical pendulum below, in which the radius of rotation is r, the height is h, the semi-vertical angle is α the tension in the string is T and particle has a mass of m kilograms, the angular velocity w can be obtained using

Question 11 (15 marks) Show all necessary working on a separate page

Marks

÷

(a) If $z = -\sqrt{3} + i$ and w = 1 + i

given that it has a triple root.

	(i)	Find $\frac{z}{w}$ in Cartesian form.	2	
	(ii)	Convert both z and w to modulus/argument form.	3	
	(iii)	Use your answers to (i) and (ii) to find the exact value of $cos \frac{7\pi}{12}$.	1	
(b)	(i) If (2	$(x + iy)^2 = 7 - 24i, x, y$ real find the exact values of x and y.	3	
	(ii) Hence solve the equation $2z^2 + 6z + (1 + 12i) = 0$.			
(c)	c) Solve the polynomial equation $24x^4 + 172x^3 + 390x^2 + 225x - 125 = 0$			

Examination continues on the next page

Marks

4

(a) Find

÷

(i)
$$\int 3x \cos x. dx$$
 2

(ii)
$$\int \frac{1}{1+\sin 2x} dx$$
 2

(iii)
$$\int_0^1 \frac{e^{2x}}{e^{4x}+1} dx$$
 3

(b) (i) Express
$$\frac{7x^2 - 11x + 7}{(3x - 1)(x^2 + 4)}$$
 in the form $\frac{A}{3x - 1} + \frac{Bx + C}{x^2 + 4}$ 3

(ii) Hence find
$$\int \frac{7x^2 - 11x + 7}{(3x - 1)(x^2 + 4)} dx$$
 1

(c)The area enclosed by the curve $y = x^2 - 6x + 10$ and the line y = 5

is rotated around the line x = 6 (See diagram)

Using the method of cylindrical shells, find the volume of the solid of revolution formed by this.

Examination continues on the next page

3

- (a) (i) Show that the equations of the tangent and normal to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \text{ at the point } P(asec\Theta, btan\Theta) \text{ are } bxsec\Theta aytan\Theta = ab$ and $bysec\Theta + axtan\Theta = (a^2 + b^2)sec\Theta tan\Theta$ respectively.
 - (ii) The tangent and normal cut the y axis at M and N respectively (see diagram). 5

Show that MN is a diameter of the circle MSNS'.

- (b) A circular bend at a velodrome (bicycle track) with a radius of 100 metres is banked so that a cyclist riding at 14m/s experiences no friction. A cyclist and bicycle with a combined mass of 80kg are riding around the track. Letting g = 9.8m/s².
 - (i) By resolving forces in the vertical and horizontal directions or otherwise 1 show that the curve is banked at an angle of 11°19′ to the horizontal.

Question (13)(b) continues on the next page

- (ii) The cyclist increases her pace to 15m/s. Show that the lateral friction she 3 experiences is given by F = 180 cos 11°19 80gsin 11°19 and find the value of this friction in Newtons.
- (iii)The maximum value of this friction is 0.1 times the normal force. What is 3the slowest speed the cyclist can ride at without slipping down the slope?

Question 14 (15 marks) Show all necessary working on a separate page

- (a) If $I_n = \int x(lnx)^n dx$ (i) Show that $I_n = \frac{1}{2}x^2(lnx)^n - \frac{1}{2}nI_{n-1}$
 - (ii) Hence find the value of $\int_{1}^{2} x(\ln x)^{2} dx$ 3
- (b) $A(a, 0), P(acos\Theta, bsin\Theta)$ and $Q(acos\alpha, bsin\alpha)$ are located on the ellipse 5 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ so that $\angle PAQ = 90^0$. (see diagram)

Question (14) continues on the next page

Marks

2

Question (14) continued

(c)Two particles A and B of mass M and m respectively with M > mare attached to each end of a light, inelastic string. Particle A hangs directly below a ring at O and particle B rotates in a circle with velocity vm/s at the end of a part of the string which is at an angle of α to the vertical *(See diagram)* The tension is the same through the whole string.

(ii) Find an expression for the radius of rotation in terms of M, m, v and g = 3 (but NOT α).

Examination continues on the next page

Marks

(a) The area enclosed within the circle $x^2 + y^2 = 4$ is rotated around the line x = 5 (See diagram)

- (ii) Find the volume of the *torus* formed.
- (b) A wedge of wood has a circular cross-section at one end and a vertical straight edge at the other end The circle has a radius of 40cm, the straight edge is 80cm long and the length of the wood perpendicular to each end is 3m. (See diagram)

(i) Given that x cm is the distance of each triangular slice vertically 2 up from the centre of the circle, show that the volume of each horizontal triangular slice is given by $\delta V = 300\sqrt{1600 - x^2} \cdot \delta x$

(ii) Find the exact volume of the wedge in cm^3 .

