

GIRRAWEEN HIGH SCHOOL

2016

MATHEMATICS EXTENSION 2

YEAR 12 Trial

HIGHER SCHOOL CERTIFICATE

EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section 1

10 marks
Attempt questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1. If $z=1+2 i$ and $w=3-i$, what is the value of $z-\bar{w}$?
A) $3 i-2$
B) $4+3 i$
C) $i-2$
D) $4+i$
2. What value of z satisfies $z^{2}=7-24 i$?
A) $4-3 i$
B) $-4-3 i$
C) $3-4 i$
D) $-3-4 i$
3. The equation of the polynomial equation $x^{3}-3 x^{2}+2=0$ has roots α, β and γ. What is the value of $\alpha^{3}+\beta^{3}+\gamma^{3} ?$
A) 9
B) 13
C) 21
D) 25
4. Which of the following is a correct expression for $\int x 3^{x^{2}} d x$?
A) $\frac{3^{x^{2}+1}}{x^{2}+1}+C$
B) $\frac{3^{x^{2}}}{\ln 9}+C$
C) $\frac{3^{x^{2^{2}}}}{\ln 3}+C$
D) $3^{x^{2}} \ln 3+C$
5. What is the eccentricity of the ellipse $9 x^{2}+16 y^{2}=25$?
A) $\frac{7}{16}$
B) $\frac{\sqrt{7}}{4}$
C) $\frac{\sqrt{15}}{4}$
D) $\frac{5}{4}$
6. The base of a solid is the region bounded by the circle $x^{2}+y^{2}=16$. Vertical cross-sections are squares perpendicular to the x-axis as shown in the diagram.

Which integral represents the volume of the solid?
A) $\int_{-4}^{4} 4 x^{2} d x$
B) $\int_{-4}^{4} 4 \pi x^{2} d x$
C) $\int_{-4}^{4} 4\left(16-x^{2}\right) d x$
D) $\int_{-4}^{4} 4 \pi\left(16-x^{2}\right) d x$
10. A bob P of mass $m \mathrm{~kg}$ is suspended from a fixed point A by a string of length l metres, and acceleration due to gravity $g . P$ describes a horizontal circle with uniform angular velocity $\omega \mathrm{rad} / \mathrm{sec}$.

Which of the following expressions represents the tension in the string?
A) $m l \omega$
B) $m l \omega^{2}$
C) $m g l \omega$
D) $m g l \omega^{2}$

Question 12. (15 marks).
a) The polynomial $P(x)=x^{4}+a x^{2}+b x+28$ has a double root at $x=2$.

What are the values of a and b ?
b) The polynomial $P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$ has roots $a+i b$ and $a+2 i b$ where a and b are real and $b \neq 0$.
i) By evaluating a and b, find all the roots of $P(x)$.
ii) Hence, or otherwise, find the quadratic polynomials with real coefficients that are factors of $P(x)$.
c) Let $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ for all integers $n \geq 0$.
i) Show that $I_{n}=\frac{1}{n-1}-I_{n-2}$ for integers $n \geq 2$.
ii) Hence find $\int_{0}^{\frac{\pi}{4}} \tan ^{5} x d x$.

Question 13. (15 marks)

a) The diagram shows a cyclic quadrilateral $A B C D$. Chords $A B$ and $D C$ produced meet at P and chords $D A$ and $C B$ produced meet at $Q . P R$ is the internal bisector of $\angle A P D$ meeting $A D$ at R and $B C$ at S.

Prove that $\triangle Q R S$ is isosceles.
b) i) Show that $4 x^{2}+9 y^{2}+16 x+18 y-11=0$ represents an ellipse.
ii) Find the eccentricity and hence the coordinates of its foci and the equations of the directrices.

Question 14.(15 marks)

a) Find the equation of the tangent to the curve $x^{2}-x y+y^{3}=1$ at the point $P(1,1)$.
b) Use the substitution $x=\tan \theta$ to evaluate $\int_{1}^{\sqrt{3}} \frac{1}{x^{2} \sqrt{1+x^{2}}} d x$.
c) i) Use De Moivre's Theorem to prove that if $z=\cos \theta+i \sin \theta$,

$$
\begin{equation*}
2 \cos n \theta=z^{n}+\frac{1}{z^{n}} . \tag{2}
\end{equation*}
$$

ii) Hence, or otherwise solve the equation $5 x^{4}-11 x^{3}+16 x^{2}-11 x+5=0$
d) A mass of 5 kilogram attached to a light fishing line describes a circular path with radius 60 centimetres about a point P on a smooth table. It completes 2 revolutions per second.
i) Find the tension in the fishing line.
ii) The line breaks under a tension of 900 Newtons. Find the maximum number of revolutions per second.
c) An ellipse has the equation $x^{2}+16 y^{2}=25$.

i) Find the gradient of the ellipse at the point $P(3,1)$.
ii) Find the equation of the tangent and normal to the ellipse at P.
iii) The normal to the ellipse, at point P, meets the major axis at Q. A line from the centre, O to the tangent at P meets at right angles at point A.

