

Girraween High School

2017 Year 12 Trial Higher School Certificate

Mathematics Extension 2

Instructions

- Attempt all questions.
- For Questions 1-10, shade the circle for the letter corresponding to the correct answer on your answer sheet.
- For Questions 11-16, start each question on a new page. Each question should be clearly labelled.
- All necessary working must be shown for Questions 11-16.
- Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used.
- A Mathematics reference sheet is provided.

Question 1

If $z=5-5 i$ and $w=2+i$ then $\frac{z}{w}=$
(A) $1+3 i$
(B) $1-3 i$
(C) $3+i$
(D) $3-i$

Question 2

If $\overrightarrow{O A}=z$ on the diagram below then $\overrightarrow{O B}=z$ cis $\frac{3 \pi}{2}$ could be

(B)

(C)

(D)

Question 3 If α, β and γ are the roots of the polynomial equation $3 x^{3}+5 x-1=0$ then $\alpha^{3}+\beta^{3}+\gamma^{3}=$
(A) 0
(B) -12
(C) $\frac{34}{9}$
(D) 1

Question 4

The sum of the eccentricities of two conics is $\frac{3}{2}$. The two conics could not be
(A) An ellipse and a hyperbola
(B) An ellipse and a parabola
(C) A circle and a hyperbola
(D) A hyperbola and a parabola

Question 5

The foci of the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{144}=1$ are
(A) $(\pm 13,0)$
(B) $(0, \pm 13)$
(C) $\left(\pm \frac{25}{13}, 0\right)$
(D) $\left(0, \pm \frac{25}{13}\right)$

Question 6

$\int \frac{1}{x \ln (x)} \cdot d x=$
(A) $\frac{(\ln (x))^{2}}{2}+C$
(B) $-\ln (x)+C$
(C) $\frac{-1}{\ln (x)}+C$
(D) $\ln (\ln (x))+C$

Question 7

$\int \sin ^{3} x d x=$
(A) $\frac{\sin ^{4} x}{4}+C$
(B) $\frac{\cos ^{4} x}{4}+C$
(C) $\cos x-\frac{\cos ^{3} x}{3}+C$
(D) $\frac{\cos ^{3} x}{3}-\cos x+C$

Question 8

The volume obtained by rotating the area enclosed by $y=x^{2}+1$ and the line $y=5$ about the x axis can be found using the expression
(A) $\pi \int_{-2}^{2}\left(24-2 x^{2}-x^{4}\right) \cdot d x$
(B) $\pi \int_{-2}^{2}\left(676-52 x^{2}+x^{4}\right) \cdot d x$
(C) $2 \pi \int_{1}^{5} y \sqrt{y-1} \cdot d y$
(D) $4 \pi \int_{1}^{5}(5-y) \sqrt{y-1} \cdot d y$

Question 9

A particle is launched vertically upwards from the surface of Earth. As it ascends it experiences gravity downwards which is inversely proportional to the square of its distance from the centre of Earth (i.e. $F=\frac{m k}{x^{2}}$ where k is a constant and x is the distance from the centre of Earth). Given that the radius of Earth is R and the acceleration due to gravity at the Earth's surface is $g \mathrm{~m} / \mathrm{s}^{2}$, the value of k is:
(A) $\frac{g}{R^{2}}$
(B) $\sqrt{\frac{g}{R}}$
(C) $\sqrt{g R}$
(D) $g R^{2}$

Question 10

An astronaut in a centrifuge with a radius of 8 m is experiencing a centripetal force of 3 g Newtons per kilogram of mass. Given that $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the speed at which the centrifuge is rotating is
(A) $1.91 \mathrm{~m} / \mathrm{s}$
(B) $3.68 \mathrm{~m} / \mathrm{s}$
(C) $15.34 \mathrm{~m} / \mathrm{s}$
(D) $235.2 \mathrm{~m} / \mathrm{s}$
(a) If $z=-\sqrt{3}-i$ and $w=1-i$
(i) Find $z w$ in Cartesian form. 2
(ii) Convert both z and w to modulus/argument form. 3
(iii) Use your answers to (i) and (ii) to find the exact value of $\sin \frac{11 \pi}{12}$. $\quad 1$
(b) Sketch the region in the complex plane where $|z-1| \leq 1$ and $0 \leq \arg z<\frac{\pi}{4} \quad 3$
(c) (i) Prove that if a polynomial equation $P(x)=0$ has a double root then $\mathbf{2}$ $P^{\prime}(x)=0$ will also have the same root.
(ii) Solve $18 x^{3}+3 x^{2}-4 x-1=0$ given that it has a double root.

Question 12 (15 marks) Show all necessary working on a separate page

(a) Find
(i) $\int x^{8} \ln (x) \cdot d x$

2
(ii) $\int_{\frac{2 \pi}{3}}^{\frac{4 \pi}{3}} \frac{1}{2+\cos x} \cdot d x$
(iii) $\int \frac{\sqrt{x^{2}-1}}{x} \cdot d x$

2
(b) (i) Express $\frac{-2 x^{2}-8 x-2}{(x+1)^{2}(x+3)}$ in the form $\frac{A}{(x+1)^{2}}+\frac{B}{x+1}+\frac{C}{x+3}$ 3
(ii) Hence find $\int \frac{-2 x^{2}-8 x-2}{(x+1)^{2}(x+3)} \cdot d x$
(c) For the ellipse $25 x^{2}+9 y^{2}=225$
(i) Find the eccentricity 1
(ii) Find the co-ordinates of the foci and equations of the directrices 1
(iii) Sketch the graph of $25 x^{2}+9 y^{2}=225$ showing all of these features. $\quad 1$
(a) If α, β and γ are the roots of the polynomial equation
$2 x^{3}+7 x^{2}+10 x-7=0$, form the polynomial equation with roots
$\alpha+2, \beta+2$ and $\gamma+2$.
(b) The point $P(a \cos \theta, b \sin \theta)$ is on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b . M$ and N are points on the tangent to the ellipse at P so that the perpendiculars to the tangent at M and N intersect with the x axis at the foci S and S^{\prime} respectively (see diagram).