Question (15) continues on the next page

3

3

Question (15) continued

Marks

(i)	Given that the equation of the tangent to the hyperbola	1
	at P is $x + t^2 y = 2ct$, find the coordinates of A and B.	
(ii)	Given that the equation of the normal to the hyperbola	1
	at P is $t^3x - ty = c(t^4 - 1)$ find the coordinates of	

(iii) Show that PA = PB = PC = PD and state why ACBD 3 is a square.

C and D.

Examination continues on the next page

Question 16	(15 marks) Show all necessary working on a separate page	Marks
surfa influ of th surfa	ticle with mass m is fired vertically upwards from the Earth's ce at Um/s . Ignoring air resistance, the particle is under the ence of gravity, which is inversely proportional to the square e distance of the particle from the centre of Earth. At the Earth's ce the force of gravity acting on the particle is mg . If the Earth's s is R :	
(i)	Show that $v^2 = \frac{2gR^2}{x} + U^2 - 2gR$ and find the escape velocity	3
	for Earth in m/s if $R = 6366 km$ and $g = 9.8 m/s^2$.	
(ii)	If $U^2 = gR$ show that the particle reaches a height of R above	1
	the Earth's surface.	
(iii)	Also if $U^2 = gR$ show that the time taken to reach a height of	3
	R above the Earth's surface is given by	
	$t = \int_{R}^{2R} \frac{1}{\sqrt{\frac{2gR^2}{x} - gR}} dx$	
	and find this time in terms of R and g .	
(b) Let α	be a root of the polynomial equation $x^4 + Ax^3 + Bx^2 + Ax + 1 = 0$	
where	$(2+B)^2 \neq 4A^2 \; .$	

- (i) Show that α can not equal 1 or -1. 1
- (ii) Show that $\frac{1}{\alpha}$ is also a root of $x^4 + Ax^3 + Bx^2 + Ax + 1 = 0$. 1

2

- (iii) Show that if both α and $\frac{1}{\alpha}$ are both *multiple* roots of $x^4 + Ax^3 + Bx^2 + Ax + 1 = 0$ then $4B = 8 + A^2$.
- (c) (i) Using DeMoivre's theorem, show that $s3\theta = 4cos^3\theta 3cos\theta$. (ii)Show that $x = 2\sqrt{3}cos$ is a solution to $x^3 - 9x = 9$ if $cos3\theta = \frac{\sqrt{3}}{2}$. 1
 - (iii)Solve $x^3 9x = 9$ giving your solutions to four decimal places. 2

Here endeth the examination !!!

117 Extension 2 Trial Exam 2015 [Girawaan HS] 70rB Solutions/Making Scheme Solutions/Marking Scheme 2018 Q.(1) B (2) B (3) A (4) A (5) B (6) D (7) D (8) C (9) A (10) C (11)(a)(i) = $(\tilde{u}) = 2 cis \frac{577}{2} l$ $W = \sqrt{2cis \frac{\pi}{4}}$ $= -5 + i \times (1 - i)$ 1+i ~(1-i) $(\overline{u}) = 2 cis \frac{5\pi}{6}$ = -5 + 5 + 1JZ cis # 2 2 $+i\left(\frac{1+\sqrt{3}}{2}\right)$ $= \sqrt{2} c_1 s_1 \frac{7\pi}{12}$ Equating real parts of (i) & (iii) $\frac{1-5}{2} = 52 \cos \frac{7\pi}{12}$ 1-3 = cos 17 $(11)(b)(i)(x+iy)^{2} = 7 - 24i$ Solutions to $\frac{z+2ixy-y^2}{2} = 7 - 24i$ (x+iy)2= 7-24: are $x^2 - y^2 = 7.$ (1) $z = \pm \xi_{,y} = \mp 3,$ $(\underline{a}) 2 \underline{z}^2 + 6 \underline{z} + (1 + 12 \underline{i}) = 0$ 2xy = -24 $\Lambda = b^2 - 4ac$ y = -12 (2)6 2- 4x 2x (1+Ri) 28-96 Sub. (Z) in (1). = 4(7-24i) $\frac{1}{\chi^2 - \left(-\frac{12}{3}\right)^2} = 7.$ $z = -b \neq \sqrt{b^2 + 4ac}$ $\frac{x^{2}}{x^{2}} - \frac{i44}{x^{2}} = 7.$ $\frac{x^{2}}{x^{4}} - \frac{144}{x^{2}} = 7z^{2}.$ $= -6 \pm \sqrt{4(7-24i)}$ 2×2 $x^4 - 7x^2 - 144 = 0$ <u>6±2(4-3i)</u> 4 $(\pi^2 - 16)(x^2 + 9) = 0$ x= = 4 as x real. $\frac{2}{2} = \frac{1 - 3}{2} - \frac{7 + 3}{2}$ $1fx = 4, y = -\frac{12}{4} = -3$ $-\frac{3}{2}=-4, y=3$