Show that the value of $P Q \times O A$ is equal to the square of the semi-minor axis.
c)

A particle of mass m is lying on an inclined plane and does not move. The plane is at an angle θ to the horizontal. The particle is subject to a gravitational force $m g$, a normal reaction force N, and a frictional force F parallel to the plane, as shown in the diagram. Resolve the forces acting on the particle, and hence find an expression for $\frac{F}{N}$ in terms of θ.
d)

A car of mass 2000 kg travels around a curve of radius 150 m at a speed of $110 \mathrm{~km} / \mathrm{h}$.

The car experiences a lateral resistance force F of $0.22 N$, where the normal force is N, as shown in the diagram. By resolving the forces vertically and horizontally, find the angle θ for the car to negotiate the curve. (Assume acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$).

Year 12 Ext. 2 Solutions Trial 2016
Muttiple Chisise Quections
(1) $z=1+2 i, \omega=3-i, z-\bar{\omega}=$?

$$
z-\bar{w}=1+2 i-(3+i)=1+2 i-3-i=-2+i \quad \text { C }
$$

(2) $z^{2}=7-24 c^{\circ}$

Let $z=a+i b$

$$
\begin{aligned}
& \therefore z^{2}=a^{2}-b^{2}+2 i a b \\
& \therefore a^{2}-b^{2}=7 \\
& 2 a b=-24
\end{aligned}
$$

sy: inspection: $a= \pm 4, b= \pm 3$

$$
\therefore z=4-3 i
$$

(3) $x^{3}=3 x^{2}+2=0$. has noots α, β, α $\therefore \quad \therefore \quad \alpha^{3}+\beta^{3}+\gamma^{3}=3\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-6$

$$
\begin{align*}
& =3\left[(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma)\right]-6 \\
& =3 \times 9-6=21 \tag{C}
\end{align*}
$$

(4) $\int x 3^{x^{2}} d x=\frac{1}{2} \int 2 x 3^{x^{2}} d x=\frac{3^{x^{2}}}{2 \ln 3}+c=\frac{3^{x^{2}}}{\ln 9}+c$

क०
Let $u=x^{2}: \int x^{3} x^{2} d x=\frac{1}{2} \int 2 x^{x^{2}} d x$
(5)

$$
\begin{aligned}
& 9 x^{2}+16 y^{2}=25 \Rightarrow \frac{x^{2}}{25}+\frac{y^{2}}{25}=1 \\
& b^{2}-a^{2}\left(1-e^{2}\right) \Rightarrow \frac{25}{16}=\frac{25}{9}\left(1-e^{2}\right) \Rightarrow 9=16-16 e^{2} \\
& 2 \ln 3 \\
& \ln 9 \\
& \hline 16 e^{2}=1 \\
& e=\sqrt{7}
\end{aligned}
$$

Muitiple choice Questions
(1) C
(2) A
(3) C
(4) B
(5) B
(6) D
(1) D
(8) A
(9) C
(10) B

Questionll
a) $\quad Z=1-i \sqrt{3}$
a) (i) $|z|-\sqrt{1^{2}+(\sqrt{3})^{2}}=2$

$$
\arg (z)=-\frac{\pi}{3}
$$

(ii) $z_{1}=2\left[\cos \left(\frac{-\pi}{3}\right)+i \sin \left(\frac{-\pi}{3}\right)\right]$
b) (i)

$$
z^{6}=2^{6}[\cos (-2 \pi)+i \sin (-2 \pi)]=2^{6}[1-0]=6
$$

$(i i)$ Vectors $O C$ and $A B$ form a porerlletospan Howeier, $O A=O B=2 \therefore O A C B$ is a otherba

