

Girraween High School

2015 Year 12 Trial Higher School Certificate

Mathematics Extension 2

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section
- For Section II: Questions 11-16 MUST be returned in clearly marked separate sections.
- On each page of your answers, clearly write:
$>$ the QUESTION being answered
$>$ YOUR NAME
$>$ your Mathematics TEACHER'S NAME.
- Start each new question on a NEW PAGE.
- You may ask for extra pieces of paper if you need them.

Multiple choice: Questions 1-10: Colour in the correct answer on your multiple choice answer sheet.

Question 1

If $z=1+2 i$ and $w=3 i-4$ then $z \bar{w}=$
(A) $-2+11 i$
(B) $2-11 i$
(C) $2-3 i$
(D) $4+i$

Question 2

If $\overrightarrow{O A}=\begin{gathered}z \\ y\end{gathered}$ on the diagram below and $|z|>1$ then $\overrightarrow{O B}=\frac{1}{z}$ could be

(A)
(B)

(C)
(D)

Question 3 In modulus and argument form, $\sqrt{5}-i \sqrt{15}$ is
(A) $2 \sqrt{5} \mathrm{cis}-\frac{\pi}{3}$
(B) $2 \sqrt{5}$ cis $-\frac{\pi}{6}$
(C) $2 \sqrt{5}$ cis $\frac{\pi}{6}$
(D) $2 \sqrt{5} \mathrm{cis} \frac{\pi}{3}$

Question 4

If α, β, and γ are the roots of the polynomial equation $24 x^{3}-14 x^{2}-11 x+6=0$ then the polynomial equation with roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$ is
(A) $6 x^{3}-11 x^{2}-14 x+24=0$
(B) $6 x^{3}-5 x^{2}-22 x+24=0$
(C) $24 x^{3}-11 x^{2}-14 x-6=0$
(D) $6 x^{3}+5 x^{2}-22 x+24=0$

Question 5

The directices of the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$ are
(A) $x= \pm \frac{9}{5}$
(B) $y= \pm \frac{9}{5}$
(C) $y= \pm 5$
(D) $x= \pm 5$

Question 6

The foci of the ellipse $\frac{(x-1)^{2}}{25}+\frac{(y+2)^{2}}{9}=1$ are
(A) $(\pm 4,0)$
(B) $(0, \pm 4)$
(C) $(1,2)$ and $(1,-6)$
(D) $(5,-2)$ and $(-3,-2)$

Question 7

$\int \frac{\cos x}{\cos 2 x-2} \cdot d x=$
(A) $\frac{1}{\sqrt{3}} \tan ^{-1}(\sin x)+C$
(B) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\sin x}{\sqrt{3}}\right)+C$
(C) $-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sin x}{\sqrt{2}}\right)+C$
(D) $-\frac{1}{\sqrt{2}} \tan ^{-1}(\sqrt{2} \sin x)+C$

Question 8

The volume obtained by rotating the area enclosed by $y=4-x^{2}$ and the x axis about the line $y=4$

DIAGRAM
NOT TO
SCALE
would be obtained using the expression
(A) $\pi \int_{-2}^{2}\left(16-8 x^{2}+x^{4}\right) \cdot d x$
(B) $\pi \int_{-2}^{2}\left(16-x^{4}\right) \cdot d x$
(C) $4 \pi \int_{0}^{4}(4-y) \sqrt{4-y} \cdot d y$
(D) $4 \pi \int_{0}^{4} \sqrt{4-y} \cdot d y$

Question 9

A particle is launched vertically upwards. It experiences air resistance which is proportional to the square of its velocity and gravity. Given up is positive, its acceleration could be expressed as:
(A) $\ddot{x}=-g-k v^{2}$
(B) $\ddot{x}=g+k v^{2}$
(C) $\ddot{x}=g-k v^{2}$
(D) $\ddot{x}=-g+k v^{2}$

Question 10

Taking into account only tension and gravity in the conical pendulum below, in which the radius of rotation is r, the height is h, the semi-vertical angle is α the tension in the string is T and particle has a mass of m kilograms, the angular velocity w can be obtained using

(A) $w=\sqrt{\frac{h}{r}}$
(B) $w=\sqrt{\frac{r}{h}}$
(C) $w=\sqrt{\frac{g}{h}}$
(D) $w=\sqrt{\frac{h}{g}}$

Question 11 (15 marks) Show all necessary working on a separate page

Marks

(a) If $z=-\sqrt{3}+i$ and $w=1+i$
(i) Find $\frac{z}{w}$ in Cartesian form. 2
(ii) Convert both z and w to modulus/argument form. 3
(iii) Use your answers to (i) and (ii) to find the exact value of $\cos \frac{7 \pi}{12} . \quad 1$
(b) (i) If $(x+i y)^{2}=7-24 i, x, y$ real find the exact values of x and y. 3
(ii) Hence solve the equation $2 z^{2}+6 z+(1+12 i)=0$. 2
(c) Solve the polynomial equation $24 x^{4}+172 x^{3}+390 x^{2}+225 x-125=0$ given that it has a triple root.
(a) Find
(i) $\int 3 x \cos x \cdot d x \quad 2$
(ii) $\int \frac{1}{1+\sin 2 x} \cdot d x$ 2
(iii) $\int_{0}^{1} \frac{e^{2 x}}{e^{4 x}+1} \cdot d x \quad 3$
(b) (i) Express $\frac{7 x^{2}-11 x+7}{(3 x-1)\left(x^{2}+4\right)}$ in the form $\frac{A}{3 x-1}+\frac{B x+C}{x^{2}+4} \quad 3$
(ii) Hence find $\int \frac{7 x^{2}-11 x+7}{(3 x-1)\left(x^{2}+4\right)} \cdot \mathrm{dx} \quad 1$
(c)The area enclosed by the curve $y=x^{2}-6 x+10$ and the line $y=5$ is rotated around the line $x=6$ (See diagram)

Using the method of cylindrical shells, find the volume of the solid of revolution formed by this.
(a) (i) Show that the equations of the tangent and normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $P(a \sec \theta, b \tan \theta)$ are $b x \sec \theta-a y \tan \theta=a b$ and bysec $\theta+a x \tan \theta=\left(a^{2}+b^{2}\right) \sec \Theta \tan \theta$ respectively.
(ii) The tangent and normal cut the y axis at M and N respectively (see diagram). 5

Show that $M N$ is a diameter of the circle $M S N S^{\prime}$.
(b) A circular bend at a velodrome (bicycle track) with a radius of 100 metres is banked so that a cyclist riding at $14 \mathrm{~m} / \mathrm{s}$ experiences no friction. A cyclist and bicycle with a combined mass of 80 kg are riding around the track. Letting $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(i) By resolving forces in the vertical and horizontal directions or otherwise 1 show that the curve is banked at an angle of $11^{\circ} 19^{\prime}$ to the horizontal.