V12 Ext 2 Third 2015 p.2 Q. (11) (1) P(2) = 24x4 + 172x3 + 390x2 + 225x - 125 = 0 Has TRIPLE $\frac{P(l_{x}): 96x^{3} + 516x^{2} + 780x + 225 = 0 \text{ has DOUBIC.}}{P(l_{x}) 288x^{2} + 1032x + 780} = 0 \text{ has single } 1$ $24x^{2} + 86x + 65 = 0 \text{ has single noot.} 1$ Root must be $p \rightarrow pa$ factor of 125& 65 $\rightarrow = 5$. $q \rightarrow qa$ factor of 24 $\rightarrow = 123461224$. $P(5) = 47 250 \Rightarrow not a root.$ $P(-5) = -12 375 \Rightarrow not a root.$ P(-5)= ⇒rotaroot. $P(\frac{5}{2}) =$ 6 500 $\frac{-\frac{5}{2}}{-\frac{3}{2}(2x+5)} = 0 \frac{3}{15} \frac{1}{\alpha} \frac{1}{\beta(2x+5)} \frac{1}{15} \frac{1}{\alpha} \frac{1}{15} \frac{1}{15}$ P(-==) $\frac{By}{\alpha}\frac{\beta}{\beta}\frac{\beta}{\beta}\frac{\beta}{\delta}=\frac{\alpha}{\alpha}$ $\left(\frac{-5}{2}\right)^{3} \cdot \frac{5}{2} = -125$ $-\frac{125}{8}5 = -\frac{125}{24}$ = 1 | F Solutions to P(x) = O are $\frac{-5}{2}, \frac{-5}{2}, \frac{-5$

Y12 Ext 2 Trial <u>p.</u>3 Q. (12)(a)(i) $(3x\cos x) dx \qquad u=3x \quad V=\sin x$ $u'=3 \quad v'=\cos x$ By Ju. dv. dx = uv - Ju. du . dx 3x cosx.dz = 3xsinx - (3sinx.dz 1 Ī = 3xsinx + 3cosx +C. 1 - dx 1+sin2x <u>(ū)</u> etting t= tan x = <u>sec x</u> = 1+t² dx = dx.dt.dx 1+sin Zz <u>Z</u>E 1+62 $\frac{1}{1+t^2+2t}$ (1+6) -a $+ \subset$ -144 +0 <u>--</u>

 $Q(1Z)(a)(\overline{u}) \begin{pmatrix} 1 & 2x \\ e & dx \\ 0 & e^{4x} + 1 \end{pmatrix}$ $u = e^{2x} du = 2e^{2x} dx$ $\frac{u = e^{2}}{\left(\frac{1}{2} + 1\right) \cdot du}$ $\frac{1}{2}\left(\frac{1}{\tan\left(u\right)}\right)^{2}$ $= \frac{1}{7} \left(\frac{1}{1} \tan \left(\frac{2}{1} \right) - \frac{1}{1} \tan \left(\frac{2}{1} \right) \right) = \frac{1}{7}$ $=\frac{1}{2}\left(\frac{1}{1}\left(\frac{1}{1}\left(\frac{1}{1}\right)-\frac{1}{4}\right)\right)$ = 0-3254 (4SF) ($(b)(i) \frac{7x^{2} - 11x + 7}{(3x - 1)(x^{2} + 4)} = A + Bx + C$ $7x^2 - 1/x + 7 = A(x^2 + 4) + (Bx + c)(3x - 1)(1)$ Sub. in $z = \frac{1}{3}$ in(1). $\frac{3}{4} = \frac{3}{4}A$: A = 1. Sub. x=0, A=1 in (1) <u>= 4, ~ (</u>_____ $\frac{-3}{5ub. \ x=1, A=1, C=-3 \ in \ Cl)}$ $3' = 1 \times 5 + (B-3) \times 2$ = 2(B-3)A=1, B=2, C= -3.