$$
\begin{aligned}
& \angle A O C-\frac{1}{2}\left(-\frac{\pi}{2}-\frac{\pi}{12}\right)=\frac{5 \pi}{24} \\
& \therefore \arg \left(z_{1}+z_{2}\right)=\frac{5 \pi}{24}+\frac{\pi}{12}=\frac{7 \pi}{24}
\end{aligned}
$$

e) (i) $\cot \theta+\operatorname{cosec} \theta=\cot (\theta)$

LHS $\cot \theta+\operatorname{cosec} \theta=$

$$
\begin{align*}
& =\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}=\frac{\cos \theta+1}{\sin \theta} \\
& =\frac{2 \cos ^{2} \theta / 2}{2 \sin \theta / \cos \theta / 2}=\cot \theta / 2=R 1+s . \tag{2}
\end{align*}
$$

$$
\begin{aligned}
\text { (ii) } \int(\cot \theta+\operatorname{cosec} \theta) d \theta & =\int \cot \theta / 2 d \theta . \\
& =\int \frac{\cos \theta}{\sin \theta / 2} d \theta=2 \ln \left(\frac{\sin \theta}{2}\right)+t
\end{aligned}
$$

Question 12
a)

$$
\begin{aligned}
P(x) & =x^{4}+a x^{2}+b x+28 \\
P(x) & =4 x^{3}+2 a x+b
\end{aligned}
$$

Root at $x=2 \Rightarrow$

$$
\begin{align*}
& P(2)= 2^{4}+4 a+2 b+28=0 \\
& 44+4 a+2 b=0 \\
& 4 a+2 b=-44 \\
& P^{\prime}(2)=0 \Rightarrow 32+4 a+b=0 \\
& 4 a+b=-32 \tag{22}
\end{align*}
$$

(1) - (2)

$$
b=-12
$$

subsin (1) $\Rightarrow 4 a-24=-44$

$$
\begin{align*}
& \therefore 4 a=-20 \\
& a=-5 \\
& a=-5 \\
& b=-12 \tag{2}
\end{align*}
$$

Question 12 (c) Continued
(ii)

$$
\begin{align*}
& \int_{0}^{\frac{\pi}{4}} \tan ^{5} x d x=I_{5}=\frac{1}{4}-I_{3} \\
& I_{5}=\frac{1}{2}-I \\
& I=-\ln \frac{\pi}{4} \tan x d x \\
&=-\ln \frac{1}{\sqrt{2}}=\frac{1}{2} \ln 2 \\
& \therefore I_{3}=\frac{1}{2}=\frac{1}{2} \ln 2 \\
& \therefore I_{5}=\frac{1}{4}-\left(\frac{1}{2}-\frac{1}{2} \ln 2\right)=\frac{1}{2} \ln 2-\frac{1}{4} \tag{2}
\end{align*}
$$

d) (i) dving simultaneons $\quad 3-x^{2}=x+x^{2}$

$$
\begin{aligned}
2 x^{2}+x-3=0 & \Rightarrow(2 x+3)(x-1)=0 \\
\therefore & =-\frac{3}{2}, x
\end{aligned}
$$

Since p is in first quadrant, $x=1$
(ii)

$$
\begin{align*}
\Delta x= & =\pi r h \delta x \\
= & 2 \pi(x+1)\left(y_{1}-y_{2}\right) \delta x \\
& \vdots 2 \pi(x+1)\left[3-x^{2}-x-x^{2}\right] \delta x \\
& =2 \pi(x+1)\left[3-x-2 x^{2}\right] \delta x \\
\therefore V= & \operatorname{Lim}_{2} \pi \sum_{x=-1}^{1}(x+1)\left(3-x-2 x^{2}\right) \delta x \tag{2}
\end{align*}
$$

(iii)

$$
\begin{equation*}
V=2 \pi \int_{1}^{1}\left(3+2 x-3 x^{2}-2 x^{3}\right) d x=8 \pi u^{3} \tag{D}
\end{equation*}
$$