Question (13)(b) continues on the next page
(ii) The cyclist increases her pace to $15 \mathrm{~m} / \mathrm{s}$. Show that the lateral friction she 3 experiences is given by $F=180 \cos 11^{\circ} 19-80 \sin 11^{\circ} 19$ and find the value of this friction in Newtons.
(iii)The maximum value of this friction is 0.1 times the normal force. What is the slowest speed the cyclist can ride at without slipping down the slope?

Question 14 (15 marks) Show all necessary working on a separate page

(a) If $I_{n}=\int x(\ln x)^{n} \cdot d x$
(i) Show that $I_{n}=\frac{1}{2} x^{2}(\ln x)^{n}-\frac{1}{2} n I_{n-1}$
(ii) Hence find the value of $\int_{1}^{2} x(\ln x)^{2} . d x$
(b) $A(a, 0), P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \alpha, b \sin \alpha)$ are located on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ so that $\angle P A Q=90^{\circ}$. (see diagram)

Show that $\tan \frac{\alpha}{2} \tan \frac{\theta}{2}=-\frac{b^{2}}{a^{2}}$
(c)Two particles A and B of mass M and m respectively with $M>m$ are attached to each end of a light, inelastic string. Particle A hangs directly below a ring at O and particle B rotates in a circle with velocity vm / s at the end of a part of the string which is at an angle of α to the vertical (See diagram) The tension is the same through the whole string.

(i) Show that $\cos \alpha=\frac{m}{M}$. $\quad 2$
(ii) Find an expression for the radius of rotation in terms of M, m, v and $g \quad 3$ (but NOT α).
(a) The area enclosed within the circle $x^{2}+y^{2}=4$ is rotated around the line $x=5$ (See diagram)

DIAGRAM
NOT TO
SCALE
(i) By taking strips perpendicular to the axis of rotation show

2

3
(b) A wedge of wood has a circular cross-section at one end and a vertical straight edge at the other end The circle has a radius of 40 cm , the straight edge is 80 cm long and the length of the wood perpendicular to each end is 3 m .
(See diagram)

(i) Given that $x \mathrm{~cm}$ is the distance of each triangular slice vertically up from the centre of the circle, show that the volume of each horizontal triangular slice is given by
$\delta V=300 \sqrt{1600-x^{2}} . \delta x$
(ii) Find the exact volume of the wedge in cm^{3}.
(c)The point $P\left(c t, \frac{c}{t}\right)$ lies on the rectangular hyperbola $x y=c^{2}$
where $t \neq \pm 1$. The tangent to the hyperbola at P intersects the coordinate axes at A and B. The normal to the hyperbola at P
intersects the axes of symmetry of the hyperbola at C and D.
(see diagram)
(a) A particle with mass m is fired vertically upwards from the Earth's surface at $U \mathrm{~m} / \mathrm{s}$. Ignoring air resistance, the particle is under the influence of gravity, which is inversely proportional to the square of the distance of the particle from the centre of Earth. At the Earth's surface the force of gravity acting on the particle is $m g$. If the Earth's radius is R :
(i) Show that $v^{2}=\frac{2 g R^{2}}{x}+U^{2}-2 g R$ and find the escape velocity for Earth in m / s if $R=6366 \mathrm{~km}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(ii) If $U^{2}=g R$ show that the particle reaches a height of R above the Earth's surface.
(iii) Also if $U^{2}=g R$ show that the time taken to reach a height of R above the Earth's surface is given by
$t=\int_{R}^{2 R} \frac{1}{\sqrt{\frac{2 g R^{2}}{x}-g R}} . d x$
and find this time in terms of R and g.
(b) Let α be a root of the polynomial equation $x^{4}+A x^{3}+B x^{2}+A x+1=0$ where $(2+B)^{2} \neq 4 A^{2}$.
(i) Show that α can not equal 1 or -1 .
(ii) Show that $\frac{1}{\alpha}$ is also a root of $x^{4}+A x^{3}+B x^{2}+A x+1=0$.
(iii) Show that if both α and $\frac{1}{\alpha}$ are both multiple roots of

$$
x^{4}+A x^{3}+B x^{2}+A x+1=0 \text { then } 4 B=8+A^{2}
$$

(c) (i) Using DeMoivre's theorem, show that $s 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
(ii) Show that $x=2 \sqrt{3} \cos$ is a solution to $x^{3}-9 x=9$ if $\cos 3 \theta=\frac{\sqrt{3}}{2}$.
(iii)Solve $x^{3}-9 x=9$ giving your solutions to four decimal places.

Yiz Extension 2
Trial Exam 2015 [Girraween H5] Solutions/Macking Schene

$$
\begin{aligned}
& \text { Solutions/Matking Schene } n^{0-18} \\
& Q .(1) B(2) B(3) A(4) A(5) B(62 D(7) D(8) C(9) A(10) C
\end{aligned}
$$

(11)(a) (i)

$$
w
$$

$$
=\frac{-\sqrt{3}+i}{1+i} \times(1-i)
$$

$$
\begin{aligned}
(i i) z & =2 \operatorname{cis} \frac{5 \pi}{6} \\
w & =\sqrt{2} \operatorname{cis} \frac{\pi}{4} i
\end{aligned}
$$

$$
=\frac{-\sqrt{3}+i \sqrt{3}+i+1}{2} \quad 2 \quad(\pi i) \quad=\frac{2 \operatorname{cis} \frac{\sqrt{\pi}}{6}}{\sqrt{2} \operatorname{cis} \frac{\pi}{4}}
$$

$$
=\left(\frac{1-\sqrt{3}}{2}\right)+i\left(\frac{1+\sqrt{3}}{2}\right) 1 \quad=\sqrt{2} \operatorname{cis} \frac{7 \pi}{12}
$$