Question 13(b) continues on the following page

Question 13(b) (continued)
(i) Show that the equation of the tangent at P is $b x \cos \theta+a y \sin \theta=a b$.
(ii) Show that the distance $M S=\frac{a b-a b e \cos \theta}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}$
(iii) Show that $M S \times N S^{\prime}=b^{2}$.
(c) $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ are points on the rectangular hyperbola $x y=c^{2}$.
T is the point of intersection of the tangents at P and Q (see diagram).

(i) Show that the equation of the tangent at P is $x+p^{2} y=2 c p$ and state the equation of the tangent at Q.
(ii) Show that T is the point $\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$.
(iii) Show that the chord $P Q$ is $x+p q y=c(p+q)$
(iv) Find the locus of T if the chord $P Q$ passes through the point $R(4 c, 2 c)$
(a) (i) Prove that $\int_{0}^{a} f(a-x) \cdot d x=\int_{0}^{a} f(x) \cdot d x \quad 1$
(ii) Hence or otherwise find $\int_{0}^{\pi} x \sin x . d x$
(b) A solid is formed by rotating the area between $y=\sin x$, the x axis and the lines $x=0$ and $x=\pi$ around the line $x=\pi$ (see diagram).

Show that the volume of this solid using cylindrical shells is given by 3
$V=2 \pi \int_{0}^{\pi}(\pi-x) \sin x . d x$ and find this volume (you may use your answer to Part (a)
(c) A rectangular skip bin with a perpendicular height of 2.5 metres has a square base 3 metres by 3 metres and a rectangular top 5 metres by 4 metres. h is the vertical distance up from the base of the skip bin to rectangle $A B C D$ (see diagram).

(i) Show that the area of rectangle $A B C D=\frac{8 \mathrm{~h}^{2}}{25}+\frac{18 \mathrm{~h}}{5}+9$
(ii) Find the volume of the skip bin.
(d) Let $I_{n}=\int_{0}^{\frac{\pi}{4}} \sin ^{n} x \cdot d x$
(i) Show that $I_{n}=\frac{-\left(\frac{1}{\sqrt{2}}\right)^{n}}{n}+\frac{n-1}{n} I_{n-2}$ 2
(ii) Hence find the exact value of $\int_{0}^{\frac{\pi}{4}} \sin ^{6} x . d x$
(a) A cyclist and bicycle with a total mass of 80 kg is riding around a velodrome with a radius of 50 m which is banked at an angle of 20° to the horizontal.

If riding at optimum speed (when she experiences no lateral friction) she is subject to a normal force from the track and gravity ($g=9.8 \mathrm{mper} \mathrm{s}^{2}$)
(i) By resolving forces in the horizontal and vertical directions, find the optimum speed the cyclist can ride at (the speed where no lateral friction is experienced).
(ii) The cyclist decreases her speed to $11 \mathrm{~m} / \mathrm{s}$ (which as stated is BELOW
optimum speed). How much lateral friction does she now experience?
(iii) The maximum friction that the track can provide before the cyclist slips outward speed that the cyclist can attain before slipping outwards?
(b) A 10 kg weight is attached by a taut rope to the top of a solid cone with semi vertical angle 30°. The radius of the cone where the weight is rotating is 6 m . While rotating the weight is subject to tension from the rope, gravity $\left(g=9.8\right.$ m per $\left.s^{2}\right)$ and a normal force while it is touching the cone (see diagram).

(i) By resolving forces vertically and horizontally, find the tension in the rope and the normal force if the particle is rotating at $4 \mathrm{~m} / \mathrm{s}$.
(ii) The particle now speeds up until it loses contact with the surface of the cone. At what speed does this happen?

Question 16 (15 marks) Show all necessary working on a separate page
(a) A skydiver jumps out of a stationary balloon and starts falling freely to Earth.

She experiences gravity of $m g$ downwards and air resistance of $\frac{m v^{2}}{360}$ upwards.
Given that down is positive, $x=t=0$ at the balloon and that $g=9.8 \mathrm{mper}^{2}$,
(i) Show that $\ddot{x}=g-\frac{v^{2}}{360}$ and find her terminal velocity.
(ii) Show that $x=180 \ln \left(\frac{360 g}{360 g-v^{2}}\right)$ and find the distance fallen when the skydiver reaches $50 \mathrm{~m} / \mathrm{s}$.
(iii) Find the time taken for the skydiver to reach this speed.
(b) (i) Use DeMoivre's theorem and the expansion of $(\cos \theta+i \sin \theta)^{4}$
to show that $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$.
(ii) Hence or otherwise show that $\cos \frac{\pi}{12}=\frac{\sqrt{2+\sqrt{3}}}{2}$.

Question 16(b) continues on the following page

(iii) $A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W$ AND X
below represent all of the roots of $w^{24}=1$ on the complex plane.
(see diagram).

If $\overrightarrow{O A}=w$ is the root of $w^{24}=1$ with the smallest positive argument, show that
1
$|w-1|=\sqrt{2} \sqrt{1-\cos \frac{\pi}{12}}$
(iv) Find the exact value of the perimeter of polygon ABCDEFGHIJKLMNOPQRSTUVWX.
(v) Find $\operatorname{limit}_{n \rightarrow \infty} n \sqrt{2} \sqrt{1-\cos \frac{2 \pi}{n}}$

Solutions YIz Ext 2 Tial 2017 p.l
() Multiple Choice:
(1)B(2)A (3) D (4) D(5)A(6)D(7)D(8) A (9)D(10)C

(2)(3) $3 \alpha^{3}+5 \alpha-1=0$
$3 \beta^{3}+5 \beta-1=0$
$3 y^{2}+5 y-1=0$
$3\left(\alpha^{3}+\beta^{3}+y^{3}\right)+5(\alpha+8+y) \Rightarrow=0$
$x^{2}+A s \alpha+\beta+y=0$

$$
\begin{equation*}
\alpha^{3}+\beta^{2}+y^{2}=1 \tag{D}
\end{equation*}
$$

$$
\begin{align*}
& \text { (6) } u=\ln x \cdot d x=\frac{1}{x} \cdot d x \\
& \int \frac{1}{x \ln x} \cdot d x \\
& =\int \frac{1}{u} \cdot d u \tag{D}\\
& =\ln u+C \\
& =\ln (\ln x)+C
\end{align*}
$$