 $\frac{(12)(b)(\tilde{u})}{(3x-1)(x^2+4)} = \frac{p^{-2}}{(3x-1)(x^2+4)}$ $\frac{1}{3x-1} + \frac{2x}{x^2+4} - \frac{3}{x^2+4} = \frac{3}{x^2+4}$ $ln(3x-1)+ln(x^2+q)-3+an^{-1}(x)+c$ = = /n $3\sqrt{3x-1}(x-1)$ $\frac{3}{2} + \frac{-1}{2} \left(\frac{x}{2}\right)$ Jx_ $5V = 2\pi (6-x)(5-y) 5x |$ $As y = x^{2} - 6x + 10$ $5-y = 5 - (x^{2} - 6x + 10)$ $= 6x - x^{2} - 5.$ $= 2\pi \left[\frac{1}{4} x^{4} - 4x^{2} + \frac{3}{4} + \frac{3}{2} - \frac{3}{2} \right]$ $i = 5V = 2TT(6-x)(6x - x^2 - 5) - 5x$ ~32 $x^{3} - 17x^{2} + 4(x - 30)$ =<u>6477</u> c.u. 1 $V = limit = \frac{1}{2} \left[\frac{x^2}{x^2 - 12x^2 + 4(x - 3x^2)} \right]$ $V = 277 \left(\frac{5}{(x^2 - 12x^2 + 41x - 30)} \right) dx$ V = 277

 $\frac{z^2 - z^2}{z^2 - z^2}$ Q (13)(a) (i) $\frac{2\chi}{\alpha^2}$ $\frac{2y}{b^2} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{b^2}{a^2y}$ At Plaseco, btano) $= \frac{b^2 a_{sec} \theta}{a^2 tan 0}$ mot timpat= bsec [mofnormal= - ata & A b sector : Equation of tangent at P: Equation of tangent at P: Equation of tangent at P: Equation (x-asect) y=b: x - btan G = bsec (x-asect) y=b: atan O Equation of normal at P: tan O = -atan O (x - asec O) bsec O $\frac{bysec\Theta - bsec\Theta \tan \Theta = -axtan \Theta}{+a^2 sec\theta \tan \theta}$ aytan = abtan = bx sec = absec ? ab (sec 0 - tan 0) = bx sec - aytan 0 ·bysect taxtant = (a2+62)eectan =bxsec @ -aytan @ or bx sect -aytan 0 = ab. $O_{\gamma} = \frac{2}{L} + \frac{1}{L} + \frac{1}{L$ NT (ū) Plasect, 6tml) Slae,0 and) Co-ordinates of -MS by sec $\Theta = (a^2 + b^2) sec \Theta + a_n \Theta$. $\left(\frac{a+b}{b}\right)$ tan Θ ĿĿ y tant PTO \rightarrow

(13)()(~))(~) m MS Ξ tant ae_ Ξ aetane. $m_{NS} = -(a^2 + b^2) + an \Theta$ ae - (a²+b²)tant aeb. = mMS×mNS = b actual - 62+62)tart -(a a² $\frac{-(a^2+b)}{a^2(1+\frac{b}{2})}$ ļ $= -\frac{(a^{2}+b^{2})}{(a^{2}+b^{2})}$ = As m MS xmNJ = -1, MS INJ > 5 must be on a semicircle with MN as diameter [L in semicircle = 90]. Similarly m MS × nNS $-(a+b^2)$ a^2e^2 = -1. '. 5' must also be on the circle [L'on semicircle = 90]

80éj X Resolving horizontally: Nsinx = 20x14² (1 vertically: Ncesa = 20g T show for make $+an \propto =$ <u>14</u>² 1009 = 11019 (ii) ð Frint 19 80y horizontally: Nsin11°19 + Fros 11°19 = 30×15 Resolving Nsin 11 19 + Fos 11 19 = 120 (1) & cos 11 19 Resolving vertically: Noos = 30g (Z) sin 11/19 + Fcos - 1199 sin11°19 cos 11°19'- $\frac{1}{1 = 180\cos(11^{\circ}/9^{1}/3)}$ - Fsin 11 19 = 30gsin11 19 Neos/19/5/11/19/-+ sin 2/10/9/) F (cos 11°19 = 130 cos 11 ___F = 180 cosil °19'-= 22.65 Newt 309 sin 11°191 F

Q(3)(1)-11º19! Resolving vertically: Ncos 11°19'+0-1Nsin11°19'= 30g 20g | cos 11° 19' +0.1 sin 11° 19' =10 $\& F = \frac{3g}{\cos 11^{\circ}19 + 0.1 \sin 11^{\circ}19^{1}}$ Resolving horisontally Nsin 11°19 - 0:11 $- 0! N cos 11° 19' = 20 \times V^2 1$ 100 $\frac{1}{N(\sin 11^{\circ}19' - 0.1\cos 11^{\circ}19')} = \frac{4v^2}{5.-\frac{5}{2}}$ $\frac{5}{4} \left(\sin 11^{\circ} 19^{\circ} - 0 \cdot 1 \cos 11^{\circ} 19^{\circ} \right)$) 304 x cos il "19 + 0.1sia 11/19 = 1 9-207 --=V. Slowest speed before going down slope = 9.807 m/s.