Equating real puts of (i) \& (iii)

$$
\begin{aligned}
& \frac{1-\sqrt{3}}{2}=\frac{1}{2} \cos \frac{7 \pi}{12} \\
& \frac{1-\sqrt{3}}{2 \sqrt{2}}=\cos \frac{\pi}{12}
\end{aligned}
$$

$$
\begin{aligned}
& (11)(b)(i)(x+i y)^{2}=7-24 i \\
& x^{2}+2 i x y-y^{2}=7-24 i \\
& x^{2}-y^{2}=7 . \\
& 2 x y=-24 \\
& \therefore y=-\frac{12}{x}(2)
\end{aligned}
$$

Sab. (2) in (1):

$$
\begin{gathered}
x^{2}-\left(-\frac{12}{x}\right)^{2}=7 . \\
x^{2}-\frac{144}{x^{2}}=7 . \\
x^{4}-144=7 x^{2} . \\
x^{4}-7 x^{2}-144=0 \\
\left(x^{2}-16\right)\left(x^{2}+9\right)=0 \\
x= \pm 4 \text { as } x \text { read. } \\
1 f x=-4, y=-\frac{12}{4}=-3 \\
x=-4, y=3 .
\end{gathered}
$$

Solutions to

$$
\begin{aligned}
& (x+i y)^{2}=7-24 i a r e \\
& x= \pm 4, y=73 . \\
& (i \bar{i}) 2 z^{2}+6 z+(1+12 i)=0 . \\
& \begin{aligned}
& \Delta=b^{2}-4 a c \\
&=6^{2}-4 \times 2 \times(1+1 i) \\
& 28-96 i \\
&=4(7-24 i) \\
& \therefore z=\frac{-6 \pm \sqrt{b^{2}-4 a c}}{2 a} \\
&=\frac{-6 \pm \sqrt{4(7-24 i)}}{2 \times 2} \\
&=\frac{6 \pm 2(4-3 i)}{4} \\
& z=\frac{1-3 i}{2} \frac{-7+3 i}{2}
\end{aligned}
\end{aligned}
$$

Yin Ext 2 Trial 2015 p 2
Q. (II) (c)

$$
\begin{aligned}
& \text { C) } \begin{aligned}
& P(x)= 24 x^{4}+172 x^{3}+390 x^{2}+22 \sqrt{x}-125=0 \\
& \text { Hes } \operatorname{Telpet}
\end{aligned} \\
& \begin{aligned}
P^{\prime}(x): 96 x^{3}+516 x^{2}+780 x+225=0 & \text { has overt } \\
P^{\prime}(x) 288 x^{2}+1032 x+780 & =0 \text { has single. } \\
24 x^{2}+86 x+65 & =0 \text { has single root. } 1
\end{aligned}
\end{aligned}
$$

Root must be $\frac{p}{q} \rightarrow p$ a factor of $125 \& 65 \rightarrow=5$.

$$
\begin{aligned}
& P(5)=47250 \rightarrow \text { not a root. } \\
& P(-5)=-12375 \rightarrow \text { not a root. } \\
& P\left(\frac{5}{2}\right)=6500 \rightarrow \text { not a root. } \\
& P\left(-\frac{5}{2}\right)=0,1 \\
& \rightarrow(2 x+5) \text { is a factor of } P(x) .
\end{aligned}
$$

$B y \alpha \beta y \delta=\frac{a}{a}$

$$
\begin{aligned}
\left(\frac{-5}{2}\right)^{3} \times \delta & =\frac{-125}{24} \\
\frac{-125 \delta}{8} & =\frac{-125}{24} \\
\delta & =\frac{1}{3} 1
\end{aligned}
$$

Solution to $P(x)=0$ are

$$
-\frac{5}{2},-\frac{5}{2},-\frac{5}{2}, \frac{1}{3}
$$

Y/2 Ext 2 Trial p. 3
Q. (i2)(a)li) $\int 3 x \cos x \cdot d x \quad \begin{array}{ll}u=3 x & v=\sin x \\ u^{\prime} & =3\end{array} \quad v^{\prime}=\cos x$

$$
\begin{aligned}
\text { By } \int u \cdot \frac{d v}{d x} \cdot d x & =u v-\int v \cdot d u \cdot d x \\
\int 3 x \cos x \cdot d x & =3 x \sin x-\int 3 \sin x \cdot d x \\
& =3 x \sin x+3 \cos x+C
\end{aligned}
$$

(ii) $\int \frac{1}{1+\sin 2 x} \cdot d x$

$$
\begin{gathered}
\text { Letting } t=\tan x \\
\frac{d t}{d x}=\sec ^{2} x \\
=1+t^{2} \\
\therefore d x=\frac{d x}{d t} \cdot d t \\
=\frac{1}{1+t^{2}} \cdot d t \\
\therefore \int \frac{1}{1+\sin 2 x} \cdot d x \\
\left.=\int \frac{1}{1+\frac{2 t}{1+t^{2}}} \cdot \frac{1}{1+t^{2}} \cdot d t\right] \\
=\int \frac{1}{1+t^{2}+2 t} \cdot d t \\
=\int \frac{1}{(1+t)^{2}} \cdot d t \\
= \\
=\frac{1}{1+t}+C \\
=\frac{1}{1+\tan x}+C
\end{gathered}
$$

$$
\begin{aligned}
& \text { Q. (12) (u) (iui) } \int_{0}^{1} \frac{e^{2 x}}{e^{4 x}+1} \cdot d x \\
& u=e^{2 x} d u=2 e^{2 x} \cdot d x \\
&=\frac{1}{2} \int_{0}^{1} \frac{1}{e^{4 x}+1} \cdot 2 e^{2 x} \cdot d x \\
&=\frac{1}{2} \int_{u=e^{0} u^{2}+1}^{u=e^{2}} \frac{1}{0^{2}} 1 \cdot d u \\
&=\frac{1}{2}\left[\tan ^{-1}(u)\right]_{1}^{e^{2}} \\
&=\frac{1}{2}\left[\tan ^{-1}\left(e^{2}\right)-\tan ^{-1}(1)\right] 3 \\
&=\frac{1}{2}\left[\tan ^{-1}\left(e^{2}\right)-\frac{\pi}{4}\right] \\
&=0.3254[45 F]
\end{aligned}
$$

$$
\text { (b) (i) } \begin{aligned}
\frac{7 x^{2}-11 x+7}{(3 x-1)\left(x^{2}+4\right)} & =\frac{A}{3 x-1}+\frac{B x+C}{x^{2}+4} \\
\therefore 7 x^{2}-11 x+4 & \equiv A\left(x^{2}+4\right)+(B x+C)(3 x-1) \text { (1) } \\
\operatorname{Sub} \cdot i n & =\frac{1}{3} \text { in (1) } \\
\frac{37}{9} & =\frac{37}{9} A \\
A & =1 .
\end{aligned}
$$