Solutions Yin Ext 2 Trial p. 2
0

$$
\begin{aligned}
& \text { Q. (II) (a) }(1) z \omega=(-\sqrt{3}-i)(1-i) \\
& \\
& =-\sqrt{3}-1+i(\sqrt{3}-i) \\
& (\bar{u}) z=2\left(\cos \frac{-5 \pi}{6}+i \sin -\frac{5 \pi}{6}\right) \\
& w=\sqrt{2}\left(\cos \frac{\pi \pi}{4}+i \sin \frac{-\pi}{4}\right) \\
& \begin{aligned}
(i i i) z w & =2 \sqrt{2}\left(\cos -\frac{13 \pi}{12}+i \sin -\frac{13 \pi}{12}\right) \\
& =2 \sqrt{2}\left(\cos \frac{11 \pi}{12}+i \sin \frac{1 i \pi}{12}\right)
\end{aligned}
\end{aligned}
$$

Equating imaginary ports in (i) \& (ul)

$$
\begin{aligned}
\sqrt{3}-1 & =2 \sqrt{2} \sin \frac{\pi \pi}{12} \\
\sin \frac{11 \pi}{12} & =\frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{aligned}
$$

(b)

(c) (i) If $P(x)=(x-\alpha)^{2} Q(x)$ where $Q(x)$ is a polynomial

$$
\begin{aligned}
P^{\prime}(x) & =2(x-\alpha) Q(x)+(x-\alpha)^{2} Q^{\prime}(x) \\
& =(x-\alpha)\left[2 Q(x)+(x-\alpha) Q^{\prime}(x)\right] \\
\therefore \quad \text { If } P^{\prime}(x) & =0, x-\alpha=0
\end{aligned}
$$

$x=x$ is a root of $P^{\prime}(x)=0$
(ii)

$$
\begin{aligned}
& P(x)=18 x^{3}+3 x^{2}-4 x-1=0 \text { has double root. } \\
& P^{\prime}(x)=5 x^{2}+6 x-4=0 \\
& 0,27 x^{2}+3 x-2=0 \text { has sue root. }
\end{aligned}
$$

Root must be a factor of $\frac{1}{18} \& \frac{2}{27}= \pm 1, \pm \frac{1}{3}, \pm \frac{1}{9}$.

$$
\begin{aligned}
& p\left(\frac{1}{3}\right)=18\left(\frac{1}{3}\right)^{3}+3\left(-\frac{1}{3}\right)^{2}-4\left(-\frac{1}{3}\right)-1=0 \\
& p^{\prime}\left(1-\frac{1}{3}\right) \operatorname{or} 27\left(-\frac{1}{3}\right)^{2}+3\left(-\frac{1}{3}\right)-2=0
\end{aligned}
$$

Double root $=-\frac{1}{3}$.

$$
\begin{aligned}
& \text { Other root: } \\
& \text { By } \alpha+\beta+y=\frac{-6}{a} \\
& -\frac{2}{3}+y=\frac{-3}{18} \\
& y=\frac{1}{2} . \\
& \text { Roots are }
\end{aligned}
$$

Roots are

$$
-\frac{1}{3},-\frac{1}{3}, \frac{1}{2}
$$

Solutions p. 3
Q (12)(a)(i) $\int x^{8} \ln x d x \quad u=\ln x \quad v=\frac{1}{9} x^{9}$
By

$$
\begin{aligned}
\int u v^{\prime} \cdot d x & =u v-\int v \cdot u^{\prime} \cdot d x \\
\int x^{8} \ln x \cdot d x & =\frac{1}{9} x^{9} \ln x-\int \frac{1}{9} x^{8} \cdot d x \\
& =\frac{1}{9} x^{9} \ln x-\frac{1}{81} x^{9}+C
\end{aligned}
$$

$$
\begin{align*}
& \text { (ii) } \begin{array}{ll}
\int_{\frac{2 \pi}{3}}^{\frac{4 \pi}{3}} \frac{1}{2+\cos x} \cdot d x \quad \text { Let } t=\tan \left(\frac{x}{2}\right) \frac{d t}{d x}=\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right)=\frac{t^{2}+1}{2} \\
d x=\frac{2}{t^{2}+1} \cdot d t
\end{array} \\
& =\int_{\tan }^{\tan \frac{\pi}{3} \frac{2 \pi}{3}} \frac{1}{2+\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} \cdot d t \\
& =\int_{\sqrt{3}}^{-\sqrt{3}} \frac{2}{t^{2}+3} d t \\
& =\frac{2}{\sqrt{3}}\left[\tan ^{-1}\left(\frac{t}{\sqrt{3}}\right)\right]_{\sqrt{3}}^{-\sqrt{3}} \tag{2}\\
& =\frac{2}{\sqrt{3}}\left[\tan ^{-1}(-1)-\tan ^{-1}(1)\right] \\
& =\frac{2}{\sqrt{3}} \times-\frac{\pi}{2} \\
& =-\frac{\pi}{\sqrt{3}} \text {. }
\end{align*}
$$

(iii) $\int \frac{\sqrt{x^{2}-1}}{x} d x$ Let $x=\sec \theta$

$$
\begin{aligned}
& =\int \frac{\tan \theta}{\sec \theta} \cdot \sec \theta \tan \theta \cdot d \theta \\
& =\int \tan ^{2} \theta \cdot d \theta \\
& =\int\left(\sec ^{2} \theta-1\right) \cdot d \theta
\end{aligned}
$$

Solutions p. 4.
C)

$$
\begin{aligned}
& Q .(A)(b)(i) \frac{-2 x^{2}-8 x-2}{(x+1)^{2}(x+3)}=\frac{A}{(x+1)^{2}}+\frac{B}{x+1}+\frac{C}{x+3} \\
& \times(x+1)^{2}(x+3) \\
&-2 x^{2}-8 x-2=A(x+3)+B(x+1)(x+3)+C(x+1)^{2}(1)
\end{aligned}
$$