 $\frac{p.(0)}{(14)(a)(i)T} = \left\{ x(hx)^n \cdot dx \quad u = [hx]^n \quad v = \frac{1}{2}x^2 \right\}$ $\frac{u' = n(hx)^{n-1}}{x} \quad v' = x$ By Su.dv.dx = uv - Sv.du.dx $\int \frac{\left(2\pi \left(\ln x\right)^{n}\right)^{n}}{\left(2\pi \left(\ln x\right)^{n}-\left(\frac{n}{2}\times \left(\ln x\right)^{n-1}\right)^{n-1}\right)^{n}} dx$ $I_n = \frac{1}{2} x^2 \left[\ln x \right]^n - \frac{n}{2} I_{n-1}$ $(\tilde{u})T_{o} = \int_{1}^{2} x dx$ $T_{z} = \left[\frac{1}{2}z^{2}(\ln z)^{2}\right] - \frac{2}{2}T_{1}$ =[=z] $=2[ln2]^2 - 2ln2 + \frac{3}{4}$ = <u>3</u>, = 0.3246 [45F]. $\frac{Z_{1}}{Z_{1}} = \left[\frac{1}{2}x^{2}hx\right]_{1}^{2} - \frac{1}{2}T_{0}$ $= 2h2 - \frac{3}{4}$

Q.(14)(6) Placerty bring) A (a, O, 1 QCOSK - brinz mPA =being mQA =a-acos0 · bsinG = a (1-cost) LPAQ =90°, mPA mQA = -ぇ bsin e bsina ļ, a(1-cosG) all-cosa b²sin O sin x cos 0)(1-ros $-\frac{72}{a}$ (1-cost)(1-cosx 5 $\frac{1}{2} =$ 0 tanz atting ty = 2÷1 li+ $-1-t_1^2 + (1-t_1^2)(1-t_2^2)$ Ľ 1+62 (1++2)(1++2) 1++12 $\frac{\frac{4t_{1}t_{2}}{(1+t_{1}^{2})(1+t_{2}^{2})}}{(1+t_{1}^{2})(1+t_{2}^{2})}$ xnumerator & denominator by (1+4)(1+5)

Q.(14)(b)(cont).-<u>b²</u> = (1+t₁²)(1+t₂²)--<u>2</u> $(1-t_2^2)(1+t_1^2)-(1-t_1^2)(1+t_2^2)$ + (1-+,2)(1-+;) 4+1+2 $\frac{2}{2} - \frac{1}{2} + \frac{2}{2} + \frac{2}{2} - \frac{2}{2} + \frac{2}$ 44, +2 $4t_{1}^{2}t_{2}$ = 4442 ; = -<u>b</u>2 $\left(\frac{\theta}{\Xi}\right)$ tan (x) US req uned (c)(i)Resolving vertically at B Tcosx = mg(1) A:T = Mg(2)<u>}</u>8 Z $(1) - (2) \cos \alpha = \frac{m}{M}$ Mg Sub. (2)2(3) in -(1)'. (ii) Resolving horizontally at B; $\frac{MgJM^2-m^2}{M} = \frac{mv}{r}$ sin x $= m_{y}^{2}$ (1) $= \frac{mv}{c}$ 9 JM 2-m2 Note: cosx=mM 77 VM2m2)2 sinx= (7) 2 T = Mg

Q (15)(4)(i) $r_{3} = 5 + \sqrt{4 - y^{2}}$ $\delta V = \pi \left[\frac{z}{r_2} - \frac{z}{r_1} \right] = \delta y$ $= \pi \left[\left(5 + J 4 - y^{2} \right)^{2} - \left(5 - J 4 - y^{2} \right)^{2} \right] \cdot \delta y$ $= 77 \left[20 \sqrt{4 - y^2} \right] \sqrt{5y}$ $= 2077 \sqrt{4 - y^2} \quad \text{Sy as required.}$ 5V limit 25 J4 z . Jy $\frac{\text{etting } 5y \rightarrow 0}{\sqrt{2} \sqrt{4 - y^2} \cdot dy}$ V ž 4-y2-dy gives area of semicircle, r=2. = 27 20TT × 2TT 3 4077 & square units. 1 Ξ

14 (15)(6) (2) DDistance AB $\sqrt{40^{2}-x}$ Ζ. A = 51600----ک By Pythagoras). Areq ACBD + Bh D $= \frac{1}{2} \times 2 \sqrt{1600 - x^2} \times 300$ 300cm -2 = 300 1600-2 С J600-22 JIGO, B , SV = 300 JIG00-x Sx. limit 5 300 51600-2- 52 Sx=0 x=0 Las = 40 to = 0 only gives Vof top half of shape). (ū) <u>V = 2</u>× Letting $\delta x \rightarrow 0$ 600 $\int 40 \sqrt{1600 - x^2} dx$ 3 V = 600 $\times TT \times 40^2 (as \int 40 \sqrt{1600 - x^2} dx gives$ $orea of <math>\frac{1}{4} circle$. = 600 x gives V = 240.000 TT3