Sub. $x=0, A=1$ in (1)

$$
\begin{aligned}
7 & =4 \\
\text { Sub. } x=1, \frac{-3}{A=1} & =C \\
3, & =-3 \text { in }(1)! \\
-2 & =2(B-3) \\
2 & =B \\
\therefore A=1, B=2, C & =-3 .
\end{aligned}
$$

$$
\begin{aligned}
(12)(b)(-i & \int \frac{p x^{2}-11 x+7}{(3 x-1)\left(x^{2}+4\right)} d x \\
& =\int \frac{1}{3 x-1}+\frac{2 x}{x^{2}+4}-\frac{3}{x^{2}+4} \cdot d x \\
& =\frac{1}{3} \ln (3 x-1)+\ln \left(x^{2}+4\right)-\frac{3}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C \\
& =\ln \left[\sqrt[3]{3 x-1}\left(x^{2}+4\right)\right]-\frac{3}{2} \tan ^{-1}\left(\frac{x}{2}\right)+c
\end{aligned}
$$

C)

$$
\begin{aligned}
\text { As } y & =x^{2}-6 x+10 & \\
5-y & =5-\left(x^{2}-6 x+10\right) & =2 \pi\left[\frac{1}{4} x^{4}-4 x^{3}+\frac{41}{2} x^{2}-30 x f\right. \\
& =6 x-x^{2}-5 & =2 \pi\left[\frac{75}{4}--\frac{53}{4}\right] \\
\therefore \delta V & =2 \pi(6-x)\left(6 x-x^{2}-5\right) \cdot \sqrt{x} & =2 \pi \times 32 \\
& \left.=2 \pi\left[x^{3}-12 x^{2}+41 x-30\right], \sqrt{5}\right] & =64 \pi c \cdot 4 . \\
\therefore V & =\text { linit } 2 \pi \sum\left(x^{3}-12 x^{2}+41 x-34\right) \sqrt{2} \mid &
\end{aligned}
$$

$$
\begin{aligned}
& p .6 \\
& Q(13)(a)(i) \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 . \\
& \frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

At $P(\operatorname{asec} \theta, \theta \tan \theta)$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{b^{2} a \sec \theta}{a^{2} \cdot \tan 0} \tag{3}
\end{equation*}
$$

$$
\text { mof tampat }=\frac{b \sec \theta}{\alpha \tan \theta}
$$

in of nocmal $=\frac{-a \tan \theta}{b \sec \theta}$.
\therefore Equation of targent at P :

$$
-a y \tan \theta-a b \tan ^{2} \theta=b x \sec \theta-a b \sec ^{2} \theta
$$

$$
a b\left(\sec ^{2} \theta-\tan ^{2} \theta\right)=b x \sec \theta-a y \tan \theta
$$

at $\quad=b x \sec \theta-a y \tan \theta \cdot\left[\begin{array}{l}\text { bece } \theta \operatorname{tax} \tan \theta=\left(a^{2}+b^{2}\right) \sec \theta \tan \end{array}\right.$

$$
\operatorname{ar} b x \sec \theta-a y \tan \theta=a b
$$

(\bar{u})

Co-ordinates of M :

$$
\begin{aligned}
-a y \tan \theta & =a b \\
y & =\frac{-b}{\operatorname{Tan} \theta}
\end{aligned}
$$

Co -ordinates of N :

$$
\begin{aligned}
b y \sec \theta & =\left(a^{2}+b^{2}\right) \sec \theta \tan \theta \\
y & =\left(\frac{a^{2}+b^{2}}{b^{2}}\right) \tan \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { (13)(C)(a) nMs } \\
& =\frac{\frac{b}{\tan \theta}}{a \operatorname{en}} \\
& =\frac{b}{a \tan \theta} . \\
& m N S=\frac{-\frac{\left(a^{2}+b^{2}\right)}{b} \tan \theta}{a e} \\
& =-\frac{\left(a^{2}+b^{2}\right) \tan \theta}{a e b} \\
& \text { mMS } \times m N S=\frac{b}{a \operatorname{con} E} \times-\frac{\left(a^{2}+b^{2}\right) \tan }{a+t} \\
& =\frac{-\left(a^{2}+b^{2}\right)}{a^{2} e^{2}} \\
& =\frac{-\left(a^{2}+b^{2}\right)}{a^{2}\left(1+\frac{b^{2}}{a^{2}}\right)} \\
& =\frac{-\left(a^{2}+6^{2}\right)}{\left(a^{2}+b^{2}\right)} \\
& =-1 \text {. } \\
& \text { Asm NS xmNJ }=-i \text {, MS } \perp N J
\end{aligned}
$$

$\rightarrow 5$ must be on a semicirde with MN as diamote $\left[L\right.$ in semicirde $\left.=90^{\circ}\right]$.
Similarly

$$
\begin{aligned}
& m M S^{\prime}=\frac{-b}{\operatorname{aetan} \theta} \quad 2 m N S^{\prime}=\frac{\left(a^{2}+b^{2}\right) \tan \theta}{a \tan } \\
& m M S^{\prime} \\
&=\frac{-\left(a^{2}+b^{2}\right)}{a^{2} e^{2}} \\
&=-1 .
\end{aligned}
$$

$\therefore 5^{\prime}$ must also be or the cirde $\left(L\right.$ oin semicircle $\left.=90^{\circ}\right)$.