Either: Sub. in $x=-1$, in (1)

$$
\begin{array}{ll}
4 & =A(-1+3) \\
6 A & =2
\end{array}
$$

Sub. in $x=-3$ in (1):

$$
\begin{aligned}
4 & =\left((-3+1)^{2}\right. \\
C & =1
\end{aligned}
$$

Sub. in $x=0, A=2, C=1$ in (1)

$$
-2=3 \times 2+38+1 \times 1
$$

10:30 $\quad B=-3$
(OR) Expanding (1): \& equating co -efficients:

$$
(B+C) x^{2}+(A+4 B+2 C) x+(3 A+3 B+C)^{2}=-2 x^{2}-8 x-2
$$

Equating x^{2} co-efficients: $B+C=-2 \Rightarrow C=-2-B \quad(2)$

$$
x \text { co -officiants. } A+4 B+2 C=-8
$$

$$
\text { Sub } C=-2-B \text { in } A+4 B+2(-2-B)=-8 \Rightarrow A+2 B=-4(3)
$$

Constants: $3 A+3 B+C=-2$.

$$
\text { Sub. } C=-2-B \text { in: } 3 A+3 B-2-B=-2 \Rightarrow 3 A+2 B=0 \text { (4) }
$$

$$
(4)-(3): 2 A=4 \Rightarrow A=2
$$

Sub. $A=2$ in $(3) \cdot 2+2 B=-4 \Rightarrow B=-3$.

$$
\text { Sub. } B=-3 \text { in }(2): C=-2--3 \Rightarrow C=1
$$

$$
\therefore A=2, B=-3, C=1
$$

$$
\begin{aligned}
(i) & \int \frac{-2 x^{2}-3 x-2}{(x+1)^{2}(x+3)} \cdot d x \\
& =\int \frac{2}{(x+1)^{2}}-\frac{3}{x+1}+\frac{1}{x+3} d x \\
= & -\frac{2}{(x+1)}-3 \ln (x+1)+\ln (x+3)+C .
\end{aligned}
$$

Solutions: p. 5
C

$$
\begin{align*}
& \text { Q.(12)(c)(i) } 25 x^{2}+9 y^{2}=225 \\
& \frac{x^{2}}{9}+\frac{y^{2}}{25}=1 . \\
& e^{2}=1-\frac{a^{2}}{b^{2}} \text { as } b>a . \\
&=1-\frac{9}{25} \tag{1}\\
& e=\frac{4}{5} .
\end{align*}
$$

(ï)

$$
\begin{aligned}
& =\left(0, \pm 5 \times \frac{4}{5}\right) \\
& =(0, \pm 4)
\end{aligned}
$$

$$
\begin{aligned}
& y= \pm 5 \div \frac{4}{5} \\
& y= \pm \frac{25}{4} .
\end{aligned}
$$

$$
\therefore \text { Foci }=\left(0, \pm b_{2}\right) \text { Directricesi } y= \pm \frac{b}{e}
$$

(iï)

$$
\begin{aligned}
\text { (13)(a) Let } y & =x+2 \\
\therefore x & =y-2
\end{aligned}
$$

$\begin{aligned}\left.\text { Equation is } 2(y-2)^{3}+x y-2\right)^{2}+10(y-2)-7 & =0 \quad 2 \\ 2 y^{3}-5 y^{2}+6 y-15 & =0\end{aligned}$

$$
\text { or } 2 x^{3}-5 x^{2}+6 x-15=0 .
$$

p. 6

Tangent at $\frac{P_{i}^{\prime} x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

$$
\begin{aligned}
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x} & =0 \\
\frac{2 y}{b^{2}} \cdot \frac{d y}{d x} & =\frac{-2 x}{a^{2}} \\
\frac{d y}{d x} & =\frac{-b^{2} x}{a^{2} y}
\end{aligned}
$$

C

$$
\text { At } \begin{aligned}
P(a \cos \theta,-b \sin \theta) \frac{d y}{d x} & =\frac{-\frac{b^{2} a \cos \theta}{a^{2} b \sin \theta}}{} \quad \underline{z} \\
& =\frac{b \cos \theta}{a \sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
B_{y} y-y_{1} & =m\left(x-x_{1}\right) \\
y-b \sin \theta & =\frac{-b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
a y \sin \theta-a b \sin ^{2} \theta & =-b x \cos ^{2} \theta+a b \cos ^{2} \theta . \\
b x \cos \theta+a y \sin \theta & =a b\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
b x \cos \theta+a y \sin \theta & =a b .
\end{aligned}
$$

(\ddot{u}) Distance MS is perpendicular distance from tangent at P to $S(a, 0)$

$$
\text { PTO } \rightarrow
$$

$p 7$

$$
\text { By perpendicular distance }=\frac{\left|A x_{1}+B_{y_{1}}+C\right|}{\sqrt{a^{2}+b^{2}}}
$$

$$
\begin{aligned}
\text { Ms } & =\frac{|b \cos \theta \times a e+a \sin \theta \times 0-a b|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \\
& =\frac{|a b a \cos \theta-a b|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}
\end{aligned}
$$

As le| $<1 \&|\cos \theta|<1$, $a \operatorname{abcos} \theta<a b$

$$
\begin{aligned}
& \begin{aligned}
& \therefore|a b \cdot \cos \theta-a b| \\
&= a b-a b \cdot \cos \theta \\
& \sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} .
\end{aligned} \\
& \text { (iud) } N s^{\prime}=\frac{|b \cos \theta \times-a e-a b|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \\
& =\frac{a b+a b e \cos \theta}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \\
& \therefore M S \times N S^{\prime}=\frac{(a b-a b e \cos \theta)}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \times \frac{(a b+a b e \cos \theta)}{\sqrt{b^{2} \cos ^{2} \theta-\tan ^{2} \sin ^{2} \theta}} \\
& =\frac{a^{2} b^{2}-a^{2} b^{2} a^{2} \cos ^{2} \theta}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left[a^{2}-a^{2} e^{2} \cos ^{2} \theta\right]}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& \text { PTO } \rightarrow
\end{aligned}
$$

$\frac{p \cdot 8}{\therefore a^{2} e^{2}=a^{2}-b^{2}}$

$$
\begin{aligned}
& =\frac{b^{2}\left[a^{2}-\left(a^{2}-b^{2}\right) \cos ^{2} \theta\right]}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left[a^{2}\left(1-\cos ^{2} \theta\right)+b^{2} \cos ^{2} \theta\right]}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}
\end{aligned}
$$