Q.(15)(.) _____ B (Zet;0)- $(i) = \pm t^2 = 2ct$ Finding A: Finding B: ty =2ct $\frac{2c}{E} = \frac{1}{7} \frac{B}{B} = (-2ct_{0})$ $A = (0, \frac{2\xi}{\xi})$ $(\bar{u}) + \bar{x} - ty = c(t^{4} - c) + c(t^{2} - tx) = c(t^{2})$ $(t^{2}-1)(t^{2}+1)^{Cary=x^{2}}D(t^{3}+tx)$ $= c \left(t^{2} - 1 \right) \left(t^{2} + 1 \right) \left(a_{s,y} - x \right)$ $= c(t^2 - i)(t^2 + i)$ $\pm (t^{2} - l)_{x} = c(t^{2} - l)(t^{2} + l) \qquad \pm (t^{2} + l)$ $C = \left(\underbrace{c(t^2+t)}_{t}, \underbrace{c(t^2+t)}_{t} \right) \xrightarrow{t} D = \left(\underbrace{c(t^2-t)}_{t}, \underbrace{c(t^2-t)}_{t} \right)$ (iii) Showing PA = PB; Showing PC=PD Midpoint AB = /2ct 2c Midpoint CD $= \underbrace{ \left(\underbrace{c\left(\frac{t^{2}+1}{2t} + \frac{t^{2}-1}{2t} \right)}_{2t} \underbrace{c\left(\frac{t^{2}+1}{2t} - \frac{t^{2}+1}{2t} \right)}_{2t} \right)$ $=\left(ct,\frac{c}{E}\right)$ $= \begin{pmatrix} 2ct^2 & 2c \\ 2t & 5 & 2t \end{pmatrix}$ $= (ct & 5 & \frac{c}{t} \end{pmatrix}$ - - PA = PB as Pis midpoint AB. . PC= PD as P is midpoint CD. PTO->

<u>16</u>_____ Q. (15)(c) (TTT) [cost - Showing PA = PC $PA = (ct \ 0)^{2} + (c - 2c)^{2} \quad PC = \left[\frac{c(t^{2}+1) - ct}{t}\right]^{2} + \left[\frac{c(t^{2}+1) - c}{t}\right]^{2}$ $= \int_{C^2} \frac{C^2 t^2 + \frac{c^2}{t^2}}{t^2}$ $= \underbrace{\begin{pmatrix} ct^2 + c - ct^2 \\ t \end{pmatrix}^2}_{t} + \underbrace{\begin{pmatrix} ct^2 + c - c \\ t \end{pmatrix}^2}_{t}$ $= \frac{c^{2}t^{4}+c^{2}}{t^{2}}$ $= \int \frac{(c)^2}{(t)^2} + \left(\frac{c^2}{t}\right)^2$ $= \int \frac{c^2(t^4H)}{t^2}$ $= \underbrace{\begin{array}{c} c^2 + c^2 + 4 \\ t^2 + t^2 \end{array}}_{t^2}$ $= \frac{c}{\epsilon} + \frac{\epsilon^4 + l}{\epsilon}$ $= \frac{c}{c} \int 1 + \frac{c}{c} 4$ $A_{S} PA = PC = PA.$ $& PA = PB, PC = PD \qquad 3$ PA = PB = PC = PD. . . As CD 1 AB [normal 1 tangent]. ACBD is a parallelogan (diagonals bisect each other] a rectangle [diagonals =] a rhombus (diagonals]] · ACBD is a SQUARE.

 $\frac{p.17}{p} = \frac{mb}{x^2}$ when x = R. _____Q.(16)(a)(i) ···· $j \cdot mg = \underline{mk}$ $\frac{p^2}{R^2}$ $gR^{2} = k$ $gR^{2} = k$ $\frac{gR^{2}}{z} = \frac{gR^{2}}{z}$ $\frac{d(1v^{2})}{dx(z^{2})} = \frac{gR^{2}}{z^{2}}$ $\frac{d}{dx}\left(\frac{v^2}{v^2}\right) = \frac{-Z_q R^2}{x^2}$ $\frac{z}{v^2} = \frac{2qR^2}{2} + C$ As v = U when x = R, $U^2 = \frac{2\alpha R^2}{R} + C$ $\frac{U^{2}}{U^{2}} = \frac{12}{2gR} + C$ $\frac{U^{2}}{U^{2}-2gR} = C$ $\frac{U^{2}}{V^{2}} = \frac{2gR^{2} + U^{2} - 2gR}{\pi}$ Note: As 29R² > 0 for all positive x $\frac{1}{\sqrt{2}} = \frac{2gR}{2} + \frac{1}{\sqrt{2}} = \frac{2gR}{2} + \frac{1}{\sqrt{2}} = \frac{2gR}{2} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt$ $\Rightarrow \sum_{k=1}^{\infty} ESCAPE \ nelacity = 2gR \\ = 2 \times 9.8 \times 6366000$ = 4170 m/s [45F] $(\bar{u}) U^2 = -gR^2 V^2 = \frac{2gR^2}{\kappa} + gR - \frac{2gR}{\kappa}$ $V^2 = \frac{2gR^2}{2} - gR$