Resolving horizontally: $\left.\begin{array}{rl}N \sin x & =\frac{30 \times 14^{2}}{100} \\ \text { (1) } & \vdots \\ N_{\cos x}= & =30\end{array}\right]$

$$
\tan \alpha=\frac{14^{2}}{100}
$$

(ii)

Resolving horizontally: $N \sin 11^{\circ} 19^{\prime}+F \cos 11^{\circ} 19^{\prime}=\frac{80 \times 15^{2}}{100}$

$$
\therefore N \sin 11^{\circ} 19^{\prime}+E \cos 11^{\circ} 19^{\prime}=180 \text { (1) } 4 \cos 10^{\circ} 19^{\prime}=(3)
$$

Resolving vertically: $N \cos 11^{\circ} 19^{\prime}-F \sin 11^{\circ} 19^{\prime}=80_{g}(2)+\sin 11^{\circ} 19^{\prime}=(4)$

$$
\begin{aligned}
& \text { Nsinl10 } 19^{\prime} \cos \left(11^{\circ} 19^{\prime}+F \cos ^{2} 11^{\circ} 19^{\prime}=180 \cos 11^{\circ} 19^{\prime}(3)\right. \\
& \begin{aligned}
N \cos 11^{\circ} 19^{\prime} \sin 11^{\circ} 9^{\prime}-F \sin ^{2} 11^{\circ} 19^{\prime} & =30 \sin \sin 11^{\circ} 19^{\prime}(4) \\
F\left(\cos ^{2} 11^{\circ} 19^{\prime}+\sin ^{2} 11^{\circ} 19^{\prime}\right) & =180 \cos 11^{\circ} 19^{\prime}-80 \sin 11^{\circ} 19^{\prime} \\
F & =180 \cos 11^{\circ} 19^{\prime}-80 \mathrm{~g} \sin 11^{\circ} 9^{\prime} 11 \\
\therefore F & =22.65 \text { Newtons }
\end{aligned}
\end{aligned}
$$

Note: $F=0.1 \mathrm{~N}$.
Rescluing vertically: $N_{\text {ces }} 11^{0} 19^{\prime}+0.1$ Nrinil $11^{\prime}=30 \mathrm{~g}$.

$$
\begin{aligned}
& \therefore N=\frac{80 g}{\cos 11^{\circ} 19^{\prime}+0.1 \sin 11^{\circ} 19^{\prime}} \div \frac{3 g}{\cos 11^{\circ} 19^{\prime}+0 \cdot 1 \sin 11^{\circ} 19!} \div 1 \\
& \& F=
\end{aligned}
$$

Resolving horisontally:

$$
\begin{aligned}
& \left.N \sin 11^{\circ} 19^{\prime}-0.1 N \cos 11^{\circ} 19^{\prime}=\frac{20 \times v^{2}}{100 .} \right\rvert\, \\
& \therefore N\left(\sin 11^{\circ} 19^{\prime}-0 \cdot 1 \cos 11^{\circ} 19^{\prime}\right)=\frac{4 v^{2}}{5}=-\frac{5}{4} \\
& \frac{J}{4}\left(\sin 11^{\circ} 19^{\prime}-0.1 \cos 11^{\circ} 19^{\prime}\right) \times \frac{30}{\cos 11^{\circ} 19^{\prime}+0 \cdot 1 \sin 111^{\circ} 9^{\prime}}=v^{2} \\
& 9.207 \ldots==
\end{aligned}
$$

Slowest spaed bifere going down slope

$$
=9.807 \mathrm{~m} / \mathrm{s} .
$$

$$
\begin{aligned}
(14)(a)(i) I_{n}=\int x[\ln x]^{n} \cdot d x \quad u & =[\ln x]^{n} \\
u^{\prime} & =\frac{n[\ln x]^{n-1}}{x} \\
& v^{\prime}=\frac{1}{2} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { By } \int u \cdot \frac{d v}{d x} \cdot d x=u v-\int v \cdot d u \cdot d x \\
& \quad \int x[\ln x]^{n} d x \\
& =\frac{1}{2} x^{2}[\ln x]^{x}-\int \frac{n}{2} x[\ln x]^{n-1} \cdot d x \\
& \begin{aligned}
I_{n} & =\frac{1}{2} x^{2}[\ln x]^{n}-\frac{n}{2} I_{n-1} \\
\hline(\ddot{u}) I_{0} & =\int_{1}^{2} x \cdot d x
\end{aligned} \\
& =\left[\frac{1}{2} x^{2}\right]_{1}^{2}
\end{aligned}
$$

Q.(14)(6)
p.ll

$$
\begin{aligned}
m P_{A} & =\frac{-b \sin \theta}{a-a \cos \theta} \quad m Q A=\frac{-b \sin x}{a(1-\cos x)} \\
& =\frac{-b \sin \theta}{a(1-\cos \theta)},
\end{aligned}
$$

If $\angle P A Q=90^{\circ}$, mPA $\therefore m Q A=-1$.

$$
\begin{aligned}
\therefore \quad \frac{-b \sin \theta}{a(1-\cos \theta)} \times \frac{-b \sin x}{a(1-\cos x)}=-1 . \\
\frac{\frac{b^{2} \sin \theta \sin x}{a^{2}(1-\cos \theta)(1-\cos x)}}{}=-1 \\
\therefore \frac{-\frac{b^{2}}{a^{2}}}{}=\frac{(1-\cos \theta)(1-\cos x)}{\sin \theta \sin x .}
\end{aligned}
$$

Letting $t_{1}=\tan \frac{\theta}{2}, t_{2}=\tan \frac{\alpha}{2}$

$$
\begin{aligned}
& \frac{-\frac{b^{2}}{a^{2}}}{}=\frac{\left(1-\frac{1-t_{1}^{2}}{1+t_{1}^{2}}\right)\left(1-\frac{1-t_{2}^{2}}{1+t_{2}^{2}}\right)}{\frac{2 t_{1}}{\left(1+t_{1}^{2}\right)} \times \frac{2 t_{2}^{2}}{\left(1+t_{2}^{2}\right)}} 1 \\
&=\frac{1-\frac{1-t_{2}^{2}}{1+t_{2}^{2}}=\frac{1-t_{1}^{2}}{1+t_{1}^{2}}+\frac{\left(1-t_{1}^{2}\right)\left(1-t_{2}^{2}\right)}{\left(1+t_{1}^{2}\right)\left(1+t_{2}^{2}\right)}}{\frac{\left(1+t_{1}^{2}\right)\left(1+t_{2}^{2}\right)}{2}}
\end{aligned}
$$

xnumerator \& denominatorby

$$
\left(1+t_{1}^{2}\right)\left(1+t_{2}^{2}\right)
$$

p. 12

$$
\begin{aligned}
& \text { Q. (14)(t) [-cont]. } \\
& \begin{aligned}
\frac{-b^{2}}{a^{2}}=\left(1+t_{1}^{2}\right)\left(1+t_{2}^{2}\right)-\left(1-t_{2}^{2}\right)\left(1+t_{1}^{2}\right)-\left(1-t_{1}^{2}\right)\left(1+t_{2}^{2}\right) \\
+\left(1-t_{1}^{2}\right)\left(1-t_{2}^{2}\right)
\end{aligned}
\end{aligned}
$$

as required.
(c) (i)