As $\sin ^{2} \theta=1-\cos ^{2} \theta$

$$
\begin{aligned}
& =\frac{b^{2}\left[a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right]}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =b^{2} \\
& =R H S \quad Q E O .
\end{aligned}
$$

(c)

(i)
$x y=c^{2}$

$$
y=\frac{c^{2}}{x}
$$

$$
y^{\prime}=\frac{-c^{2}}{x^{2}}
$$

A $P\left(c p, \frac{c}{p}\right)$

$$
\begin{gathered}
y^{\prime p}=-\frac{c^{2}}{2} \\
=-c^{2} \\
=-\frac{1}{p^{2}}(x-x) \\
B y y-y_{1}=n(x-x) \\
y-\frac{1}{p}=\frac{-1}{p^{2}}(x-c p) \\
p^{2} y-c p=-x+c p \\
x+2 p^{2} y=2 c p .
\end{gathered}
$$

(i) Continued 1:

Tangent at $P=x+p_{2}^{2}=2(p$. (1)
Tengent at Q is $x+q^{2} y=2 c q$ (2)

$$
\begin{aligned}
&(\ddot{u})(1)-(2) a b o v e \\
&(p-q) y=2 c(p-q) \\
&(p-q)(p+q) y=2 c(p-q) \\
& y=\frac{2 c}{p+q}(3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sub. (3) in (1): } \\
& \text { 4. (3) in (1) i } \quad x=2 c p-\frac{2 c p^{2}}{p+q} \left\lvert\, \frac{-2 c p^{2}+2 c p q-2 c p^{2}}{p+q}\right. \\
& \left.=\frac{\operatorname{zcp}(p+q)-2 c p^{2}}{p+q} \right\rvert\, x=\frac{z_{c p q}}{p+q} .
\end{aligned}
$$

$(13)(0)(\bar{u})(\operatorname{con} 4) \quad$ P. 9

$$
\begin{aligned}
\therefore T & \left.=\left(\frac{2 c p q}{p+q}\right) \frac{2 c}{1 p+q}\right) \\
(i i i) m p Q & =\frac{\frac{c}{q}-\frac{c}{p} \times p q}{c q-c p} \times p q \\
& =\frac{c(p-q)}{c p q(q-p)} \\
& =\frac{-1}{p q} \\
y-\frac{c}{q} & =-\frac{1}{p q}(x-c q) \\
x q y-c p & =-x+c q \\
& +x+c p \\
& =c(p+q)
\end{aligned}
$$

((iv) Chord $P Q$ passes through $R(4,2 i)$:

$$
\begin{align*}
4 c+2 c p q & =c(p+q) . \\
2 p q+4 & =p+q \\
\frac{2 p q}{} & =p+q-4 \tag{1}\\
A t y & =\frac{2 c}{p+q} \\
\therefore p+q & =\frac{Z c}{y} \quad(z)
\end{align*}
$$

$$
\text { At } T x=\frac{2 \mathrm{cpq}}{p+q}
$$

$$
\begin{aligned}
& x=\frac{c c(p+q-4)}{p+q} \\
& \left.a)_{x}=(\text { (iota })-4\right]
\end{aligned}
$$

$$
(p+q)_{x}=((p+q)-4] \text { (4) }
$$

Sub. (2) in (4):

$$
\frac{2 c x}{y} \times \frac{y}{c}=c\left[\frac{2 c}{y}-4\right]
$$

$$
2 x \quad c=2 c-4 y
$$

$$
x+2 y-c=0
$$

Locus of Tis 1

$$
x+2 y-c=0
$$

$$
\begin{aligned}
(Q \cdot(14)(a)(i) & \int_{0}^{a} f(a-x) \cdot d x \quad d u=-d x \\
& =-\int_{u=a}^{a-0} f(u) \cdot d u \\
& =\int_{0}^{a} f(u) \cdot d u \text { as } \int_{b}^{a} f(x) \cdot d x=-\int_{a}^{b} f(x) \cdot d x \\
& =\int_{0}^{a} f(x) \cdot d x \quad \text { by } \quad \int_{a}^{b} f(x) \cdot d x=\int_{a}^{b} f(y) \cdot d y \\
& =\text { RHS } Q \in D .
\end{aligned}
$$

$$
\begin{aligned}
(\ddot{u}) & \int_{0}^{\pi} x \sin x d x \\
& =\int_{0}^{\pi}(\pi-x) \sin (\pi-x) \cdot d x \\
& =\int_{0}^{\pi}(\pi-x) \sin x \cdot d x \text { as } \sin (\pi-x)=\sin x . \\
\int_{0}^{\pi} x \sin x d x & =\int_{0}^{\pi} \sin x \cdot d x-\int_{0}^{\pi} x \sin x \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& 2 \int_{0}^{\pi} x \sin x d x=\pi \int_{0}^{\pi} \sin x \cdot d x \\
& \int_{0}^{\pi} x \sin x \cdot d x=\frac{\pi}{2} \int_{0}^{\pi} \sin x \cdot d x \text { (1) }
\end{aligned}
$$

$$
\int_{0}^{\pi} \sin x \cdot d x
$$

$$
=[-\cos x]_{0}^{\pi}
$$

$$
=[(-(-1)--1]
$$

$$
=2 . \quad(2)
$$

Sub. (2) in (1):

$$
\int_{0}^{\pi} x \sin x \cdot d x=\frac{\pi}{2} x 2
$$

$$
=\pi
$$

$$
\begin{aligned}
\delta V & =2 \pi y(\pi-x) \cdot \delta x \\
& =2 \pi(\pi-x) \sin x \cdot \delta x
\end{aligned}
$$

$$
\begin{aligned}
V & =\operatorname{limit}_{\delta x \rightarrow 0} 2 \pi \sum_{x=0}^{x=\pi}(\pi-x) \sin x \cdot \sqrt{x} \\
& =\quad \text { Letting }{ }^{x} x \rightarrow 0
\end{aligned}
$$

$$
V=2 \pi \int_{0}^{\pi}(\pi-x) \sin x \cdot d x
$$

$$
\begin{aligned}
& =2 \pi \int_{0}^{\pi}(\pi-x) \sin (\pi-x) \cdot d x \text { as } \sin (\pi-x)=\sin x . \\
& =2 \pi \int_{0}^{\pi} x \sin x \cdot d x \text { as } \int_{0}^{a} f(a-x) d x=\int_{0}^{a} f(x) d x \\
& =2 \pi \times \pi \\
& =2 \pi^{2} c u
\end{aligned}
$$