p.18 **. .** Q.(16)(a) [ū) [cont] Particle => v = O Find x. $0 = \frac{2gR^2}{x} - gR.$ $gR = \frac{ZgR^2}{R}$ $gR_{2L} = 2gR^2$ $\infty \equiv ZR.$: x=2R is R ABOVE Earth's surface Las Earth's surface is z = R). $(\overline{u}) v^2 = \underline{2gR}^2 - gR$ $V = \frac{2gR^2 - gR}{2}$ $\frac{dx}{dt} = \frac{2gR^2}{x} - gR$ $\frac{dt}{dx} = \frac{1}{\frac{2gR}{x} - gR}$ Time taken to get from x=R to x=2R is $\int_{R}^{2R} \frac{1}{x^{2} - gR} \frac{dx}{x^{2}} dx$ $\int_{R}^{2R} \frac{z}{2gR^{2}z - gRz^{2}} dz (l)$ i _____ $\frac{1}{\sqrt{\frac{2R}{\sqrt{2Rx-x^2}}}} dx$ Note: $2Rx - x^{2} = R^{2} - (z - R)^{2}$

. <u>Q.(16)(a)(iii)(cont)</u> $t = 1 \begin{pmatrix} 2R \\ -\frac{\chi}{\sqrt{gR}} \\ R \end{pmatrix} \frac{d\chi (l)}{\sqrt{R^2 - (\chi - R)^2}}$ Letting $z - R = Rsin \Theta$ $z = R(sin \Theta + I)$ $dz = Rcos \Theta \cdot d\Theta$. $2R = R(sin \Theta + I) \qquad R = R(sin \Theta + I)$ $2R = R(sin \Theta + I) \qquad K = R(sin \Theta + I)$ $2 = sin \Theta + I \qquad I = sin \Theta + I$ $I = sin \Theta \Rightarrow \Theta = \frac{T}{2} \qquad sin \Theta = \Theta \Rightarrow \Theta = O$ $\frac{T}{2}$ $\frac{T}{2} \qquad \frac{T}{2} \qquad \frac{R(sin \Theta + I)}{\sqrt{gR}} \qquad R\cos \Theta d\Theta \qquad 1$ $\sqrt{gR} \qquad \sqrt{R^2 - R^2 sin^2 \Theta}$ $= \frac{1}{\sqrt{\frac{2}{\sqrt{R}}}} \left(\frac{\frac{\pi}{2} R(\sin\theta + 1)}{R\cos\theta} \frac{R\cos\theta}{R\cos\theta} \right) \frac{1}{\sqrt{\frac{2}{\sqrt{R}}}} \frac{1}{\sqrt{R}}} \frac{1}{\sqrt{\frac{2}{\sqrt{R}}}} \frac{1}{\sqrt{\frac{2}{\sqrt{R}}}} \frac{1}{\sqrt$ $= \int \frac{\pi}{\sqrt{2}} \frac{\pi}{R(\sin\theta + 1) \cdot d\theta} = \int \frac{\pi}{\sqrt{2}} \frac{\pi}{\sin\theta + 1 \cdot d\theta}$ $= \int_{\frac{R}{2}}^{\frac{R}{2}} \left(-\cos\theta + \theta \right)^{\frac{R}{2}}$ $= \int_{\frac{R}{2}}^{\frac{R}{2}} \left(-\cos\frac{\pi}{2} + \frac{\pi}{2} + \cos\theta - \theta \right)$ $= \int_{\frac{R}{2}}^{\frac{R}{2}} \left(-\frac{\pi}{2} + \frac{\pi}{2} + \cos\theta - \theta \right)$ $= \int_{\frac{R}{2}}^{\frac{R}{2}} \left(-\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \cos\theta - \theta \right)$ $= \int_{\frac{R}{2}}^{\frac{R}{2}} \left(-\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{$