Resolving vertically at B

$$
T \cos x=m g(c)
$$

$$
\text { at } A_{i} T \quad=M_{g}(2)
$$

$$
(1) \div(2) \cos x=\frac{m}{M}
$$

(ii) Resolving horizontally at Bi

Sub. (2) $2(3)$ in (1):

$$
\begin{aligned}
\frac{\Delta g \sqrt{M^{2}-m^{2}}}{\Delta M} & =\frac{m v^{2}}{r} 1 \\
g^{\sqrt{M^{2}-m^{2}}} & =\frac{m v^{2}}{r} \\
r \quad & =\frac{m v^{2}}{g \sqrt{M}^{2}-m^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =1+t_{2}^{2}+t_{1}^{2}+t_{1}^{2} t_{2}^{2}-\left(1+t_{1}^{2}-t_{2}^{2}-t_{1}^{2} t_{2}^{2}\right)-\left(1+t_{2}^{2}-t_{1}^{2}-t_{1}^{2} t_{2}^{2}\right) \\
& +\left(1-x_{2}^{2}-t_{1}^{2}+x_{1}^{2} t_{2}^{2}\right) . \\
& 4 t_{1} t_{2} \\
& =\frac{4 t_{1}^{2} t_{2}^{2}}{4 t_{1} t_{2}} \\
& \frac{-t^{2}}{\theta^{2}}=\quad t_{1} t_{2} \\
& =\frac{b^{2}}{a^{2}}=\tan \left(\frac{\theta}{2}\right) \tan \left(\frac{x}{2}\right)
\end{aligned}
$$

p. 13

Q (15) (a) (i)

$$
r_{2}=5+x
$$

As $x^{2}+y^{2}=4$.

$$
x^{2}=4-y^{2}
$$

$$
-x= \pm \sqrt{4-y^{2}} .
$$

$$
\left.\therefore r_{1}=5-\sqrt{4-y^{2}}, r_{2}=5+\sqrt{4-y^{2}}\right] 1
$$

$$
\begin{aligned}
\delta V & =\pi\left[r_{2}^{2}-r_{1}^{2}\right] \quad \delta y \\
& =\pi\left[\left(5+\sqrt{4-y^{2}}\right)^{2}-\left(5-\sqrt{4-y^{2}}\right)^{2}\right] \cdot \delta y \\
& \left.=\pi\left[20 \sqrt{4-y^{2}}\right] \cdot \delta y\right] \quad 1
\end{aligned}
$$

$\delta V=20 \pi \sqrt{4-y^{2}}$, \sqrt{y} as requised.

$$
\text { (ï) } \begin{aligned}
V= & \operatorname{limit}_{\delta y \rightarrow 0} 20 \sum_{y=-2}^{y} \sqrt{4-y^{2}} \cdot \delta y \\
V= & 20 \pi \int_{-2}^{\text {Letting }} \delta \sqrt{4 y \rightarrow 0} \sqrt{4-y^{2}} d y \\
& \rightarrow \text { As } \int_{-2}^{2} \sqrt{4-y^{2}}-d y \text { gives area of semicircle, } r=2 . \\
V & =2 \pi \\
V & =40 \pi^{2} \quad \times 2 \pi
\end{aligned}
$$

(ii) $V=2 \dot{x} \operatorname{limit}_{x \rightarrow 0} \sum_{x=0}^{x=40} 300 \sqrt{1600-x^{2}}, ~ J_{x}$ Las $x=40$ to to gives oof top half ot shape?.

$$
\begin{aligned}
V & =600 \int_{0}^{40} \sqrt{1600-x^{2}} \cdot d x \quad 3 \\
& =600 \times \frac{1}{4} \times \pi \times 40^{2} \text { [as } \int_{0}^{40 \sqrt{1600-x^{2}} \cdot d x \text { gives }} \begin{aligned}
1 & \text { area of } \frac{1}{4} \text { circle]. } \\
V & =240000 \pi \mathrm{~cm}^{3}
\end{aligned}, \quad l
\end{aligned}
$$

$$
(i) x+t^{2} y=2 c t
$$

Finding A:
Finding- B:

$$
\begin{array}{ll}
t^{2} y & =2 c t \\
y & =\frac{2 c}{t} \quad \forall \\
A=\left(0, \frac{2 c}{t}\right)
\end{array} \quad \frac{B=(2 c t, 0)}{} \quad l
$$

(ii) $t^{3} x-t y=c\left(t^{4}-1\right)$
c: $t^{3}-t x=c\left(t^{2}-1\right)\left(t^{2}+1\right)^{(\cos y=x)} D \cdot t^{3} x+t x=c\left(t^{2}-1\right)\left(t^{2}+1\right) C a s y==x$,

$$
t\left(t^{2}-1\right) x=c\left(t^{2}-1\right)\left(t^{2}+1\right) \quad t\left(t^{2}+1\right) x=c\left(t^{2}-1\right)\left(t^{2}+1\right)
$$

$$
x=\frac{c\left(t^{2}+1\right)}{t}
$$

$$
x=\frac{c\left(t^{2}-1\right)}{t}
$$

$$
C=\left(\frac{c\left(t^{2}+1\right)}{t}, \frac{c\left(t^{2}+1\right)}{t}\right) \xrightarrow{t} D=\left(\frac{c\left(t^{2}-1\right)}{t}-\frac{t\left(t^{2}-1\right)}{t}\right)
$$

(ii) Showing $P A=P B$:

Midpoint $A B=\left(\frac{2 c t}{2}, \frac{2 c}{2 t}\right)$

$$
\begin{aligned}
& =\left(c t, \frac{c}{t}\right) \\
& =p
\end{aligned}
$$

$$
\therefore P A=P B
$$

as P is midpoint $A B$.