(c) iAs all lines in skip bin are straight:

$$
\begin{array}{c|l}
A B=F h+G & B C=5 h+K \\
A B=3 \text { when } h=0: 3=G & B C=3 \text { when } h=0 \Rightarrow 3=k . \\
A B=5 \text { when } h=2 \cdot 5 . & B C=4 \text { when } h=2 \cdot 5 . \\
5=2 \cdot 5 F+3 . & 4=2 \cdot 55+3 \\
\frac{4}{5}=F & \frac{2}{5}=J . \tag{3}\\
\therefore A B=\frac{4}{5} h+3 . & B C=\frac{2}{5} h+3 \\
\hline A
\end{array}
$$

Area ABCD $=\left(\frac{4}{5} h+3\right)\left(\frac{2}{5} h+3\right)$

$$
=\frac{8 h^{2}}{25}+\frac{18 h}{5}+9
$$

$$
\begin{aligned}
\left.(14) c_{c}\right)(i i) \delta V & =\left(\frac{8 h^{2}}{25}+\frac{18 h}{5}+9\right) \cdot \delta h \\
V & =\delta \operatorname{limit}_{h \rightarrow 0} \sum_{h=0}^{h=5 \cdot 5}\left(\frac{8 h^{2}}{25}+\frac{18 h}{5}+9\right) \cdot \delta h
\end{aligned}
$$

Letting $\delta h \rightarrow 0$

$$
\begin{align*}
V & =\int_{0}^{2 \cdot 5} \frac{8 h^{2}}{25}+\frac{18 h}{5}+9 . d h \\
& =\left[\frac{8 h^{3}}{55}+\frac{9 h^{2}}{5}+9 h\right]_{0}^{2.5} \\
& =\frac{425}{12} \text { cubic units. } \tag{2}\\
& =35 \frac{5}{12} \text { c.u. }
\end{align*}
$$

$$
\text { (d) }(i) \int_{i=}^{\frac{\pi}{4}} \sin ^{n} x \cdot d x
$$

$$
\text { (U) } I_{n}=\int_{0}^{\frac{\pi}{4}} \sin ^{n-1} x \cdot \sin x \cdot d x \quad u^{\prime}=(n-1) \sin ^{n-2} x \cos x \quad v^{\prime}=-\sin x
$$

By $\int u v^{\prime} d x=u \quad-\int v u^{\prime} \cdot d x$

$$
\begin{aligned}
I_{n} & =\left[-\cos ^{1} x \sin ^{n-1} x\right]_{0}^{\frac{\pi}{4}}+(n-1) \int_{0}^{\frac{\pi}{4}} \sin ^{n-2} x \cos ^{2} x \cdot d x \\
& =\left[-\frac{1}{\sqrt{2}} \times\left(\frac{1}{\sqrt{2}}\right)^{n-1}-0\right]+(n-1) \int_{0}^{\frac{\pi}{4}}\left(1-\sin ^{2} x\right) \sin ^{n-2} x \cdot d x \\
I_{n} & =-\left(\frac{1}{\sqrt{2}}\right)^{n}+(n-1) \int_{0}^{\frac{\pi}{4}} \sin ^{n-2} x d x-(n-1) \int_{0}^{\left(\frac{\pi}{4} \sin ^{n} x d x\right.} \\
I_{n} & =-\left(\frac{1}{\sqrt{2}}\right)^{n}+(n-1) I_{n-2}-(n-1) I_{n} . \\
n I_{n} & =-\left(\frac{1}{\sqrt{2}}\right)^{n}+(n-1) I_{n-2} . \\
I_{n}= & -\frac{\left(\frac{1}{\sqrt{2}}\right)^{n}+\frac{(n-1) I_{n-2}}{n}}{a \in D .}
\end{aligned}
$$

$$
\begin{aligned}
(14)(d)(u) I_{0} & =\int_{0}^{\frac{\pi}{4}} p d x \\
& =\frac{\pi}{4} \\
I_{2} & =-\frac{\left(\frac{1}{\sqrt{2}}\right)^{2}}{2}+\frac{1}{2} I_{0} \\
& =\frac{\frac{\pi}{8}}{8}-\frac{1}{4} \\
& =-\frac{\left(\frac{1}{\sqrt{2}}\right)^{4}}{4}+\frac{3}{4} I_{2} \\
& =-\frac{1}{4}+\frac{3}{4}\left(\frac{\pi}{8}-\frac{1}{4}\right) \\
& =\frac{3 \pi}{32}-\frac{1}{4} \\
& =-\frac{\left.-\frac{1}{\sqrt{2}}\right)^{6}}{6}+\frac{5}{6} I_{4} \\
& =-\frac{1}{48}+\frac{5}{6} \times\left(\frac{3 \pi}{32}-\frac{1}{4}\right) \\
& =\frac{\frac{\pi}{64}}{64}-\frac{1}{48}
\end{aligned}
$$

$Q .(15)(a)(i)$

$$
\begin{aligned}
& \text { Sub. (2) in }(1): \frac{80 g \sin 20^{\circ}}{\cos 20^{\circ}}=\frac{801^{2}}{50} \\
& 178.3 \cdots=v^{2} \\
& 13.35 \cdots=v
\end{aligned}
$$