<u>p. 20</u> $Q.(16)(b)(c) \neq \alpha = 1,$ I + A + B + A + I = 02A + B = -22A = -(2+B) $4A^{2} = (2+B)^{2}$ which is not possible. $\frac{l}{f} \propto = -l_{3}$ l = -A + B - A + l = 0 $\begin{array}{rcl} - & 2+B & = 2A \\ & \left(24B\right)^2 & = 4A^2 \end{array}$ which is not possible. (ii) If a is a not then a 4+A a +Ba +Aa +I =0 Sub x = 1 in equation: $\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1$ $= \frac{1}{\alpha^4} \left(1 + A\alpha + B\alpha^2 + A\alpha^3 + \alpha^4 \right)$ = 1 × Oas & is a root $x = \frac{1}{x}$ is also a root. (iii) If & & 1 are both MULTIRE mots then $2\alpha + \frac{2}{\alpha} = -A(1)$ from roots 1 at a time. $\alpha^2 + 1 + 4 = B(2)$ from roots 2 at a time. $\begin{array}{c} 48 = 4x^{2} + 4 + 16 \cdot \left[8 + A^{2} \right] \\ 7^{2} = 8 + \left(2x + \frac{2}{x} \right)^{2} \\ = 8 + \frac{4}{x^{2}} + 8 + 4 \\ 3x^{2} = -\frac{4}{x^{2}} \end{array}$ $= \frac{4}{\lambda^2} + \frac{4}{\tau^2} + \frac{16}{\tau^2} = 48 \text{ as required.}$

 $\frac{p \cdot 2}{Q \cdot (16)(c \times 1)(\cos \Theta + i \sin \Theta)^{2}} = \cos 3\Theta + i \sin 3\Theta \text{ using De Moirre}}$ $\cos^{3}\Theta + 3i \cos^{2}\Theta \sin \Theta - 3\cos^{2}\Theta \sin^{2}\Theta - i \sin^{2}\Theta = \cos 3\Theta + i \sin^{2}\Theta.$ Equating real parts $\cos 3\Theta = \cos^3\Theta - 3\cos\Theta\sin^2\Theta$ [$=\cos^7\Theta - 3\cos\Theta(1-\cos^2\Theta)$ $=4\cos^2\Theta - 3\cos\Theta$ as required. $(\overline{u}) \ 1f = 2\sqrt{3} \ \cos \theta \ \Rightarrow \ sub \ in \ x^{3} - 9x = 9$ $= (2\sqrt{3} \ \cos \theta)^{3} \ 9x \ 2\sqrt{3} \ \cos \theta = 9$ $\frac{-24\sqrt{3}\cos^{2}\Theta - 18\sqrt{3}\cos\Theta}{\frac{+}{6}6\sqrt{3}}$ $\frac{\div}{6}\overline{5}$ $4\cos^{3}\Theta - 3\cos\Theta = \overline{5}$ $2 \cdot 1$ $\cos^{3}\Theta = \frac{\sqrt{3}}{2}$ - $H \cos 3\theta = \frac{13}{2}$, $x = 2\sqrt{3}\cos\theta$ is a solution $\frac{7}{7} + \sigma \frac{2}{x^3 - 9x} = 9.$ $(\overline{u}) \quad Solutions + \sigma \frac{3}{x^3 - 9x} = 9$ $are \quad z = 2\sqrt{3}\cos\theta \quad where \quad \cos 3\theta = \sqrt{2}$ z. $1f \cos 3\Theta = \sqrt{3}$ $3\Theta = \frac{77}{6} \frac{1177}{6} \frac{1377}{1377} \frac{2377}{2377} \frac{2577}{3577} \frac{3577}{6} \\ \Theta = \frac{777}{18} \frac{1177}{1877} \frac{11377}{2577} \frac{2577}{2577} \frac{3577}{1} \\ \frac{18}{18} \frac{1$ $x = 2\sqrt{3}\cos{\frac{\pi}{8}} = 3.4115.$ <u>Roots of</u> $or = 2\sqrt{3} \cos \frac{1177}{18} = -1.1848.7$ $x^3 - 9x = 9$ are $\frac{07}{2} = 2.5 \cos \frac{1311}{1311} = -2.2267 = y = 3.4115 \qquad (4-decimile) \\ \frac{12}{8} = -2.2267 = -1.1848 \qquad Places \\ \frac{12}{8} = -2.2267 = -2.2267 = -2.2267 = -2.2267 \\ = -2.2267 = -2.2267 = -2.2267 \\ = -2.2267 = -2.2267 = -2.2267 \\ = -2.2267 = -2.2267 \\ = -2.2267 = -2.2267 \\ = -2.2267 = -2.2267 \\ = -2.2267 = -2.2267 \\ = -2.2267 = -2.2267 \\ = -2$