Showing $P C=P D$
Midpoint Co

$$
\begin{aligned}
&=\left(\frac{c\left(t^{2}+1+t^{2}-1\right]}{2 t}, \frac{c\left(t^{2}+1-t^{2}+1\right)}{2 t}\right) \\
&=\left(\frac{2 c t^{2}}{2 t}, \frac{2 c}{2 t}\right) \\
&=(c t \\
&\left.=P, \frac{c}{t}\right) \\
& P T Q \rightarrow P C=P D \text { as } P \text { is midpoint } c 0 .
\end{aligned}
$$

Q. $(15)(C)(i u)$ (cent Showing PA $=P C$

$$
\begin{aligned}
P A & =\sqrt{(c t \quad 0)^{2}+\left(\frac{c}{t}-\frac{2 c}{t}\right)^{2}} \\
& =\sqrt{\frac{c^{2} t^{2}+\frac{c^{2}}{t^{2}}}{\frac{c^{2} t^{4}+c^{2}}{t^{2}}}} \\
& =\sqrt{\frac{c^{2}\left(t^{4}+1\right)}{t^{2}}} \\
& =\frac{c}{t} \sqrt{t^{4}+1}
\end{aligned}
$$

As $\quad P A=P C$
$\& P A=P B, P C \equiv P D$

$$
P A=P B=P C=P D .
$$

As $C D \quad 1$ AB [normal 1 tangent]. $A C B D$ is a parallelogram Cdiagonab bisect each other]
a rectangle [diagonals $=$?
a rhombus (diagonals 1]
$\therefore A C B D$ is a SQUARE!
$p 17$

As. $v=U$ when $x=R$,

$$
\begin{aligned}
U^{2} & =\frac{2 g R^{2}}{R}+c \\
U^{2} & =\frac{2 g R}{2 g} \\
U^{2}-2 g R & =C \\
v^{2} & =\frac{2 g R^{2}}{x}+U^{2}-2 g R
\end{aligned}
$$

Note: As $\frac{2 g R^{2}}{x} \geq 0$ for all positive x

$$
\text { if } U^{2}>2 g^{R} \text { then }
$$

$$
v^{2}=\frac{2 g R^{2}}{x}+U^{2}-2 g>0 \text { at all times. }
$$

$$
\rightarrow, \text { ESCAPE velocity } \frac{\sqrt{2 g R}}{\sqrt{2 \times 9 \times 6 \times 366000}}
$$

$$
三 \| 1>0 \mathrm{~m} / \mathrm{s}[4 S F]
$$

(ii)

$$
\begin{gathered}
u^{2}=g R v^{2}=\frac{2 g R^{2}}{x}+g R-2 g R \\
v^{2}=\frac{2 g R^{2}}{x}-g R
\end{gathered}
$$

$$
\begin{aligned}
& \text { Q. } \left.(16)(a) L_{i}^{*}\right) \quad \mathcal{L}_{2}=\frac{m h}{x^{2}} \text { then } x=R . \\
& \therefore m g=\frac{m k}{R^{2}} \\
& 9 R^{2}=k \\
& \therefore x=\frac{g R^{2}}{x^{2}} \\
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{g R^{2}}{x^{2}} \\
& \frac{d}{d x}\left(v^{2}\right)=\frac{-2 g R^{2}}{x^{2}} \\
& v^{2}=\frac{2 g R^{2}}{x}+C
\end{aligned}
$$

p. 18
Q. $(16)(a)(\ddot{u})[$ con $t]$

Particle $\rightarrow v=0$ Find x.

$$
\begin{aligned}
0 & =\frac{2 g R^{2}}{x}-g R \\
g R & =\frac{2 g R^{2}}{x} \\
g R x & =2 g R^{2} \\
x & =2 R
\end{aligned}
$$

$\therefore x=2 R$ is R ABOVE Earth's sunface Las Earth's surfues is $x=R$].
(ii) $v^{2}=\frac{2 g R^{2}}{x}-g R$

$$
\begin{aligned}
v & =\sqrt{\frac{2 g R^{2}}{x}-g R} \\
\frac{d x}{d t} & =\sqrt{\frac{2 g R^{2}}{x}-g R} \\
\frac{d t}{d x} & =\frac{1}{\sqrt{\frac{2 g R^{2}}{x}-g R}}
\end{aligned}
$$

Time tiber to get from $x=R$ to $x=2 R$ is

$$
\begin{aligned}
& \int_{R}^{\frac{2 R}{} \frac{1}{\sqrt{\frac{2 R^{2}}{x}}-g R}} d x \\
= & \int_{R} \frac{x R}{\sqrt{2 g R^{2} x-g R x^{2}}} d x
\end{aligned}
$$

$$
=\frac{1}{\sqrt{g R}} \int_{R}^{2 R} \frac{x}{\sqrt{2 R x-x^{2}}} d x
$$

Note: $2 R x-x^{2}=R^{2}-(x-R)^{2}$
Q. $(16)(a)(i m)$ (cont $]$

$$
t=\frac{1}{\sqrt{g^{2}}} \int_{R}^{2 R} \frac{x}{\sqrt{R^{2}-(x-R)^{2}}} d x(1)
$$

Letting $x-R=R \sin \theta$

$$
\begin{aligned}
& x=R(\sin \theta+1) \\
& d x=R \cdot \cos \theta \cdot d \theta \text {. } \\
& 2 R=R(\sin \theta+1) \quad R=R(\sin \theta+1) \\
& z=\sin \theta+1 \quad-\quad 1=\sin \theta+1 \\
& 1 \equiv \sin \theta \Rightarrow \theta=\frac{\pi}{2} \quad \sin \theta=0 \Rightarrow \theta=0
\end{aligned}
$$

$$
\begin{aligned}
t & \left.=\frac{1}{\sqrt{g R}} \int_{0}^{\frac{\pi}{2}} \frac{R(\sin \theta+1)}{\sqrt{R^{2} R^{2} \sin ^{2} \theta}} \cdot R \cos \theta d \theta \right\rvert\, \\
& =\frac{1}{\sqrt{g R}} \int_{0}^{\frac{\pi}{2}} \frac{R(\sin \theta+1)}{R \cos \theta} \cdot R \cos \theta \cdot d \theta \\
& =\frac{1}{\sqrt{g R}} \int_{0}^{\frac{\pi}{2}} R(\sin \theta+1) \cdot d \theta \\
& =\sqrt{\frac{R}{g}} \int_{0}^{\frac{\pi}{2}} \sin \theta+1 \cdot d \theta \\
& =\sqrt{\frac{R}{g}}[-\cos \theta+\theta]_{0}^{\frac{\pi}{2}} \\
& =\sqrt{\frac{R}{g}}\left[-\cos \frac{\pi}{2}+\frac{\pi}{2}+\cos 0-0\right] \\
& =\sqrt{\frac{R}{g}[\pi}\left[\frac{\pi}{2}+1\right]
\end{aligned}
$$