Optimum speed $\doteq 13.35 \mathrm{~m} / \mathrm{s}$.
p. 14
$(15)(a)(\ddot{u})$

Findig F
Vertical: $N_{\cos 20^{\circ}}+F \sin 20^{\circ}=80 g(1) \times \sin 20^{\circ}=(3)$
Horizoital: $N \sin 20^{\circ}-F \cos 20^{\circ}=\frac{80 \times 11^{2}}{50}(2) \times \cos 20^{\circ}=(4)$

$$
\begin{align*}
& N \cos 20^{\circ} \sin 20^{\circ}+F \sin ^{2} 20^{\circ}=80, \sin 20^{\circ} \text { (3) } \tag{3}\\
& N \cos 20^{\circ} \sin 20^{\circ}-F \cos ^{2} 20^{\circ}=\frac{80 \times 11^{2} \cos 20^{\circ}(4)}{50} \tag{4}\\
& F\left(\sin ^{2} 20^{\circ}+\cos ^{2} 20^{\circ}\right)=80 g \sin 20^{\circ}-\frac{80 \times 11^{2}}{50} \cos 20^{\circ} \quad \text { (4) }
\end{align*}
$$

Lateral friction $E=86: 219$. Newtons.
(iii)

Resolving horizontally: $N \sin 20^{\circ}+0.2 N_{\cos } 20^{\circ}=\frac{80^{2}}{50}$

Using-(2): $N=\frac{80 g}{\cos 20^{\circ}-0.2 \sin 20^{\circ}}$ (3)

$$
\begin{aligned}
\operatorname{Sub} \cdot(3) \operatorname{in}(1): 80 y \\
\cos 20^{\circ}-0.2 \sin 10^{\circ}
\end{aligned}\left(\frac{\left.\sin 20^{\circ}+0 \cdot 2(0) 20^{\circ}\right)}{}=\frac{\frac{80 v^{2}}{50}}{298 \cdot 04 \cdots}=\begin{array}{rl}
17 \cdot 2638 & =v .
\end{array}\right.
$$

The maximuer speed before slipping outwads. is $17.26 \mathrm{~m} / \mathrm{s}$.
p. 15.
() $(15)(b)(i)$

$$
\begin{aligned}
& \text { Resolving vertically: } T \cos 30^{\circ}+N \sin 30^{\circ}=10 \mathrm{~g} \text { (1) } \times \cos =(3) \\
& \text { horizontally: } T \sin 30^{\circ}-N_{\cos 3} 30^{\circ}=\frac{10 \times 4^{2}}{6} \quad\left[\operatorname{mn} v^{2}\right](2) \\
& T \cos ^{2} 30^{\circ}+N \cos 30^{\circ} \sin 30^{\circ}=\log _{2} \cos 30^{\circ}(3)+\quad 4 \\
& T \sin ^{2} 30^{\circ}=N \cos 30^{\circ} \sin 30^{\circ}=\frac{10 \times x^{2}}{6} \sin 30^{\circ}(4)^{\top} \\
& T \\
& =10 g \cos 30^{\circ}+\frac{10 x 4^{2}}{6} \sin 30^{\circ} \\
& T \div 98-2 \text { Newtons. }
\end{aligned}
$$

Using (1): $N=\frac{\log -T \cos 30^{\circ}}{\sin 30^{\circ}}$

$$
=25.9 \text { Newtons. }
$$

Tension $=98.2$ Newtons, Normal fore $=25.9$ Newtons.
(ii) If particle loses contact with cone, these is no normal fore

$$
\begin{aligned}
& \therefore \frac{T \cos 30^{\circ}}{T}=10 g \\
&=\frac{100}{\cos 30^{\circ}} \\
& T \sin 30^{\circ}=\frac{10 v^{2}}{6} \\
& \frac{10 q}{\cos 30^{\circ}} \times \frac{6}{10} \cdot \sin ^{\circ}=r^{2} \\
& 33 \cdot q \ldots=v^{2} \\
& 5 \cdot 826 \ldots=v
\end{aligned}
$$

\rightarrow Weight loser contact with cone at $5.533 \mathrm{~m} / \mathrm{s}$.

Q Q.(16)(a) ${ }_{\mathrm{mg}}^{\downarrow}$

$$
\frac{m v^{2}}{360}
$$

$$
T
$$

$$
\text { (i) } \begin{align*}
F=m a & =m g-\frac{m v^{2}}{360} \\
a & =x
\end{align*}=9-\frac{v^{2}}{360} .
$$

C

$$
\text { Terminal velocity: } \begin{aligned}
\ddot{x}=0: g-\frac{v^{2}}{360} & =0 \\
v^{2} & =3603 \\
V & =59.4 \mathrm{~m} / \mathrm{s}(10 \mathrm{P})
\end{aligned}
$$

$$
\begin{aligned}
\left(\ddot{i} \dot{x}=v \cdot \frac{d v}{d x}\right. & =\frac{360 g-v^{2}}{360} \\
\frac{d v}{d x} & =\frac{360 g-v^{2}}{360 v} \\
\frac{d x}{d v} & =\frac{360 v}{360 g-v^{2}} \\
x & =-180 \int \frac{-2 v}{360 g-v^{2}} d v \\
& =-180 \ln \left(360 g-v^{2}\right)+C \\
\text { As } x=0 w \ln n & =0 \\
180 \ln 360 g & =-180 \ln 360 g+c \\
x & =180 \ln 360 g-180 \ln \left(360 g-v^{2}\right) \\
x & =180 \ln \left[\frac{360 g}{360 g-v^{2}}\right]
\end{aligned}
$$

When $v=50,=180 / m\left[\frac{360 y_{y}}{360_{y}-50^{2}}\right]$

$$
=221.96 . \mathrm{m} .
$$

She reaches $50 \mathrm{~m} / \mathrm{s}$. 221.96 m below the balloon.
() Q. $(16)(\mathrm{a})(\bar{u})$ Time taler to reach m / s.
\rightarrow Need t in terms of v :

$$
\begin{aligned}
\ddot{x}=\frac{d v}{d t} & =\frac{360_{g}-v^{2}}{360} \\
\frac{d t}{d v} & =\frac{360}{36 g_{g}-v^{2}} \\
\text { Letting } \frac{360}{36 g_{g}-v^{2}} & =\frac{A}{\left(\sqrt{36 g_{y}}-v\right)}+\frac{B}{(\sqrt{369 g}+v)} \\
360 & =A(\sqrt{360 g}+v)+B\left(\sqrt{360_{g}}-v\right)(1)
\end{aligned}
$$

$$
\text { Sub. in } v=-\sqrt{360 g} \text { in (1) }
$$

$$
360=28 \sqrt{3609}
$$

$$
\sqrt{360}=28 \sqrt{9}
$$

$$
6 \sqrt{10}=28 \sqrt{9}
$$

$$
\frac{3 \sqrt{10}}{\sqrt{9}}=8
$$

The skydiver reades $50 \mathrm{~m} / \mathrm{s}$ after 7.44 seconds.