Question 13 continued
b) (ii) $\quad b^{2}=a^{2}\left(1-e^{2}\right)$

$$
\begin{aligned}
4=4-\left(-e^{2}\right) \Rightarrow e^{2} & =\frac{5}{4} \\
\therefore e & =\frac{\sqrt{5}}{3} \text { as }(0<e<1)
\end{aligned}
$$

divectrices: $\quad x=-2 \neq \frac{9}{\sqrt{5}}$

$$
\frac{a}{e}=\frac{3}{\frac{\sqrt{5}}{3}}=\frac{-4}{\sqrt{5}}
$$

focus:

$$
\begin{align*}
\mathrm{ae}=-3 \times \frac{\sqrt{5}}{3}=\sqrt{5} \Rightarrow(-2+\sqrt{5},-1) \text { and } \\
(-2-\sqrt{5},-1) \tag{2}
\end{align*}
$$

c)
(i) $\quad x y=c^{2}$
differentiating $\Rightarrow x \cdot \frac{d y}{d x}+y=0$

$$
\begin{aligned}
& \text {-at } p, \frac{d y}{d x}=\frac{-y}{x} \\
& =\frac{-\frac{c}{p}}{p}=\frac{-1}{\rho^{2}}
\end{aligned}
$$

\therefore equation of tangent: $y=\frac{c}{p}=\frac{-1}{p^{2}}(x=(c)$

$$
\begin{equation*}
x^{2} y-c p=-x+c p \Rightarrow x+p^{2} y=2 c p \tag{1}
\end{equation*}
$$

(ii) Tangents at P and Q are

$$
\begin{gather*}
x+p^{2} y=2 c p \tag{1}\\
x+q^{2} y=2 c q \\
y\left(p^{2}-q^{2}\right)=2 c(p-q) \\
\therefore y=\frac{2 c}{p+q}
\end{gather*}
$$

(4) (2)

Sub. into $(0) \Rightarrow \quad x+p^{2}\left(\frac{2 c}{p+q}\right)=2 c p$

$$
\left.\therefore T=\left(\frac{2(p q}{p+q_{1}}\right) \frac{2 c}{p+q_{q}}\right) \quad x=2 c p-\frac{\left.2 \in p^{2}\right)}{p+q}=\frac{2 c p q}{p+q_{0}}
$$

Question-14.-
a) $\quad x^{2}-x y+y^{3}=1 \quad p(1,1)$
differentiating, $\quad 2 x-x \cdot \frac{d y}{d x}=y+3 y^{2} \frac{d y}{d x}=0$

$$
\frac{d y}{d x}\left(3 y^{2}-x\right)=y-2 x
$$

$$
\therefore \frac{d y}{d x}=\frac{y-2 x}{3 y^{2}-x}
$$

$\operatorname{at} f(1,) ; \frac{d y}{d x}=\frac{1-2}{3-1}=\frac{-1}{2}=\frac{-1}{2}$
.eqn of tangent:

$$
\begin{aligned}
& y-1=\frac{-1}{2}(x-1) \\
& 2 y-2=-x+1 \Rightarrow x+2 y-3=0
\end{aligned}
$$

b) $x=\tan \theta \quad \therefore d x=\sec ^{2} \theta d \theta$.

Limits: $x=\sqrt{3} \Rightarrow \theta=\frac{\pi}{3}$

$$
\begin{align*}
& x=1 \Rightarrow \theta=\frac{\pi}{4} \\
& x^{2} \sqrt{1+x^{2}}=\tan ^{2} \theta \\
& \therefore=\tan \theta \cdot \sin \theta \sec ^{2} \theta . \\
& \therefore \int_{3} \frac{1}{x^{2} \sqrt{1+x^{2}}} d x=\tan \theta \cdot \frac{\sin \theta}{\cos \theta} \cdot \sec \theta^{\therefore} \begin{aligned}
& \frac{\pi}{3} \\
&=\frac{\pi}{4} \\
&=-\frac{-2}{\sqrt{3}}+\sqrt{2}=\frac{1}{3}(3 \sqrt{2}-2 \sqrt{3})
\end{aligned}
\end{align*}
$$

Question 15
a) (i)

$$
\left.\begin{aligned}
& t=0 \\
& x=0 \\
& x \quad v=0
\end{aligned} \right\rvert\, \begin{aligned}
\frac{1}{40} \\
x
\end{aligned}
$$

By Newton's second lavo, $m \ddot{x}=m g=\frac{1}{40} m v^{2}$

$$
\therefore \ddot{x}=\frac{1}{40}\left(400-v^{2}\right)
$$

(ii)

$$
\begin{align*}
\ddot{x} & =\frac{1}{40}\left(400-v^{2}\right) \tag{4}\\
\frac{d v}{d t} & =\frac{1}{40}\left(400-v^{2}\right) \\
\quad \frac{d t}{d v} & =\frac{40}{20^{2}-v^{2}}=-\frac{1}{20+v}+\frac{1}{20-v} \\
\therefore \quad \int d t & =\int \frac{1}{20+v} d v+\int \frac{1}{20-v} d v \\
\therefore t & =\ln \left(\frac{20+v}{20-v}\right)+c
\end{align*}
$$

when $t=0, v=0 \Rightarrow c=0$.