Time taken to reach height R above Earth's surfue

$$
=\sqrt{\frac{12}{9}}\left[\frac{\pi}{2}+1\right] \text { seconds }
$$

p. 20
Q. $(16)(6)\left(c_{c}^{-}\right)$f $\alpha=1$
$1+A+B+A+1=0$
$2 A+B=-2$
$2 A$

$$
\equiv-(2+8)
$$

$$
4 A^{2} \quad \equiv(2+8)^{2}
$$

which is not possible.

$$
\begin{aligned}
I f \alpha=-1 & \\
1-A+B-A+1 & =0 \\
-2+B & =2 A \\
(2+B)^{2} & =4 A^{2}
\end{aligned}
$$

which is not possible.
(ii) If α is a root the $\alpha^{4} A \alpha^{3}+B \alpha^{2}+A \alpha+1=0$

Sub $x=\frac{1}{\alpha}$ in equation:

$$
\begin{aligned}
& \frac{1}{\alpha^{4}}+\frac{A}{\alpha^{3}}+\frac{B}{\alpha^{2}}+\frac{A}{\alpha}+1 \\
= & \frac{1}{\alpha^{4}}\left(1+A \alpha+B \alpha^{2}+A \alpha^{3}+\alpha^{4}\right) \\
= & \frac{1}{\alpha^{4}} \times 0 \text { as } \alpha \text { is a root } 1 \\
= & 0
\end{aligned}
$$

$x=\frac{1}{x}$ is also a root:
(iii) If $\alpha \& \frac{1}{\alpha}$ are both MULTIRE roots
$\begin{aligned} \text { Then } 2 \alpha+\frac{2}{\alpha} & =-A(1) \text { from root } 1 \text { at a time. } \\ \alpha^{2}+\frac{1}{\alpha^{2}}+4 & =B(2) \text { fran roots } 2 \text { at a time: }\end{aligned}$

$$
\begin{aligned}
& \therefore 48=4 \alpha^{2}+\frac{4}{\alpha^{2}}+16 \left\lvert\, \begin{array}{l}
8+A^{2} \\
=8+\left(2 \alpha+\frac{2}{\alpha}\right)^{2} \\
=8+\frac{4}{\alpha^{2}}+8+\frac{4}{\alpha^{2}}
\end{array}\right. \\
& =\frac{4}{\alpha^{2}}+\frac{4}{\alpha^{2}}+16=48 \text { as required. }
\end{aligned}
$$

$p-21$
Q. $(16)\left(c X_{i}\right)(\cos \theta+i \sin \theta)^{3}=\cos 3 \theta+i \sin 3 \theta$ using D_{2} Moince $\cos ^{3} \theta+3 \cos ^{2} \theta \sin \theta-3 \cos ^{2} \theta \sin ^{2} \theta-i \sin ^{3} \theta=\cos 3 \theta+i \sin 3 \theta$.

Equating real pats $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$

$$
\begin{aligned}
& =\cos ^{2}-3 \cos \theta \sin \theta \\
& =\cos ^{2} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =4 \cos ^{2} \theta-3 \cos \theta \text { as requined... }
\end{aligned}
$$

(ü)

$$
\begin{aligned}
& \text { If } x=2 \sqrt{3} \cos \theta \Rightarrow \operatorname{sub} \text { in } x^{3}-9 x=9 \\
& -(2 \sqrt{3} \cos \theta)^{3}-q \times 2 \sqrt{3} \cos \theta=9 \\
& 24 \sqrt{3} \cos ^{3} \theta-18 \sqrt{3} \cos \theta=9 \\
& \div 6 \sqrt{3} \text {. } \\
& 4 \cos ^{3} \theta-3 \cos \theta=\frac{\sqrt{3}}{2} \\
& \cos 3 \theta \\
& =\frac{\sqrt{3}}{2} \\
& \therefore \text { If } \cos 3 \theta=\frac{\sqrt{3}}{2}, x=2 \sqrt{3} \cos \theta \text { is a soluction } \\
& \text { to } x^{3}-9 x=9 \text {. }
\end{aligned}
$$

(iii) Solutions to $x^{3}-9 x=9$
are $x \equiv 2 \sqrt{3} \cos \theta$ where $\cos 3 \theta=\frac{\sqrt{2}}{2}$.

$$
\begin{aligned}
& \text { If } \cos 3 \theta=\frac{\sqrt{3}}{2} \\
& 3 \theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{13 \pi}{6}, \frac{23 \pi}{6}, \frac{-2 \pi}{6}, \frac{3 \pi}{6} \text {. } \\
& \left.\theta=\frac{\pi}{18}, \frac{11 \pi}{18},-\frac{1324}{18}, \frac{23 \pi}{18}, \frac{2 \pi}{18}, \frac{3 \pi}{18}\right] \\
& x=2 \sqrt{3} \cos \frac{\pi}{18} \equiv 3.4 \pi 5 .=-\infty \\
& \text { or } x=2 \sqrt{3} \cos \frac{11 \pi}{18} \equiv-1.1848,=\beta \\
& \text { or } x=2 \sqrt{3} \cos ^{\prime} \frac{13 \pi}{18} \doteq-2 \cdot 2267=y \\
& \text { Noto: } \frac{2 \sqrt{3} \cos \frac{23 \pi}{18}=-22267 \ldots}{2} \\
& \rightarrow \text { roots stat torepent } \\
& \text { [\& thes can only be 3reots for a cubici] }
\end{aligned}
$$