$$
\begin{aligned}
& \text { Sub. in } v=\sqrt{360 g} \text { in }(1) \text { : } \\
& 360=2 A \sqrt{360 y} \\
& \frac{3 \sqrt{10}}{\sqrt{g}}=A \text {. } \\
& \therefore \frac{d t}{d v}=\frac{3 \sqrt{10}}{\sqrt{g}}\left[\frac{1}{\sqrt{360 g}-v}+\frac{1}{\sqrt{360 y}+v}\right] . \\
& t \equiv \frac{3 \sqrt{10}}{\sqrt{g}} \int \frac{-1}{\sqrt{360 g}-v} \cdot d v+\frac{3 \sqrt{10}}{\sqrt{9}} \int \frac{1}{\sqrt{360 g}+v} d v \\
& =-\frac{3 \sqrt{10}}{\sqrt{g}} \ln (\sqrt{360 y}-v)+\frac{3 \sqrt{10}}{\sqrt{g}} \ln \left(\sqrt{3600_{y}}+v\right) \\
& t=\frac{3 \sqrt{10}}{\sqrt{g}} \ln \left[\frac{\sqrt{360 g}+v}{\sqrt{360 g}-v}\right] \\
& \text { When } \quad=\frac{50}{10} \frac{\sqrt{10}}{\sqrt{9}} \ln \left[\frac{\sqrt{360 g}+50}{\sqrt{360 y}-50}\right] \\
& =7.4385 \text {. }
\end{aligned}
$$

p. 18

Q Q. $(16)(6)(i) B_{y}$ DeMoivre's theorem:

$$
\begin{aligned}
\cos 4 \theta+i \sin 4 \theta & =(\cos \theta+i \sin \theta)^{4} \\
& =\cos ^{4} \theta+4 i \cos ^{3} \theta \sin \theta-6 \cos ^{2} \theta \sin ^{2} \theta-4 i \cos ^{4} \sin ^{3} \theta \\
& +\sin ^{4} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { Equating real pats, } \begin{aligned}
\cos 4 \theta & =\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta \\
& =\cos ^{4} \theta-6 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right)+\left(1-\cos ^{2} \theta\right)^{2} \\
& =\cos ^{4} \theta-6 \cos ^{2} \theta+6 \cos ^{4} \theta+1-2 \cos ^{2} \theta+\cos ^{4} \theta \\
& =8
\end{aligned} \\
&=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
\end{aligned}
$$

(ii) Hence: $\operatorname{Ar} \cos \frac{\pi}{7}=\cos \left(4 \times \frac{\pi}{12}\right)=\frac{1}{2}$,

$$
\cos \frac{\pi}{12} \text { is solution to } \cos 4 \theta=\cos \frac{\pi}{3}=\frac{1}{2} \text {. }
$$

$\therefore \cos \frac{\pi}{12}$ is solution to $8 x^{4}-8 x^{2}+1=\frac{1}{2}, x=\cos \frac{\pi}{12}$.

$$
\therefore \text { ㄹ. } 16 x^{4}-16 x^{2}+1=0
$$

Using quadratic formula as equation is quadratic in x^{2},

$$
\begin{aligned}
x^{2} & =\frac{16 \pm \sqrt{16^{2}-4 \times 16 \times 1}}{2 \times 16} \\
x^{2} & =\frac{16 \pm 8 \sqrt{3}}{32} \\
& =\frac{2 \pm \sqrt{3}}{4}
\end{aligned}
$$

$$
\begin{aligned}
\text { As } \cos \frac{\pi}{12}> & >\cos \frac{\pi}{43}\left[=\frac{1}{\sqrt{2}}\right], \\
\cos ^{2} \frac{\pi}{12} & =\frac{2+\sqrt{3}}{4} \\
\cos \frac{\pi}{12} & =\frac{\sqrt{2+\sqrt{3}}}{2}
\end{aligned}
$$

(ii) Either: $\omega-1=\left(\cos \frac{\pi}{12}-1\right)$ $\bar{i} \sin \frac{\pi}{12}$

$$
\begin{aligned}
\therefore|\omega-1|= & \sqrt{\cos \frac{2 \pi}{12}-2 \cos \frac{\pi}{12}+1+\sin ^{2} \frac{\pi}{12}} \\
= & \sqrt{2-2 \cos \frac{\pi}{12}} \\
= & \sqrt{2} \sqrt{1-\cos \frac{\pi}{12}} \\
& p \pi 0 \rightarrow
\end{aligned}
$$

p. 19 Q.(16)(ï̈) attentive solution:
(O) Using cosine rule on $\triangle A O X: A X=1 \omega-11$.

$$
\begin{aligned}
(A X)^{2} & =(O A)^{2}+(O X)^{2}-2 \times O A \times O X+\cos \frac{\pi}{12} \\
& =1^{2}+1^{2}-2 \times 1 \times 1 \times \cos \frac{7}{12} \\
|\omega-1|^{2} & =2-2 \cos \frac{\pi}{12} \\
\omega-1 & =\sqrt{2} \sqrt{1-\cos \frac{\pi}{12}}
\end{aligned}
$$

(iv) $A s A B=B C=C 0$ etc.

Perimeter $A B C D$ X

$$
=24 \sqrt{2} \sqrt{1-\cos \frac{\pi}{12}}
$$

(v) The perimeter of a polygon with vertices solution $\omega^{n}=1$ would

$$
=n \sqrt{2} \sqrt{1-\cos \frac{2 \pi}{n}}
$$

As $n \rightarrow \infty$, this shape would approach a circle with perimeter $=2 \pi$.

$$
\therefore \operatorname{limit}_{n \rightarrow \infty} n \sqrt{2} \sqrt{1-\cos \frac{2 \pi}{n}}=2 \pi
$$

ENO OF socuItans.