$$
\begin{equation*}
\therefore t=\ln \left(\frac{20+v}{20-v}\right) \tag{2}
\end{equation*}
$$

(iii)

$$
\begin{aligned}
\because e^{t} & =\frac{20+v}{20-v} \\
\therefore & (20-v) e^{t}=20+v=20 e^{t}-v e^{t} \\
& \left.=\frac{20\left(1+e^{t}\right)}{}=\frac{20\left(e^{t}-1\right)}{1+e^{t}-1}\right)=20\left(\frac{e^{t}+1-2}{e^{t}+1}\right) \\
v & =\frac{20}{1}=20\left(1-\frac{2}{e^{t}+1}\right)
\end{aligned}
$$

b) (ii) $\quad h=A F=a(e-1)$

$$
\therefore P F=a\left(e^{2}-1\right)=h(e+1)
$$

e) (i) $x^{2}+16 y^{2}=25$.
differentiating, $\quad 2 x+32 y \cdot \frac{d y}{d x}=0$.

$$
\begin{equation*}
\therefore \frac{d y}{d x}=\frac{-2 x}{32 y}=\frac{-x}{16 y} \tag{4}
\end{equation*}
$$

at $p(3,1), \frac{d y}{d x}=-\frac{3}{16}$
(ii) Equation of tangent:.

$$
\begin{gathered}
y-1=\frac{-3}{16}(x-3) \Rightarrow 3 x+16 y=25 \\
\therefore \quad \therefore \quad-16=-3 x+7 .
\end{gathered}
$$

. Equation of normal:

coordinates of $Q \Rightarrow$ sub. in $y=0$ in $16 x-3 y=45$

$$
\begin{aligned}
& \therefore Q=\left(\frac{45}{16}, 0\right) \\
& \therefore P Q=\sqrt{\left(3-\frac{45}{16}\right)^{2}+1}=\frac{45}{16} \\
& \therefore P Q \times \frac{9}{\frac{9}{26}}+1=\frac{\sqrt{265}}{16} \\
& \therefore P A=\frac{25}{\sqrt{265}} \times \frac{\sqrt{265}}{16}=\frac{25}{16}
\end{aligned}
$$

but in $x^{2}+16 y^{2}=25 \Rightarrow \frac{x^{2}}{25}+\frac{y^{2}}{25}=1 \Rightarrow b^{2}=\frac{25}{16}$

$$
\therefore P Q \times O A=\frac{25}{i 1}=\text { square of semi -minor ai }
$$

$(i v)$

$$
\begin{align*}
& \text { D. } x \sin \beta+2 x \cos \beta \tag{1}\\
& \therefore I_{1}(\sin \beta \cos \alpha+\cos \beta \sin \alpha)=m\left(\frac{r \omega^{2} \cos \beta+g \sin \beta}{\sin (\alpha+\beta)}\right.
\end{align*}
$$

normal to plane: $N=m g \cos \theta$
parallel to plane: $F=m g \sin \theta$

$$
\therefore \frac{F}{N}=\frac{m g \sin \theta}{m \cos \theta}=\tan \theta
$$

d)

Acceleration

$$
\text { Hokm } / \mathrm{h}=\frac{275}{9} \mathrm{~m} / \mathrm{s}
$$

Resolve vertically $\Rightarrow \quad m g+F \sin \theta=N \cos \theta$
Resolve: horizontally $\Rightarrow E \cos \theta+N \sin \theta=\frac{m v^{2}}{r}$

$$
\begin{aligned}
F=0+2 N, \Rightarrow & \operatorname{sig}+0.2 N \sin \theta=N \cos \theta \\
& N(\cos \theta-0.22 \sin \theta)=20000 \\
& N(0.22 \cos \theta+\sin \theta)=12448.56
\end{aligned}
$$

Dividing, $\frac{\cos \theta-\theta+2 \sin \theta}{0.22 \cos \theta+\sin \theta}=16066$

$$
\begin{aligned}
\therefore \frac{1-0.22 \tan \theta}{0.22+\tan \theta} & =1.66 . \quad \tan \theta=0.3539 \\
\therefore \theta & =19^{\circ} 29^{\circ} \%
\end{aligned}
$$

